Parametric Quantities, their Representations and Factorisations, and Inverse Identifications Methods

Hermann G. Matthies

Bojana V. Rosić, Alexander Litvinenko, Oliver Pajonk
Institut für Wissenschaftliches Rechnen
TU Braunschweig
wire@tu-bs.de
http://www.wire.tu-bs.de

Overview

1. Parametric problems
2. System properties identification
3. Stochastic forward problem
4. Bayesian update through projection
5. Computational issues
6. Examples

Parametric problems

For each ω in a parameter set Ω, let $r(\omega)$ be an element belonging to some problem in a Hilbert space \mathcal{V} (for simplicity).

With $r: \Omega \rightarrow \mathcal{V}$, denote $\mathcal{U}=\overline{\operatorname{span}} r(\Omega)=\overline{\operatorname{span}} \operatorname{im} r$.
What we are after: other representations of r or $\mathcal{U}=\overline{\operatorname{span}} \operatorname{im} r$.
To each function $r: \Omega \rightarrow \mathcal{U}$ corresponds a linear map $R: \mathcal{U} \rightarrow \tilde{\mathcal{R}}$:

$$
R: \mathcal{U} \ni u \mapsto\langle r(\cdot) \mid u\rangle_{\mathcal{U}} \in \tilde{\mathcal{R}}=\operatorname{im} R \subset \mathbb{R}^{\Omega} .
$$

By construction R is injective. Use this to make $\tilde{\mathcal{R}}$ a pre-Hilbert space:

$$
\forall \phi, \psi \in \tilde{\mathcal{R}}:\langle\phi \mid \psi\rangle_{\mathcal{R}}:=\left\langle R^{-1} \phi \mid R^{-1} \psi\right\rangle_{\mathcal{U}}
$$

R^{-1} is unitary on completion \mathcal{R}.

RKHS and classification

\mathcal{R} is a reproducing kernel Hilbert space - RKHS- with kernel

$$
\varkappa\left(\omega_{1}, \omega_{2}\right)=\left\langle r\left(\omega_{1}\right) \mid r\left(\omega_{2}\right)\right\rangle_{\mathcal{U}} \in \mathbb{R}^{\Omega \times \Omega}
$$

Reproducing property:

$$
\forall \phi \in \mathcal{R}:\langle\varkappa(\omega, \cdot) \mid \phi(\cdot)\rangle_{\mathcal{R}}=\phi(\omega)=:\left\langle\delta_{\omega}, \phi\right\rangle_{\mathcal{R}^{*} \times \mathcal{R}} .
$$

In other settings (classification, machine learning, SVM), when different subsets of Ω have to be classified, the space \mathcal{U} and the map $r: \Omega \rightarrow \mathcal{U}$ is not given, can be freely chosen \Rightarrow the feature map (the kernel trick).

Choose CONS $\left\{\varphi_{m}\right\}_{m \in \mathbb{N}}$ in $\mathcal{R}: R^{-1}=\sum_{m} w_{m} \otimes \varphi_{m}$, with $R w_{m}=\varphi_{m}$. Let $Q_{\mathcal{R}}: \ell_{2} \ni \boldsymbol{a}=\left(a_{1}, a_{2}, \ldots\right) \mapsto \sum_{m} a_{m} \varphi_{m} \in \mathcal{R}$.
\Rightarrow tensor representation $R^{-1} \circ Q_{\mathcal{R}}: \ell_{2} \ni \boldsymbol{a} \mapsto \sum_{m} a_{m} w_{m} \in \mathcal{U}$

‘Correlation’

Assume scalar product $\langle\cdot \mid \cdot\rangle_{Q}$ on $\mathbb{R}^{\Omega} \rightarrow$ Hilbert space \mathcal{Q}. If (Ω, μ) is a measure space, take $\mathcal{Q}=L_{2}(\Omega, \mu)$.

Define self-adjoint and positive definite 'correlation' operator C in \mathcal{U} by

$$
\begin{gathered}
u, v \in \mathcal{U}:\langle C u \mid v\rangle_{\mathcal{U}}=\langle R u \mid R v\rangle_{\mathcal{Q}}=\left\langle\left(\langle u \mid r(\cdot)\rangle_{\mathcal{U}} \mid\langle r(\cdot) \mid v\rangle_{\mathcal{U}}\right)\right\rangle_{\mathcal{Q}} . \\
C=R^{*} R ; \quad\left[\text { If } \mathcal{Q}=L_{2}(\Omega): \quad C=\int_{\Omega} r(\omega) \otimes r(\omega) \mu(\mathrm{d} \omega) .\right] \\
\Rightarrow \text { has spectrum } \sigma(C) \subseteq \mathbb{R}_{+} .
\end{gathered}
$$

Spectral decomposition with projectors E_{λ}

$$
C u=\int_{0}^{\infty} \lambda \mathrm{d} E_{\lambda} u=\sum_{\lambda_{m} \in \sigma_{p}(C) \subset \mathbb{R}_{+}} \lambda_{m}\left\langle v_{m} \mid u\right\rangle_{\mathcal{U}} v_{m}+\int_{\mathbb{R}_{+} \backslash \sigma_{p}(C)} \lambda \mathrm{d} E_{\lambda} u
$$

Spectral decomposition

Often C has a pure point spectrum (e.g. C or C^{-1} compact) \Rightarrow last integral vanishes. In case $\sigma(C)=\sigma_{p}(C)$:

$$
C u=\sum_{m} \lambda_{m} \sum_{n}^{\text {mult. } \lambda_{m}}\left\langle v_{m}^{n} \mid u\right\rangle_{\mathcal{U}} v_{m}^{n}=\sum_{m} \lambda_{m} \sum_{n}^{\text {mult. } \lambda_{m}}\left(v_{m}^{n} \otimes v_{m}^{n}\right) u .
$$

If $\sigma(C) \neq \sigma_{p}(C)$: generalised eigenvectors v_{λ} and Gelfand triplets (rigged Hilbert spaces) for the continuous spectrum:

$$
C u=\sum_{n}^{\max \text { mult. }} \int_{\mathbb{R}_{+}} \lambda\left(v_{\lambda}^{n} \otimes v_{\lambda}^{n}\right) u \varrho_{n}(\mathrm{~d} \lambda) .
$$

Representation as sum / integral of rank-1 operators.
Numerical approximation will give a sum. Assumed from now on.

Singular value decomposition

C unitarily equivalent to multiplication operator M_{k}, with $k \geq 0$:

$$
C=V M_{k} V^{*}=\left(V M_{k}^{1 / 2}\right)\left(V M_{k}^{1 / 2}\right)^{*}, \text { with } M_{k}^{1 / 2}=M_{\sqrt{k}} .
$$

This connects to the singular value decomposition (SVD)

$$
\text { of } R=S M_{k}^{1 / 2} V^{*} \text {, with a (here) unitary } S \text {. }
$$

With $\sqrt{\lambda_{m}} s_{m}:=R v_{m} \in \mathcal{R}$:
$(R u)(\omega)=\langle r(\omega) \mid u\rangle_{\mathcal{U}}=\sum_{m} \sqrt{\lambda_{m}}\left\langle v_{m} \mid u\right\rangle_{\mathcal{U}} s_{m}(\omega)$

$$
R=\sum_{m} \sqrt{\lambda_{m}}\left(s_{m} \otimes v_{m}\right) .
$$

Model reduction possible by truncating the sum.

Karhunen-Loève Expansion

For partly continuous spectrum we get

$$
r(\omega)=\sum_{n}^{\text {max mult. }} \int_{\mathbb{R}_{+}} \sqrt{\lambda}\left\langle v_{\lambda}^{n}, u\right\rangle s_{\lambda}^{n}(\omega) \varrho_{n}(\mathrm{~d} \lambda)
$$

With approximation or only point spectrum

$$
r(\omega)=\sum_{m} \sqrt{\lambda_{m}} s_{m}(\omega) v_{m}, \quad r \in L_{2}(\Omega) \otimes \mathcal{U}
$$

This is the Karhunen-Loève-expansion, due to the SVD. A sum of rank-1 operators / tensors.

Observe that r is linear in the s_{m}.
A representation of r, model reduction possible by truncation of sum.

Kernel spectral decomposition

For $\phi, \psi \in \mathcal{Q}$ we have also $\left\langle R^{*} \phi \mid R^{*} \psi\right\rangle_{\mathcal{U}}$; to compute R^{*}, for $\psi \in \mathcal{Q}$ define an operator $\hat{C}=R R^{*}$ on $\mathcal{Q}=\left[L_{2}(\Omega)\right]$ by

$$
(\hat{C} \psi)\left(\omega_{1}\right):=\left\langle\varkappa\left(\omega_{1}, \cdot\right) \mid \psi(\cdot)\right\rangle_{\mathcal{Q}} \quad\left[=\int_{\Omega} \varkappa\left(\omega_{1}, \omega_{2}\right) \psi\left(\omega_{2}\right) \mu\left(\mathrm{d} \omega_{2}\right)\right] .
$$

$$
\left\langle R^{*} \phi \mid R^{*} \psi\right\rangle_{\mathcal{U}}=\langle\phi \mid \hat{C} \psi\rangle_{\mathcal{Q}}\left[=\iint_{\Omega \times \Omega} \phi\left(\omega_{1}\right) \varkappa\left(\omega_{1}, \omega_{2}\right) \psi\left(\omega_{2}\right) \mu\left(\mathrm{d} \omega_{1}\right) \mu\left(\mathrm{d} \omega_{2}\right) .\right]
$$

Eigenvalue problem for \hat{C} gives (Mercer's theorem)

$$
\varkappa\left(\omega_{1}, \omega_{2}\right)=\sum_{m} \lambda_{m} s_{m}\left(\omega_{1}\right) s_{m}\left(\omega_{2}\right),
$$

$\left\{s_{m}\right\}$ is CONS in $\mathcal{Q}\left[=L_{2}(\Omega)\right],\left\{\sqrt{\lambda_{m}} s_{m}\right\}$ is CONS in \mathcal{R}.

$$
R^{*} \phi=\sum_{m} \sqrt{\lambda_{m}} v_{m}\left\langle s_{m} \mid \phi\right\rangle_{\mathcal{Q}}, \quad R^{-1} \phi=\sum_{m} \lambda_{m}^{-1 / 2} v_{m}\left\langle s_{m} \mid \phi\right\rangle_{\mathcal{Q}} .
$$

Factorisations

R^{*} (or truncation) now serves as a representation. This is a factorisation of C, let $C=B^{*} B$ be an arbitrary one. Some possible ones:

$$
C=R^{*} R=\left(V M_{k}^{1 / 2}\right)\left(V M_{k}^{1 / 2}\right)^{*}=C^{1 / 2} C^{1 / 2}=B^{*} B
$$

Each factorisation leads to a representation-all unitarily equivalent. When C is a matrix, a favourite is Cholesky: $C=L L^{*}$).

Assume that $C=B^{*} B$ and $B: \mathcal{U} \rightarrow \mathcal{H}$, let $\left\{e_{k}\right\}$ be CONS in \mathcal{H}.

$$
\begin{aligned}
& \text { Unitary } Q: \ell_{2} \ni \boldsymbol{a}=\left(a_{1}, \ldots, a_{n}, \ldots\right) \mapsto \sum_{k} a_{k} e_{k} \in \mathcal{H} . \\
& \qquad \text { Let } \tilde{r}(\boldsymbol{a}):=B^{*} Q \boldsymbol{a}:=\tilde{R}^{*} \boldsymbol{a} \text {, i.e. } \tilde{R}^{*}: \ell_{2} \rightarrow \mathcal{U} \text {. Then } \\
& \qquad \tilde{R}^{*} \tilde{R}=\left(B^{*} Q\right)\left(Q^{*} B\right)=B^{*} B=C .
\end{aligned}
$$

Integral decompositions

More decompositions and representations possible via \hat{C}. Let

$$
\begin{gathered}
\varkappa\left(\omega_{1}, \omega_{2}\right)=\int_{X} g\left(\omega_{1}, x\right) g\left(\omega_{2}, x\right) \nu(\mathrm{d} x) \\
\text { Set } g_{m}(x):=\left\langle g(\cdot, x) \mid s_{m}\right\rangle_{\mathcal{Q}} \text { to give } \\
p: X \ni x \mapsto p(x):=\sum_{m} \lambda_{m}^{1 / 2} g_{m}(x) v_{m}=R^{*} g(\cdot, x) \in \mathcal{U}
\end{gathered}
$$

We can arrange $\mathcal{U}=\overline{\operatorname{span}} \operatorname{im} r=\overline{\operatorname{span}} \operatorname{im} p$.
Then $p(x)$ gives a representation over X :
define $\hat{R}^{*}: L_{2}(X, \nu) \rightarrow \mathcal{U}$

$$
\begin{aligned}
& \hat{R}^{*}: L_{2}(X, \nu) \ni f \mapsto \hat{R}^{*} f:=\int_{Y} p(x) f(x) \nu(\mathrm{d} x) \in \mathcal{U} \\
& \Rightarrow C=\hat{R}^{*} \hat{R}
\end{aligned}
$$

Representations

We have seen several ways to represent the solution space by a-hopefully-simpler space.
These can all be used for model reduction, choosing a smaller subspace.

- The RKHS together with R^{-1}.
- The spectral decomposition over $\sigma(C)$ or via $V M_{k}^{1 / 2}$.
- The Karhunen-Loève expansion based on SVD via R^{*}.
- Other multiplicative decompositions, such as $C=B^{*} B$.
- The kernel decompositions and representation on $L_{2}(X, \nu)$.

Choice depends on what is wanted / needed.

Examples and interpretations

- If \mathcal{V} is a space of centred RVs, r is a random field / stochastic process indexed by Ω, kernel $\varkappa\left(\omega_{1}, \omega_{2}\right)$ is covariance function.
- If in this case $\Omega=\mathbb{R}^{d}$ and moreover $\varkappa\left(\omega_{1}, \omega_{2}\right)=c\left(\omega_{1}-\omega_{2}\right)$ (stationary process / homogeneous field), then diagonalisation V is real Fourier transform, typically $\sigma(C)_{p}=\emptyset \Rightarrow$ need Gelfand triplets.
- If μ is a probability measure $(\mu(\Omega)=1)$, and r is a centred \mathcal{V}-valued RV , then C is the covariance.
- If $\Omega=\{1,2, \ldots, n\}$ and $\mathcal{R}=\mathbb{R}^{n}$, then \varkappa is the Gram matrix of the vectors r_{1}, \ldots, r_{n}.
- If $\Omega=[0, T]$ and $r(\omega)$ is the response of a dynamical system, then R^{*} leads to proper orthogonal decomposition (POD).

Further factorisation

We have found representations in $\mathcal{U} \otimes \mathcal{S}$, where

$$
\mathcal{S}=\mathcal{R}, L_{2}(\Omega), L_{2}(\sigma(C)), \bigoplus L_{2}\left(\mathbb{R}, \varrho_{n}\right), \ell_{2}, \mathcal{H}, L_{2}(X), \ldots
$$

n
Combinations may occur, so that $\mathcal{S}=\mathcal{S}_{I} \otimes \mathcal{S}_{I I} \otimes \mathcal{S}_{I I I} \otimes \ldots$
This was only a basic decomposition.
Often the problem allows $\mathcal{U}=\bigotimes_{k} \mathcal{U}_{k}$.
Or the parameters allow $\mathcal{S}=\bigotimes_{j} \mathcal{S}_{j}$.
In case of random fields / stochastic processes

$$
\mathcal{S}=L_{2}(\Omega) \cong \bigotimes_{j} L_{2}\left(\Omega_{j}\right) \cong L_{2}\left(\mathbb{R}^{\mathbb{N}}, \Gamma\right) \cong \bigotimes_{k=1}^{\infty} L_{2}\left(\mathbb{R}, \Gamma_{1}\right) \ldots
$$

So $\mathcal{U} \otimes \mathcal{S} \cong\left(\otimes_{j} \mathcal{U}_{j}\right) \otimes\left(\bigotimes_{k} \mathcal{S}_{I, k}\right) \otimes\left(\otimes_{m} \mathcal{S}_{I I, m}\right) \otimes \ldots$

Synopsis of Bayesian inference

Unknown quantities are uncertain, modelled as random.
This can be considered as a model of our state of knowledge.
After some new information (an observation, a measurement), our model has to be made consistent with the new information, i.e. we are looking for conditional probabilities.

The idea is to change our present model by just so much as little as possible - so that it becomes consistent.

For this we have to predict - with our present knowledge / model the probability of all possible observations and compare with the actual observation.

Setting for the identification process

General idea:
We observe / measure a system, whose structure we know in principle.
The system behaviour depends on some quantities (parameters), which we do not know \Rightarrow uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting: as a probability distribution on the parameters.

We start with what we know a priori, then perform a measurement.
This gives new information, to update our knowledge (identification).
Update in probabilistic setting works with conditional probabilities \Rightarrow Bayes's theorem.

Repeated measurements lead to better identification.

Mathematical formulation I

Consider operator equation, physical system modelled by A :

$$
\begin{array}{rl}
A(u)=f & u \in \mathcal{U}, f \in \mathcal{F}, \\
\Leftrightarrow \forall v \in \mathcal{U}: & \langle A(u), v\rangle=\langle f, v\rangle,
\end{array}
$$

\mathcal{U} - space of states, $\mathcal{F}=\mathcal{U}^{*}$ - dual space of actions / forcings.
Solution operator: $u=S(f)$, inverse of A.
Operator depends on parameters $q \in \mathcal{Q}$, hence state u is also function of q :

$$
A(u ; q)=f \quad \Rightarrow \quad u=S(f ; q)
$$

Measurement operator Y with values in \mathcal{Y} :

$$
y=Y(q ; u)=Y(q, S(f ; q)) .
$$

Mathematical formulation II

For given f, measurement y is just a function of q. This function is usually not invertible \Rightarrow ill-posed problem, measurement y does not contain enough information.

In Bayesian framework state of knowledge modelled in a probabilistic way, parameters q are uncertain, and assumed as random.

Bayesian setting allows updating / sharpening of information about q when measurement is performed.

The problem of updating distribution-state of knowledge of q becomes well-posed.

Can be applied successively, each new measurement y and forcing f-may also be uncertain-will provide new information.

Reminder of Bayes's theorem

Assume that A is an event where we want more information, and that B is a possible observation. If the conditional probability

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A) \text {, in other words }
$$

$\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$, then A and B are independent, i.e. B contains no information regarding A. Otherwise

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B) \text {. As also } \mathbb{P}(A \cap B)=\mathbb{P}(B \mid A) \mathbb{P}(A) \text { : }
$$

$$
\Longrightarrow \quad \mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A)}{\mathbb{P}(B)} \mathbb{P}(A) .
$$

Sir Harold Jeffreys: Bayes's theorem "is to the theory of probability what Pythagoras's theorem is to geometry".

Model with uncertainties

For simplicity assume that \mathcal{Q} is a Hilbert space, and $q(\omega)$ has finite variance $-\|q\|_{\mathcal{Q}} \in \mathcal{S}:=L_{2}(\Omega)$, so that

$$
q \in L_{2}(\Omega, \mathcal{Q}) \cong \mathcal{Q} \otimes L_{2}(\Omega)=\mathcal{Q} \otimes \mathcal{S}=: \mathscr{Q}
$$

System model is now

$$
A(u(\omega) ; q(\omega))=f(\omega) \quad \text { a.s. in } \omega \in \Omega,
$$

state $u=u(\omega)$ becomes \mathcal{U}-valued random variable (RV), element of a tensor space $\mathscr{U}=\mathcal{U} \otimes \mathcal{S}$.

As variational statement:
$\forall v \in \mathscr{U}: \quad \mathbb{E}(\langle A(u(\cdot) ; q(\cdot)), v\rangle)=\mathbb{E}(\langle f(\cdot), v\rangle)=:\langle\langle f, v\rangle\rangle$.
Leads to well-posed stochastic PDE (SPDE).

Measurement

With state $u \in \mathscr{U}=\mathcal{U} \otimes \mathcal{S}$ a RV, the quantity to be measured

$$
z(\omega)=Y(q(\omega), u(\omega)))+\epsilon(\omega) \in \mathscr{Y}:=\mathcal{Y} \otimes \mathcal{S}
$$

is also uncertain-a random variable-plus a random error ϵ.
This is the predicted new measurement, whereas the observation gives $\hat{y} \in \mathcal{Y}$.

Classically, Bayes's theorem gives conditional probability

$$
\mathbb{P}\left(I_{q} \mid M_{z}\right)=\frac{\mathbb{P}\left(M_{z} \mid I_{q}\right)}{\mathbb{P}\left(M_{z}\right)} \mathbb{P}\left(I_{q}\right)
$$

expectation with this posterior measure is conditional expectation.
Kolmogorov starts from conditional expectation $\mathbb{E}\left(\cdot \mid M_{z}\right)$, from this conditional probability via $\mathbb{P}\left(I_{q} \mid M_{z}\right)=\mathbb{E}\left(\chi_{I_{q}} \mid M_{z}\right)$.

Important points I

The probability measure \mathbb{P} is not the object of desire.
It is the distribution of q, a measure on \mathcal{Q}-push forward of \mathbb{P} :

$$
q_{*} \mathbb{P}(\mathcal{E}):=\mathbb{P}\left(q^{-1}(\mathcal{E})\right) \quad \text { for measurable } \quad \mathcal{E} \subseteq \mathcal{Q}
$$

Bayes's original formula changes \mathbb{P}, leaves q as is. Kolmogorov's conditional expectation changes q, leaves \mathbb{P} as is. In both cases the update is a new $q_{*} \mathbb{P}$.
\mathbb{P} (a probability measure) is on positive part of unit sphere, whereas q is free in a vector space.

This will allow the use of (multi-)linear algebra and tensor approximations.

Example A - linear heat flow (MCMC)

Constant unknown conductivity, solved by 100000 Markov chain Monte Carlo (MCMC) samples.

Comparison proxy model with pure FE.

Example B - non-linear heat flow (MCMC)

Conductivity as random field, 1000 MCMC samples.

final MCMC-FE

final MCMC-PCE

Update

The conditional expectation is defined as orthogonal projection onto the subspace $L_{2}(\Omega, \mathbb{P}, \sigma(z))$:

$$
\mathbb{E}(q \mid \sigma(z)):=P_{\mathscr{Q}_{\infty}} q=\operatorname{argmin}_{\tilde{q} \in L_{2}(\Omega, \mathbb{P}, \sigma(z))}\|q-\tilde{q}\|_{L_{2}}^{2}
$$

Subspace $\mathscr{Q}_{\infty}:=L_{2}(\Omega, \mathbb{P}, \sigma(z))$ represents available information,
estimate minimises function $\Phi=\|q-(\cdot)\|^{2}$ over \mathscr{Q}_{∞}.
More general loss functions Φ than mean square error are possible.
The update, also called the assimilated value $q_{a}(\omega):=P_{\mathscr{Q}_{\infty}} q=\mathbb{E}(q \mid \sigma(z))$, is a \mathscr{Q}-valued RV
and represents new state of knowledge after the measurement.
Reduction of variance—Pythagoras: $\|q\|_{L_{2}}^{2}=\left\|q-q_{a}\right\|_{L_{2}}^{2}+\left\|q_{a}\right\|_{L_{2}}^{2}$ Doob-Dynkin: $\mathscr{Q}_{\infty}=\{\varphi \in \mathscr{Q}: \varphi=\phi \circ z, \phi$ measurable $\}$

Important points II

Identification process:

- Use forward problem $A(u(\omega) ; q(\omega))=f(\omega)$ to forecast new state $u_{f}(\omega)$ and measurement $\left.z(\omega)=Y\left(q(\omega), u_{f}(\omega)\right)\right)+\epsilon(\omega)$.
- Perform minimisation of loss function to obtain update map / filter.
- Use innovation in inverse problem from measurement \hat{y} to update forecast q_{f} to obtain assimilated (updated) q_{a} with update map.
- All operations in vector space, use tensor approximations throughout.

Case with Prior Information

Here we have a prior estimate $q_{f}(\omega)$ (forecast) obtained by minimising over \mathscr{Q}_{f}
and measurements z generating as before via Y a subspace $\mathscr{Q}_{\infty} \subset \mathscr{Q}$.
We need projection onto $\mathscr{Q}_{0}=\mathscr{Q}_{f}+\mathscr{Q}_{\infty}$, with reformulation as an orthogonal direct sum: $\mathscr{Q}_{0}=\mathscr{Q}_{f}+\mathscr{Q}_{\infty}=\mathscr{Q}_{f} \oplus\left(\mathscr{Q}_{\infty} \cap \mathscr{Q}_{f}^{\perp}\right)=\mathscr{Q}_{f} \oplus \mathscr{Q}_{i}$.

The update / conditional expectation / assimilated value is the orthogonal projection

$$
q_{a}=q_{f}+P_{\mathscr{Q}_{i}} q=q_{f}+q_{i},
$$

where q_{i} is the innovation.
How can one compute q_{a} or $q_{i}=P_{\mathscr{Q}_{i}} q$?

Approximation

Minimising loss Φ equivalent to orthogonality: find $\phi \in L_{0}(\mathcal{Y}, \mathcal{Q})$

$$
\begin{aligned}
& \forall v \in \mathscr{Q}_{\infty}: \quad\left\langle\left\langle\mathrm{D}_{q_{a}} \Phi\left(q_{a}(\phi)\right), v\right\rangle\right\rangle_{L_{2}}=\left\langle\left\langle q-q_{a}, v\right\rangle\right\rangle_{L_{2}}=0 \\
& \quad \Leftrightarrow \mathrm{D}_{\phi} \Phi:=\mathrm{D}_{q_{a}} \Phi \circ \mathrm{D}_{\phi} q_{a}=0 \text { with } q_{a}(\phi):=\phi(z) .
\end{aligned}
$$

Approximation of \mathscr{Q}_{∞} : take $\mathscr{Q}_{n} \subset \mathscr{Q}_{\infty}$

$$
\mathscr{Q}_{n}:=\left\{\varphi \in \mathscr{Q}: \varphi=\psi_{n} \circ z, \psi_{n} \text { a } n^{\text {th }} \text { degree polynomial }\right\}
$$

$$
\text { i.e. } \varphi={ }^{0} H+{ }^{1} H z+\cdots+{ }^{k} H z^{\vee k}+\cdots+{ }^{n} H z^{\vee n}
$$ where ${ }^{k} H \in \mathscr{L}_{s}^{k}(\mathcal{Y}, \mathcal{Q})$ is symmetric and k-linear; $z^{\vee k}:=\operatorname{Sym}\left(z^{\otimes k}\right)$.

With $q_{a}(\phi)=q_{a}\left(\left({ }^{0} H, \ldots,{ }^{k} H, \ldots,{ }^{n} H\right)\right)=\sum_{k=0}^{n}{ }^{k} H z^{\vee k}=P_{\mathscr{Q}_{n}} q$, orthogonality implies

$$
\forall \ell=0, \ldots, n: \quad \mathrm{D}_{\left(\ell_{H}\right)} \Phi\left(q_{a}\left({ }^{0} H, \ldots,{ }^{k} H, \ldots,{ }^{n} H\right)\right)=0
$$

Determining the n-th degree Bayesian update

Theorem: For each $n \geq 0$, with the abbreviations

$$
\left\langle p \otimes v^{\vee k}\right\rangle:=\mathbb{E}\left(p \otimes v^{\vee k}\right)=\int_{\Omega} p(\omega) \otimes v(\omega)^{\vee k} \mathbb{P}(\mathrm{~d} \omega)
$$

$$
\text { and }{ }^{k} H\left\langle z^{\vee(\ell+k)}\right\rangle:=\left\langle z^{\vee \ell} \otimes\left({ }^{k} H z^{\vee k)}\right\rangle=\mathbb{E}\left(z^{\vee \ell} \otimes\left({ }^{k} H z^{\vee k)}\right)\right. \text {, }\right.
$$ we have for the unknowns $\left({ }^{0} H, \ldots,{ }^{k} H, \ldots,{ }^{n} H\right)$

$$
\begin{array}{lll}
\ell=0:{ }^{0} H & \cdots+{ }^{k} H\left\langle z^{\vee k}\right\rangle & \cdots+{ }^{n} H\left\langle z^{\vee n}\right\rangle= \\
\ell=1:{ }^{0} H\langle z\rangle & \cdots+{ }^{k} H\left\langle z^{\vee(1+k)}\right\rangle \cdots+{ }^{n} H\left\langle z^{\vee(1+n)}\right\rangle=\langle q\rangle, \\
\vdots & \cdots & \vdots \\
\ell=n:{ }^{0} H\left\langle z^{\vee n}\right\rangle \cdots+{ }^{k} H\left\langle z^{\vee(n+k)}\right\rangle \cdots+{ }^{n} H\left\langle z^{\vee(2 n)}\right\rangle=\left\langle q \otimes z^{\vee n}\right\rangle
\end{array}
$$

a linear system with symmetric positive definite Hankel operator matrix $\left(\left\langle z^{\vee(\ell+k)}\right\rangle\right)_{\ell, k}$.

Bayesian update in components

$$
\begin{gathered}
\text { For short } \forall \ell=0, \ldots, n: \\
\sum_{k=0}^{n}{ }^{k} H\left\langle z^{\vee(\ell+k)}\right\rangle=\left\langle q \otimes z^{\vee \ell}\right\rangle
\end{gathered}
$$

For finite dimensional spaces, or after discretisation, in components (or à la Penrose in 'symbolic index' notation):

$$
\text { let } q=\left(q^{m}\right), z=\left(z^{\jmath}\right), \text { and }{ }^{k} H=\left({ }^{k} H_{\jmath_{1} \cdots \jmath_{k}}^{m}\right) \text {, then: }
$$

$$
\forall \ell=0, \ldots, n ; \jmath_{1} \leq \ldots \leq \jmath \ell \leq \ldots \leq \jmath \ell+k \leq \ldots \leq \jmath \ell+n
$$

$$
\left\langle z^{\jmath_{1}} \cdots z^{\jmath_{\ell}}\right\rangle\left({ }^{0} H^{m}\right)+\cdots+\left\langle z^{\jmath_{1}} \cdots z^{\jmath_{\ell+1}} \cdots z^{\jmath_{\ell+k}}\right\rangle\left({ }^{k} H_{\jmath_{\ell+1} \cdots \jmath_{\ell+k}}^{m}\right)+
$$

$$
\cdots+\left\langle z^{\jmath_{1}} \cdots z^{\jmath_{\ell+1}} \cdots z^{\jmath_{\ell+n}}\right\rangle\left({ }^{n} H_{\jmath_{\ell+1} \cdots \jmath_{\ell+n}}^{m}\right)=\left\langle q^{m} z^{\jmath_{1}} \cdots z^{\jmath_{\ell}}\right\rangle .
$$

(Einstein summation convention used)
matrix does not depend on m-it is identically block diagonal.

Special cases

For $n=0$ (constant functions) $\Rightarrow q_{a}={ }^{0} H=\langle q\rangle \quad(=\mathbb{E}(q))$.
For $n=1$ the approximation is with affine functions

$$
\begin{aligned}
& { }^{0} H \quad+{ }^{1} H\langle z\rangle \quad=\langle q\rangle \\
& { }^{0} H\langle z\rangle+{ }^{1} H\langle z \otimes z\rangle=\langle q \otimes z\rangle
\end{aligned}
$$

$\Longrightarrow\left(\right.$ remember that $\left.\left[\operatorname{cov}_{q, z}\right]=\langle q \otimes z\rangle-\langle q\rangle \otimes\langle z\rangle\right)$

$$
{ }^{0} H=\quad\langle q\rangle-{ }^{1} H\langle z\rangle
$$

$$
{ }^{1} H(\langle z \otimes z\rangle-\langle z\rangle \otimes\langle z\rangle)=\langle q \otimes z\rangle-\langle q\rangle \otimes\langle z\rangle
$$

$$
\Rightarrow{ }^{1} H=\left[\operatorname{cov}_{q, z}\right]\left[\operatorname{cov}_{z, z}\right]^{-1} \text { (Kalman's solution), }
$$

$$
{ }^{0} H=\langle q\rangle-\left[\operatorname{cov}_{q, z}\right]\left[\operatorname{cov}_{z, z}\right]^{-1}\langle z\rangle
$$ and finally

$$
q_{a}={ }^{0} H+{ }^{1} H z=\langle q\rangle+\left[\operatorname{cov}_{q, z}\right]\left[\operatorname{cov}_{z, z}\right]^{-1}(z-\langle z\rangle) .
$$

Simplification $n=1$

The case $n=1$-linear functions, projecting onto \mathscr{Q}_{1}-is well known: this is the linear minimum variance estimate \hat{q}_{a}.

Theorem: (Generalisation of Gauss-Markov)

$$
{ }^{1} q_{a}(\omega)=q_{f}(\omega)+K(\hat{y}-z(\omega)),
$$

where the linear Kalman gain operator $K:={ }^{1} \mathrm{H}: \mathscr{Y} \rightarrow \mathscr{Q}$ is

$$
K:=\left[\operatorname{cov}_{q_{f}, y}\right]\left(\left[\operatorname{cov}_{y, y}\right]+\left[\operatorname{cov}_{\epsilon, \epsilon}\right]\right)^{-1} \text { and } z(\omega)=Y\left(q_{f}(\omega)\right)+\epsilon(\omega) .
$$

Or in tensor space $q \in \mathscr{Q}=\mathcal{Q} \otimes \mathcal{S}:{ }^{1} q_{a}=q_{f}+(K \otimes I)(\hat{y}-z)$
Classical Kalman filter is low order part of this update.

$$
\text { e.g. }\left[\operatorname{cov}_{q_{a}, q_{a}}\right]=\left[\operatorname{cov}_{q_{f}, q_{f}}\right]-K\left[\operatorname{cov}_{q_{f}, y}\right]^{T}
$$

Schematic representation

Sequential updating

Computational issues

For linear systems and Gaussian noise \Rightarrow analytical Kalman filter.
Otherwise Monte Carlo simulation (MCS) for forward problem, Markov chains (MCMC) or particle filters for update via measures.

Or forward problem via MCS, theorem (Kalman) on MCS ensemble, covariances from ensemble \Rightarrow ensemble Kalman (EnKF) filter.

Here: forward problem with stochastic Galerkin / projection / collocation, update by projection of theorem on stochastic Galerkin basis.

Two ingredients are needed:

1. a forward solver, to predict $z(\omega)$,
2. a way to evaluate and apply the update / Kalman gain.

Discretisation

Spatial and temporal discretisation of forward problem leads to: $\boldsymbol{A}(\boldsymbol{u}(\omega) ; \boldsymbol{q}(\omega))=\boldsymbol{f}(\omega)$ and $\boldsymbol{z}(\omega)=\boldsymbol{Y}\left(\boldsymbol{q}_{f}(\omega), \boldsymbol{S}\left(\boldsymbol{f}(\omega), \boldsymbol{q}_{f}(\omega)\right)\right)+\boldsymbol{\epsilon}(\omega)$, where e.g. $\boldsymbol{u}(\omega) \in \mathcal{U}_{h} \subset \mathcal{U}$ (semi-discrete problem).

Update on discretisation: ${ }^{1} \boldsymbol{q}_{a}(\omega)=\boldsymbol{q}_{f}(\omega)+\boldsymbol{K}(\hat{\boldsymbol{y}}-\boldsymbol{z}(\omega))$,
with Kalman matrix $\boldsymbol{K}=\operatorname{cov}\left(\boldsymbol{q}_{f}, \boldsymbol{y}\right)(\operatorname{cov}(\boldsymbol{y}, \boldsymbol{y})+\operatorname{cov}(\boldsymbol{\epsilon}, \boldsymbol{\epsilon}))^{-1}$ In tensor product $\mathcal{Q}_{h} \otimes \mathcal{S}$ the Kalman operator is $\boldsymbol{K} \otimes I$.

Stochastic discretisation $\mathcal{S}_{k} \subset \mathcal{S}$ with Galerkin projector $\Pi: \mathcal{S} \rightarrow \mathcal{S}_{k}$ via "spectral stochastic" ansatz (Wiener's polynomial chaos expansion—PCE) with Hermite polynomials $H_{\alpha}(\omega):=H_{\alpha}(\boldsymbol{\theta}(\omega))$: $\boldsymbol{u}(\omega)=\sum_{\alpha \in \mathcal{J}} \boldsymbol{u}^{\alpha} H_{\alpha}(\omega)$ and similarly for $\boldsymbol{q}(\omega), \boldsymbol{y}(\omega)$, and $\boldsymbol{z}(\omega)$.
\boldsymbol{K} computed analytically, e.g. $\operatorname{cov}\left(\boldsymbol{q}_{f}, \boldsymbol{y}\right)=\sum_{\alpha>0} \alpha!\boldsymbol{q}_{f}^{\alpha}\left(\boldsymbol{y}^{\alpha}\right)^{T}$.

Update

On semi-discretisation, stochastic discretisation is

$$
I \otimes \Pi: \mathcal{Q}_{h} \otimes \mathcal{S} \rightarrow \mathcal{Q}_{h} \otimes \mathcal{S}_{k}
$$

It commutes with $\boldsymbol{K} \otimes I$, so the update equation (projection / conditional expectation) may be projected on the fully discrete space.

$$
\text { With } \mathbf{u}:=\left[\ldots, \boldsymbol{u}^{\alpha}, \ldots\right] \in \mathcal{Q}_{h} \otimes \mathcal{S}_{k} \text { the forward problem is }
$$

$$
\begin{aligned}
& \mathbf{A}(\mathbf{u} ; \mathbf{q})=\mathbf{f} \text { and } \mathbf{z}=\mathbf{Y}\left(\mathbf{q}_{f}, \mathbf{S}\left(\mathbf{f}, \mathbf{q}_{f}\right)\right)+\varepsilon \in \mathcal{Y}_{h} \otimes \mathcal{S}_{k} . \\
& \text { Update on } \mathcal{Q}_{h} \otimes \mathcal{S}_{k}: \quad{ }^{1} \mathbf{q}_{a}=\mathbf{q}_{f}+(\boldsymbol{K} \otimes \boldsymbol{I})(\hat{\mathbf{y}}-\mathbf{z}) .
\end{aligned}
$$

Forward problem and update benefit from low-rank /sparse approximation, e.g. $\mathbf{q} \approx \sum_{j} \boldsymbol{p}_{j} \otimes \boldsymbol{s}_{j}$.
Further tensor factorisation $\mathcal{Q}_{h} \otimes \mathcal{S}_{k}=\mathcal{Q}_{h} \otimes\left(\otimes_{m} \mathcal{S}_{k, m}\right)$ —another story.

Example 1: multi-modal distribution

Setup: Scalar RV x with bi-modal "truth" $p(x)$; Gaussian prior; Gaussian measurement errors.

Aim: Identification of $p(x)$.
10 updates of $N=10,100,1000$ measurements.

Example 2: Lorenz-84 chaotic model

Setup: Non-linear, chaotic system

$$
\dot{u}=f(u), u=[x, y, z]
$$

Small uncertainties in initial conditions u_{0} have large impact.

Aim: Sequentially identify state u_{t}.
Methods: PCE representation and PCE updating and
sampling representation and (Ensemble Kalman Filter) EnKF updating.

Poincaré cut for $x=1$.

Example 2: Lorenz-84 PCE representation

PCE: Variance reduction and shift of mean at update points.

Skewed structure clearly visible, preserved by updates.

Example 2: Lorenz-84 non-Gaussian identification

PCE

(a) Polynomial order $P=1$

(b) Polynomial order $P=2$

(c) Polynomial order $P=3$

truth \times measurement +

EnKF

(a) $N=50$ ensemble members

(b) $N=100$ ensemble members

(c) $N=1000$ ensemble members

posterior prior

Example 3: Diffusion

Model example diffusion with unknown diffusion coefficient,

$$
A(u)=-\nabla_{x} \cdot\left(\kappa(x, \omega) \nabla_{x} u(x, \omega)\right)=f(x, \omega) .
$$

Fully discrete form of forward problem:

$$
\mathbf{A}(\mathbf{u})=\left(\sum_{j} \boldsymbol{A}_{j} \otimes \Delta^{j}\right) \mathbf{u}=\mathbf{f}
$$

The unknown parameter is $q=\log \kappa$, as $\kappa>0$, and hence is not free (is in a cone) in a vector space.

The measurement $\mathbf{y}=\mathbf{Y}(\mathbf{q}, \mathbf{u})$ is local averaging around some points.

Example forward solution

u

var u

Measurement patches

447 measurement patches

120 measurement patches

239 measurement patches

10 measurement patches

Convergence of update

Different truths:

$$
\kappa_{t}=2, \quad \kappa_{t}=2+0.3(x+y), \quad \kappa_{t}=2.2-0.1\left(x^{2}+y^{2}\right)
$$

Experiment	\# patches	ϵ_{p}	1st	2nd	3rd	4th
1	447	0.45	0.08	0.04	0.03	0.03
2	239	0.45	0.08	0.05	0.05	0.04
3	120	0.45	0.07	0.06	0.05	0.05
4	10	0.45	0.13	0.08	0.07	0.07

"Constant truth": Decay of relative error ϵ_{a} in each experiment.

$$
\text { Definition of error : } \quad \epsilon_{a}=\frac{\left\|\kappa_{a}-\kappa_{t}\right\|_{L_{2}}}{\left\|\kappa_{t}\right\|_{L_{2}}} .
$$

Convergence plot of updates

Forecast and Assimilated pdfs

Forecast and assimilated probability density functions (pdfs) for κ at a point where $\kappa_{t}=2$.
Computations with constant, linear, quadratic, random draw "truth".

Accuracy constant truth

a) $\bar{\varepsilon}_{a}[\%]$
b) $\varepsilon_{a}[\%]$
c) I [\%]

Elasto-plastic body with uncertainty

Let $u=\left(v, \varepsilon_{p}, \nu\right) \in \mathscr{H}=\mathscr{U} \times \mathscr{P} \times \mathscr{N}$ be the state variable (also random variables) of an elasto-plastic body,
$a(\cdot, \cdot)$ the stored-energy bilinear form, \mathscr{K} the elastic domain.
Then find $u \in H^{1}([0, T], \mathscr{H})$ and $u^{*} \in H^{1}\left([0, T], \mathscr{H}^{*}\right)$ such that

$$
\begin{gathered}
\forall z \in \mathscr{H}: \quad a(u(t), z)+\langle\langle\dot{u}(t), z\rangle\rangle=\langle\langle f(t), z\rangle\rangle, \\
\forall z^{*} \in \mathscr{K}: \quad\left\langle\left\langle\dot{u}(t), z^{*}-u^{*}(t)\right\rangle\right\rangle \leq 0 .
\end{gathered}
$$

Spatial and stochastic discretisation leads to: find $\mathbf{u}(t)=\left(\mathbf{v}(t), \boldsymbol{\varepsilon}_{p}(t), \boldsymbol{\nu}(t)\right)$ and $\mathbf{u}^{*}(t)$ such that

$$
\mathbf{A u}(t)+\dot{\mathbf{u}}(t)=\mathbf{f}(t)
$$

$$
\forall \mathbf{z}^{*} \in \mathscr{K}_{h k}: \quad\left\langle\left\langle\dot{\mathbf{u}}(t), \mathbf{z}^{*}-\mathbf{u}^{*}(t)\right\rangle\right\rangle \leq 0 .
$$

Example: plate with hole

Forward problem: the comparison of the mean values of the total displacement for deterministic, initial and stochastic configuration

Relative variance of shear modulus estimate

Relative RMSE of variance [\%] after 4th update in 10% equally distributed measurment points

Probability density shear modulus

Comparison of prior and posterior distribution

Cook's membrane

Forward problem:comparison of the mean values of total displacement for deterministic, initial and stochastic configuration

Exceedence probability

Forward problem: probability exceedance for shear stress under criteria

$$
\left|\sigma_{x y}\right|>2
$$

Update shear modulus-mean

Change of mean of shear modulus from apriori to 3rd update

Update shear modulus-variance

Change of variance of shear modulus from apriori to 3rd update

Conclusion

1. Tensor representation linked with factorisations of C
2. Bayes's theorem can be used for system identification
3. Bayesian update is a projection
4. Bayesian update can be done on spectral expansion
5. Needs no Monte Carlo
6. Works on highly nonlinear examples like elasto-plasticity
