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Parametric problems

For each ω in a parameter set Ω, let r(ω) be an element

belonging to some problem in a Hilbert space V (for simplicity).

With r : Ω → V, denote U = span r(Ω) = span im r.

What we are after: other representations of r or U = span im r.

To each function r : Ω → U corresponds a linear map R : U → R̃:

R : U 3 u 7→ 〈r(·)|u〉U ∈ R̃ = imR ⊂ RΩ.

By construction R is injective. Use this to make R̃ a pre-Hilbert space:

∀φ, ψ ∈ R̃ : 〈φ|ψ〉R := 〈R−1φ|R−1ψ〉U .

R−1 is unitary on completion R.
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RKHS and classification

R is a reproducing kernel Hilbert space —RKHS— with kernel

κ(ω1, ω2) = 〈r(ω1)|r(ω2)〉U ∈ RΩ×Ω

Reproducing property:

∀φ ∈ R : 〈κ(ω, ·)|φ(·)〉R = φ(ω) =: 〈δω, φ〉R∗×R.
In other settings (classification, machine learning, SVM),

when different subsets of Ω have to be classified,

the space U and the map r : Ω → U is not given,

can be freely chosen ⇒ the feature map (the kernel trick).

Choose CONS {ϕm}m∈N in R: R−1 =
∑
mwm ⊗ ϕm, with Rwm = ϕm.

Let QR : `2 3 a = (a1, a2, . . . ) 7→
∑
m amϕm ∈ R.

⇒ tensor representation R−1 ◦QR : `2 3 a 7→
∑
m amwm ∈ U
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‘Correlation’

Assume scalar product 〈·|·〉Q on RΩ → Hilbert space Q.

If (Ω,µ) is a measure space, take Q = L2(Ω,µ).

Define self-adjoint and positive definite ‘correlation’ operator C in U by

u, v ∈ U : 〈Cu|v〉U = 〈Ru|Rv〉Q = 〈 (〈u|r(·)〉U |〈r(·)|v〉U) 〉Q.

C = R∗R; [ If Q = L2(Ω): C =
∫
Ω
r(ω)⊗ r(ω)µ(dω). ]

⇒ has spectrum σ(C) ⊆ R+.

Spectral decomposition with projectors Eλ

Cu =

∫ ∞
0

λ dEλu =
∑

λm∈σp(C)⊂R+

λm〈vm|u〉U vm +

∫
R+\σp(C)

λ dEλu.
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Spectral decomposition

Often C has a pure point spectrum (e.g. C or C−1 compact)

⇒ last integral vanishes. In case σ(C) = σp(C):

Cu =
∑
m

λm

mult.λm∑
n

〈vnm|u〉U vnm =
∑
m

λm

mult.λm∑
n

(vnm ⊗ vnm)u.

If σ(C) 6= σp(C): generalised eigenvectors vλ and Gelfand triplets

(rigged Hilbert spaces) for the continuous spectrum:

Cu =

max mult.∑
n

∫
R+

λ (vnλ ⊗ vnλ)u %n(dλ).

Representation as sum / integral of rank-1 operators.

Numerical approximation will give a sum. Assumed from now on.
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Singular value decomposition

C unitarily equivalent to multiplication operator Mk, with k ≥ 0:

C = VMkV
∗ = (VM

1/2
k )(VM

1/2
k )∗, with M

1/2
k = M√k.

This connects to the singular value decomposition (SVD)

of R = SM
1/2
k V ∗, with a (here) unitary S.

With
√
λm sm := Rvm ∈ R:

(Ru)(ω) = 〈r(ω)|u〉U =
∑
m

√
λm 〈vm|u〉U sm(ω)

R =
∑
m

√
λm (sm ⊗ vm).

Model reduction possible by truncating the sum.
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Karhunen-Loève Expansion

For partly continuous spectrum we get

r(ω) =

max mult.∑
n

∫
R+

√
λ 〈vnλ, u〉 snλ(ω) %n(dλ)

With approximation or only point spectrum

r(ω) =
∑
m

√
λm sm(ω)vm, r ∈ L2(Ω)⊗ U .

This is the Karhunen-Loève-expansion, due to the SVD.

A sum of rank-1 operators / tensors.

Observe that r is linear in the sm.

A representation of r, model reduction possible by truncation of sum.
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Kernel spectral decomposition

For φ, ψ ∈ Q we have also 〈R∗φ|R∗ψ〉U ; to compute R∗,
for ψ ∈ Q define an operator Ĉ = RR∗ on Q = [L2(Ω)] by

(Ĉψ)(ω1) := 〈κ(ω1, ·)|ψ(·)〉Q [ =

∫
Ω

κ(ω1, ω2)ψ(ω2)µ(dω2) ].

〈R∗φ|R∗ψ〉U = 〈φ|Ĉψ〉Q [=

∫∫
Ω×Ω

φ(ω1)κ(ω1, ω2)ψ(ω2) µ(dω1)µ(dω2). ]

Eigenvalue problem for Ĉ gives (Mercer’s theorem)

κ(ω1, ω2) =
∑
m

λm sm(ω1)sm(ω2),

{sm} is CONS in Q [ = L2(Ω) ], {
√
λm sm} is CONS in R.

R∗φ =
∑
m

√
λm vm〈sm|φ〉Q, R−1φ =

∑
m

λ−1/2m vm〈sm|φ〉Q.
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Factorisations

R∗ (or truncation) now serves as a representation. This is a factorisation

of C, let C = B∗B be an arbitrary one. Some possible ones:

C = R∗R = (VM
1/2
k )(VM

1/2
k )∗ = C1/2C1/2 = B∗B.

Each factorisation leads to a representation—all unitarily equivalent.

When C is a matrix, a favourite is Cholesky: C = LL∗).

Assume that C = B∗B and B : U → H, let {ek} be CONS in H.

Unitary Q : `2 3 a = (a1, . . . , an, . . .) 7→
∑
k akek ∈ H.

Let r̃(a) := B∗Qa := R̃∗a, i.e. R̃∗ : `2→ U . Then

R̃∗R̃ = (B∗Q)(Q∗B) = B∗B = C.

TU Braunschweig Institute of Scientific Computing
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Integral decompositions

More decompositions and representations possible via Ĉ. Let

κ(ω1, ω2) =
∫
X
g(ω1, x)g(ω2, x) ν(dx).

Set gm(x) := 〈g(·, x)|sm〉Q to give

p : X 3 x 7→ p(x) :=
∑
m

λ1/2m gm(x)vm = R∗g(·, x) ∈ U ,

We can arrange U = span im r = span im p.

Then p(x) gives a representation over X:

define R̂∗ : L2(X, ν)→ U

R̂∗ : L2(X, ν) 3 f 7→ R̂∗f :=

∫
Y

p(x)f(x) ν(dx) ∈ U ,

⇒ C = R̂∗R̂
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Representations

We have seen several ways to represent the solution space

by a—hopefully—simpler space.

These can all be used for model reduction, choosing a smaller subspace.

• The RKHS together with R−1.

• The spectral decomposition over σ(C) or via VM
1/2
k .

• The Karhunen-Loève expansion based on SVD via R∗.

• Other multiplicative decompositions, such as C = B∗B.

• The kernel decompositions and representation on L2(X, ν).

Choice depends on what is wanted / needed.
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Examples and interpretations

• If V is a space of centred RVs, r is a random field / stochastic process

indexed by Ω, kernel κ(ω1, ω2) is covariance function.

• If in this case Ω = Rd and moreover κ(ω1, ω2) = c(ω1 − ω2)

(stationary process / homogeneous field), then diagonalisation V is

real Fourier transform, typically σ(C)p = ∅ ⇒ need Gelfand triplets.

• If µ is a probability measure (µ(Ω) = 1), and r is a centred V-valued

RV, then C is the covariance.

• If Ω = {1, 2, . . . , n} and R = Rn, then κ is the Gram matrix of the

vectors r1, . . . , rn.

• If Ω = [0, T ] and r(ω) is the response of a dynamical system, then R∗

leads to proper orthogonal decomposition (POD).
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Further factorisation

We have found representations in U ⊗ S, where

S = R, L2(Ω), L2(σ(C)),
⊕
n

L2(R, %n), `2,H, L2(X), . . .

Combinations may occur, so that S = SI ⊗ SII ⊗ SIII ⊗ . . .
This was only a basic decomposition.

Often the problem allows U =
⊗

k Uk.

Or the parameters allow S =
⊗

j Sj.
In case of random fields / stochastic processes

S = L2(Ω) ∼=
⊗

j L2(Ωj) ∼= L2(RN,Γ) ∼=
⊗∞

k=1L2(R,Γ1) . . .

So U ⊗ S ∼=
(⊗

j Uj
)
⊗ (
⊗

k SI,k)⊗ (
⊗

m SII,m)⊗ . . .

TU Braunschweig Institute of Scientific Computing
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Synopsis of Bayesian inference

Unknown quantities are uncertain, modelled as random.

This can be considered as a model of our state of knowledge.

After some new information (an observation, a measurement),

our model has to be made consistent with the new information,

i.e. we are looking for conditional probabilities.

The idea is to change our present model by just so much —

as little as possible — so that it becomes consistent.

For this we have to predict — with our present knowledge / model —

the probability of all possible observations and

compare with the actual observation.

TU Braunschweig Institute of Scientific Computing
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Setting for the identification process

General idea:

We observe / measure a system, whose structure we know in principle.

The system behaviour depends on some quantities (parameters),

which we do not know ⇒ uncertainty.

We model (uncertainty in) our knowledge in a Bayesian setting:

as a probability distribution on the parameters.

We start with what we know a priori, then perform a measurement.

This gives new information, to update our knowledge (identification).

Update in probabilistic setting works with conditional probabilities

⇒ Bayes’s theorem.

Repeated measurements lead to better identification.

TU Braunschweig Institute of Scientific Computing
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Mathematical formulation I

Consider operator equation, physical system modelled by A:

A(u) = f u ∈ U , f ∈ F ,

⇔ ∀v ∈ U : 〈A(u), v〉 = 〈f, v〉,
U — space of states, F = U∗ — dual space of actions / forcings.

Solution operator: u = S(f), inverse of A.

Operator depends on parameters q ∈ Q,

hence state u is also function of q:

A(u; q) = f ⇒ u = S(f ; q).

Measurement operator Y with values in Y:

y = Y (q;u) = Y (q, S(f ; q)).

TU Braunschweig Institute of Scientific Computing
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Mathematical formulation II

For given f , measurement y is just a function of q.

This function is usually not invertible ⇒ ill-posed problem,

measurement y does not contain enough information.

In Bayesian framework state of knowledge modelled in a probabilistic way,

parameters q are uncertain, and assumed as random.

Bayesian setting allows updating / sharpening of information

about q when measurement is performed.

The problem of updating distribution—state of knowledge of q

becomes well-posed.

Can be applied successively, each new measurement y and

forcing f —may also be uncertain—will provide new information.

TU Braunschweig Institute of Scientific Computing
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Reminder of Bayes’s theorem

Assume that A is an event where we want more information,

and that B is a possible observation. If the conditional probability

P(A|B) = P(A), in other words

P(A ∩B) = P(A)P(B), then A and B are independent,

i.e. B contains no information regarding A. Otherwise

P(A ∩B) = P(A|B)P(B). As also P(A ∩B) = P(B|A)P(A):

=⇒ P(A|B) =
P(B|A)

P(B)
P(A).

Sir Harold Jeffreys: Bayes’s theorem “is to the theory of probability

what Pythagoras’s theorem is to geometry”.
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Model with uncertainties

For simplicity assume that Q is a Hilbert space,

and q(ω) has finite variance — ‖q‖Q ∈ S := L2(Ω), so that

q ∈ L2(Ω,Q) ∼= Q⊗ L2(Ω) = Q⊗ S =: Q.

System model is now

A(u(ω); q(ω)) = f(ω) a.s. in ω ∈ Ω,
state u = u(ω) becomes U-valued random variable (RV),

element of a tensor space U = U ⊗ S.

As variational statement:

∀v ∈ U : E (〈A(u(·); q(·)), v〉) = E (〈f(·), v〉) =: 〈〈f, v〉〉.
Leads to well-posed stochastic PDE (SPDE).
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Measurement

With state u ∈ U = U ⊗ S a RV, the quantity to be measured

z(ω) = Y (q(ω), u(ω))) + ε(ω) ∈ Y := Y ⊗ S
is also uncertain—a random variable—plus a random error ε.

This is the predicted new measurement,

whereas the observation gives ŷ ∈ Y.

Classically, Bayes’s theorem gives conditional probability

P(Iq|Mz) =
P(Mz|Iq)
P(Mz)

P(Iq);

expectation with this posterior measure is conditional expectation.

Kolmogorov starts from conditional expectation E (·|Mz),

from this conditional probability via P(Iq|Mz) = E
(
χIq|Mz

)
.
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Important points I

The probability measure P is not the object of desire.

It is the distribution of q, a measure on Q—push forward of P:

q∗P(E) := P(q−1(E)) for measurable E ⊆ Q.

Bayes’s original formula changes P, leaves q as is.

Kolmogorov’s conditional expectation changes q, leaves P as is.

In both cases the update is a new q∗P.

P (a probability measure) is on positive part of unit sphere,

whereas q is free in a vector space.

This will allow the use of (multi-)linear algebra

and tensor approximations.

TU Braunschweig Institute of Scientific Computing
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Example A — linear heat flow (MCMC)

Constant unknown conductivity, solved by 100 000

Markov chain Monte Carlo (MCMC) samples.
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Comparison proxy model with pure FE.
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Example B — non-linear heat flow (MCMC)

Conductivity as random field, 1000 MCMC samples.

initial final MCMC-FE

pdf final MCMC-PCE
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Update

The conditional expectation is defined as

orthogonal projection onto the subspace L2(Ω,P, σ(z)):

E(q|σ(z)) := PQ∞q = argminq̃∈L2(Ω,P,σ(z)) ‖q − q̃‖
2
L2

Subspace Q∞ := L2(Ω,P, σ(z)) represents available information,

estimate minimises function Φ = ‖q − (·)‖2 over Q∞.

More general loss functions Φ than mean square error are possible.

The update, also called the assimilated value

qa(ω) := PQ∞q = E(q|σ(z)), is a Q-valued RV

and represents new state of knowledge after the measurement.

Reduction of variance—Pythagoras: ‖q‖2L2
= ‖q − qa‖2L2

+ ‖qa‖2L2

Doob-Dynkin: Q∞ = {ϕ ∈ Q : ϕ = φ ◦ z, φ measurable }

TU Braunschweig Institute of Scientific Computing
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Important points II

Identification process:

• Use forward problem A(u(ω); q(ω)) = f(ω) to forecast

new state uf(ω) and measurement z(ω) = Y (q(ω), uf(ω))) + ε(ω).

• Perform minimisation of loss function to obtain update map / filter.

• Use innovation in inverse problem from measurement ŷ to update

forecast qf to obtain assimilated (updated) qa with update map.

• All operations in vector space, use tensor approximations throughout.

TU Braunschweig Institute of Scientific Computing
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Case with Prior Information

Here we have a prior estimate qf(ω) (forecast)

obtained by minimising over Qf

and measurements z generating as before via Y a subspace Q∞ ⊂ Q.

We need projection onto Q0 = Qf + Q∞, with reformulation as an

orthogonal direct sum: Q0 = Qf + Q∞ = Qf ⊕ (Q∞∩Q⊥f ) = Qf ⊕Qi.

The update / conditional expectation /

assimilated value is the orthogonal projection

qa = qf + PQi
q = qf + qi,

where qi is the innovation.

How can one compute qa or qi = PQi
q ?

TU Braunschweig Institute of Scientific Computing
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Approximation

Minimising loss Φ equivalent to orthogonality: find φ ∈ L0(Y,Q)

∀v ∈ Q∞ : 〈〈DqaΦ(qa(φ)), v〉〉L2 = 〈〈q − qa, v〉〉L2 = 0,

⇔ DφΦ := DqaΦ ◦Dφqa = 0 with qa(φ) := φ(z).

Approximation of Q∞: take Qn ⊂ Q∞

Qn := {ϕ ∈ Q : ϕ = ψn ◦ z, ψn a nth degree polynomial}
i.e. ϕ = H0 + H1 z + · · ·+ Hk z∨k + · · ·+ Hn z∨n,

where Hk ∈ L k
s (Y,Q) is symmetric and k-linear; z∨k := Sym(z⊗k).

With qa(φ) = qa(( H
0 , . . . , Hk , . . . , Hn )) =

∑n
k=0 Hk z∨k = PQnq,

orthogonality implies

∀` = 0, . . . , n : D( H` )Φ(qa( H
0 , . . . , Hk , . . . , Hn )) = 0

TU Braunschweig Institute of Scientific Computing
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Determining the n-th degree Bayesian update

Theorem: For each n ≥ 0, with the abbreviations

〈p⊗ v∨k〉 := E
(
p⊗ v∨k

)
=

∫
Ω

p(ω)⊗ v(ω)∨k P(dω),

and Hk 〈z∨(`+k)〉 := 〈z∨` ⊗ ( Hk z∨k)〉 = E
(
z∨` ⊗ ( Hk z∨k)

)
,

we have for the unknowns ( H0 , . . . , Hk , . . . , Hn )

` = 0 : H0 · · ·+ Hk 〈z∨k〉 · · ·+ Hn 〈z∨n〉 = 〈q〉,

` = 1 : H0 〈z〉 · · ·+ Hk 〈z∨(1+k)〉· · ·+ Hn 〈z∨(1+n)〉 = 〈q ⊗ z〉,
... . . . ... ...

` = n : H0 〈z∨n〉· · ·+ Hk 〈z∨(n+k)〉· · ·+ Hn 〈z∨(2n)〉 = 〈q ⊗ z∨n〉
a linear system with symmetric positive definite

Hankel operator matrix (〈z∨(`+k)〉)`,k.

TU Braunschweig Institute of Scientific Computing
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Bayesian update in components

For short ∀` = 0, . . . , n :
n∑
k=0

Hk 〈z∨(`+k)〉 = 〈q ⊗ z∨`〉,

For finite dimensional spaces, or after discretisation,

in components (or à la Penrose in ‘symbolic index’ notation):

let q = (qm), z = (z), and Hk = ( Hk m
1...k

), then:

∀` = 0, . . . , n; 1 ≤ . . . ≤ ` ≤ . . . ≤ `+k ≤ . . . ≤ `+n
〈z1 · · · z`〉 ( H0 m) + · · ·+ 〈z1 · · · z`+1 · · · z`+k〉 ( Hk m

`+1...`+k
)+

· · ·+ 〈z1 · · · z`+1 · · · z`+n〉 ( Hn m
`+1...`+n

) = 〈qmz1 · · · z`〉.
(Einstein summation convention used)

matrix does not depend on m—it is identically block diagonal.

TU Braunschweig Institute of Scientific Computing
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Special cases

For n = 0 (constant functions) ⇒ qa = H0 = 〈q〉 (= E (q)).

For n = 1 the approximation is with affine functions

H0 + H1 〈z〉 =〈q〉
H0 〈z〉+ H1 〈z ⊗ z〉=〈q ⊗ z〉

=⇒ (remember that [covq,z] = 〈q ⊗ z〉 − 〈q〉 ⊗ 〈z〉 )

H0 = 〈q〉 − H1 〈z〉
H1 (〈z ⊗ z〉 − 〈z〉 ⊗ 〈z〉) =〈q ⊗ z〉 − 〈q〉 ⊗ 〈z〉
⇒ H1 = [covq,z][covz,z]

−1 (Kalman’s solution),

H0 = 〈q〉 − [covq,z][covz,z]
−1〈z〉,

and finally

qa = H0 + H1 z = 〈q〉+ [covq,z][covz,z]
−1(z − 〈z〉).

TU Braunschweig Institute of Scientific Computing
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Simplification n = 1

The case n = 1—linear functions, projecting onto Q1—is well known:

this is the linear minimum variance estimate q̂a.

Theorem: (Generalisation of Gauss-Markov)

q1 a(ω) = qf(ω) +K(ŷ − z(ω)),

where the linear Kalman gain operator K := H1 : Y → Q is

K := [covqf ,y]
(
[covy,y] + [covε,ε]

)−1
and z(ω) = Y (qf(ω)) + ε(ω).

Or in tensor space q ∈ Q = Q⊗ S: q1 a = qf + (K ⊗ I)(ŷ − z)
Classical Kalman filter is low order part of this update.

e.g. [covqa,qa] = [covqf ,qf ]−K[covqf ,y]
T

TU Braunschweig Institute of Scientific Computing
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Schematic representation

  

qA( ,u)

f u=S(q,f)

Y(q,u)

Forward

   (u?)

Inverse
(q?)

z
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Sequential updating

  

1.update 2.update
f
1

f
2

κ
f1

κ
a1

κ
f2

start
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Computational issues

For linear systems and Gaussian noise ⇒ analytical Kalman filter.

Otherwise Monte Carlo simulation (MCS) for forward problem,

Markov chains (MCMC) or particle filters for update via measures.

Or forward problem via MCS, theorem (Kalman) on MCS ensemble,

covariances from ensemble ⇒ ensemble Kalman (EnKF) filter.

Here: forward problem with stochastic Galerkin / projection / collocation,

update by projection of theorem on stochastic Galerkin basis.

Two ingredients are needed:

1. a forward solver, to predict z(ω),

2. a way to evaluate and apply the update / Kalman gain.

TU Braunschweig Institute of Scientific Computing
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Discretisation

Spatial and temporal discretisation of forward problem leads to:

A(u(ω); q(ω)) = f(ω) and z(ω) = Y (qf(ω),S(f(ω), qf(ω))) + ε(ω),

where e.g. u(ω) ∈ Uh ⊂ U (semi-discrete problem).

Update on discretisation: q1 a(ω) = qf(ω) +K(ŷ − z(ω)),

with Kalman matrix K = cov(qf ,y)
(
cov(y,y) + cov(ε, ε)

)−1
In tensor product Qh ⊗ S the Kalman operator is K ⊗ I.

Stochastic discretisation Sk ⊂ S with Galerkin projector Π : S → Sk
via “spectral stochastic” ansatz (Wiener’s polynomial chaos

expansion—PCE) with Hermite polynomials Hα(ω) := Hα(θ(ω)):

u(ω) =
∑
α∈J u

αHα(ω) and similarly for q(ω), y(ω), and z(ω).

K computed analytically, e.g. cov(qf ,y) =
∑
α>0α! qαf (yα)T .

TU Braunschweig Institute of Scientific Computing
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Update

On semi-discretisation, stochastic discretisation is

I ⊗Π : Qh ⊗ S → Qh ⊗ Sk.
It commutes with K ⊗ I, so the update equation (projection /

conditional expectation) may be projected on the fully discrete space.

With u := [. . . ,uα, . . .] ∈ Qh ⊗ Sk the forward problem is

A(u;q) = f and z = Y(qf ,S(f ,qf)) + ε ∈ Yh ⊗ Sk.

Update on Qh ⊗ Sk : q1 a = qf + (K ⊗ I)
(
ŷ − z

)
.

Forward problem and update benefit from low-rank /sparse

approximation, e.g. q ≈
∑
j pj ⊗ sj.

Further tensor factorisation Qh⊗Sk = Qh⊗ (
⊗

m Sk,m)—another story.
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Example 1: multi-modal distribution

Setup: Scalar RV x with bi-modal

“truth” p(x); Gaussian prior;

Gaussian measurement errors.

Aim: Identification of p(x).

10 updates of N = 10, 100, 1000

measurements.
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Example 2: Lorenz-84 chaotic model

Setup: Non-linear, chaotic system

u̇ = f(u), u = [x, y, z]

Small uncertainties in initial

conditions u0 have large impact.

Aim: Sequentially identify state ut.

Methods: PCE representation and

PCE updating and

sampling representation and

(Ensemble Kalman Filter)

EnKF updating.
Poincaré cut for x = 1.

TU Braunschweig Institute of Scientific Computing



40

Example 2: Lorenz-84 PCE representation

PCE: Variance

reduction and shift of

mean at update points.

Skewed structure clearly

visible, preserved by

updates.
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Example 2: Lorenz-84 non-Gaussian identification

PCE

truth × measurement +

EnKF

posterior prior
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Example 3: Diffusion

Model example diffusion with unknown diffusion coefficient,

A(u) = −∇x · (κ(x, ω)∇xu(x, ω)) = f(x, ω).

Fully discrete form of forward problem:

A(u) =

∑
j

Aj ⊗∆j

u = f .

The unknown parameter is q = log κ, as κ > 0,

and hence is not free (is in a cone) in a vector space.

The measurement y = Y(q,u) is local averaging around some points.
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Example forward solution
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Measurement patches
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Convergence of update

Different truths:

κt = 2, κt = 2 + 0.3(x+ y), κt = 2.2− 0.1(x2 + y2).

Experiment # patches εp 1st 2nd 3rd 4th

1 447 0.45 0.08 0.04 0.03 0.03

2 239 0.45 0.08 0.05 0.05 0.04

3 120 0.45 0.07 0.06 0.05 0.05

4 10 0.45 0.13 0.08 0.07 0.07

“Constant truth”: Decay of relative error εa in each experiment.

Definition of error : εa =
‖κa − κt‖L2

‖κt‖L2

.
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Convergence plot of updates
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Forecast and Assimilated pdfs
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Forecast and assimilated probability density functions (pdfs)

for κ at a point where κt = 2.

Computations with constant, linear, quadratic, random draw “truth”.
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Accuracy constant truth
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Elasto-plastic body with uncertainty

Let u = (v, εp, ν) ∈H = U ×P ×N be the state variable

(also random variables) of an elasto-plastic body,

a(·, ·) the stored-energy bilinear form, K the elastic domain.

Then find u ∈ H1([0, T ],H ) and u∗ ∈ H1([0, T ],H ∗) such that

∀z ∈H : a(u(t), z) + 〈〈u̇(t), z〉〉 = 〈〈f(t), z〉〉,

∀z∗ ∈ K : 〈〈u̇(t), z∗ − u∗(t)〉〉 ≤ 0.

Spatial and stochastic discretisation leads to:

find u(t) = (v(t), εp(t),ν(t)) and u∗(t) such that

Au(t) + u̇(t) = f(t),

∀z∗ ∈ Khk : 〈〈u̇(t), z∗ − u∗(t)〉〉 ≤ 0.
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Example: plate with hole

Forward problem: the comparison of the mean values of the total

displacement for deterministic, initial and stochastic configuration
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Relative variance of shear modulus estimate

Relative RMSE of variance [%] after 4th update in 10% equally

distributed measurment points
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Probability density shear modulus

Comparison of prior and posterior distribution
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Cook’s membrane

Forward problem:comparison of the mean values of total displacement

for deterministic, initial and stochastic configuration
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Exceedence probability

Forward problem: probability exceedance for shear stress under criteria

|σxy| > 2
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Update shear modulus—mean

Change of mean of shear modulus from apriori to 3rd update
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Update shear modulus—variance

Change of variance of shear modulus from apriori to 3rd update
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Conclusion

1. Tensor representation linked with factorisations of C

2. Bayes’s theorem can be used for system identification

3. Bayesian update is a projection

4. Bayesian update can be done on spectral expansion

5. Needs no Monte Carlo

6. Works on highly nonlinear examples like elasto-plasticity

TU Braunschweig Institute of Scientific Computing


	Parametric Quantities, their Representations and Factorisations, and Inverse Identifications Methods
	Overview
	Parametric problems
	RKHS and classification
	`Correlation'
	Spectral decomposition
	Singular value decomposition
	Karhunen-Loève Expansion
	Kernel spectral decomposition
	Factorisations
	Integral decompositions
	Representations
	Examples and interpretations
	Further factorisation
	Synopsis of Bayesian inference
	Setting for the identification process
	Mathematical formulation I
	Mathematical formulation II
	Reminder of Bayes's theorem
	Model with uncertainties
	Measurement
	Important points I
	Example A — linear heat flow (MCMC)
	Example B — non-linear heat flow (MCMC)
	Update
	Important points II
	Case with Prior Information
	Approximation
	Determining the n-th degree Bayesian update
	Bayesian update in components
	Special cases
	Simplification n=1
	Schematic representation
	Sequential updating
	Computational issues
	Discretisation
	Update
	Example 1: multi-modal distribution
	Example 2: Lorenz-84 chaotic model
	Example 2: Lorenz-84 PCE representation
	Example 2: Lorenz-84 non-Gaussian identification
	Example 3: Diffusion
	Example forward solution
	Measurement patches
	Convergence of update
	Convergence plot of updates
	Forecast and Assimilated pdfs
	Accuracy constant truth
	Elasto-plastic body with uncertainty
	Example: plate with hole
	Relative variance of shear modulus estimate
	Probability density shear modulus
	Cook's membrane
	Exceedence probability
	Update shear modulus—mean
	Update shear modulus—variance
	Conclusion

