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Introduction Setting

PDEs with random coefficients

General form:

F (D2u,Du,u, x , ω) = 0 (= ∂tu),

where the random function

F : Rnxn
sym × R

n × R× R×Ω → R
m

(here m = 1) satisfies deterministic bounds/structural conditions.

(E.g. continuous, uniformly elliptic etc.)

Probability measure P on all equations with these bounds

Example:

F (M, ξ,u, x , ω) = tr(M) + f (x ,u, ω) F (M, ξ,u, x , ω) = a(x , ω)tr(M)

Usually: Law translation invariant and ergodic, so "almost sure"

results for large-scale behaviour.

Homogenization: Behaviour of solns. for F (D2u,Du,u, x/ǫ, ω) = 0,
on bounded domain as ǫ → 0.
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Introduction Setting

Random Functionals

Find minimizer in a suitable function space (e.g. H1,2(D)) of

u(x) 7→

∫

D

F (Du,u, x , ω)dx

Minimizer will be random function.

D = R
n: Minimizer under compact perturbations.

Existence

Uniqueness

Homogenization:
∫

D
F (Du,u, x/ǫ, ω)dx
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Uniqueness for a random minimisation problem

Minimisers of random of energy (with E. Orlandi)

Area(Σ ∩ Λ) +

∫

Λ ∩E

f (X )dX where Σ = ∂E .

Fǫ(u) =

∫

Λ

(
ǫ

2
|∇u(x)|2 +

1

ǫ
W (u(x)) +

αǫ

ǫ
h
(x

ǫ
, ω

)

u(x)

)

dx

h bounded random field, short correlation length

W double-well potential, two minimizers ±1.

u

W

−1 +1

• Idea: uǫ minimiser ⇒ uǫ → ±1 on R
d \Σ as ǫ → 0, Fǫ converges to

(possibly anisotropic) area functional.
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and periodic (D-Lucia-Novaga)

• αǫ = O(1), i.e. d2 : Unique transl. cov. minimizer (under comp.

pert.), effect of b.c. lost as as Λ ր R
d

• Replace gradient term by nonlocal term

EΛ(m,m0) =

∫

Λ×Λ
dxdy

|m(x) − m(y)|2

|x − y|d+2s
+ 2

∫

Λ
dx

∫

Rd\Λ
dy

|m(x) − m0(y)|
2

|x − y|d+2s

︸ ︷︷ ︸

boundary cond. m0

d = 2, s ∈ (1
2
,1) or d = 1, s ∈ [1

4
,1) : Unique minimiser (comp. pert.)
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Uniqueness for a random minimisation problem

The functional

Randomness: (g(z, ω))z∈Zd , d space dimension family of uniformly

bounded i.i.d. r.v. with mean zero and variance 1 and

Lebesgue-continuous and symmetric distribution.

g(x , ω) :=
∑

z∈Zd

g(z, ω)1(z+[− 1
2
, 1

2
]d )∩Λ(x),

Energy:

K(v , ω,Λ) =

∫

Λ×Λ
dxdy

|v(x) − v(y)|2

|x − y |d+2s
+

∫

Λ
W (v(x))dx−

∫

˜

g(x, ω)v(x)dx.

Boundary Cost:

W((v ,Λ), (u,Λc )) = 2

∫

Λ
dx

∫

Rd\˜

dy
|v(x) − u(y)|2

|x − y|d+2s

Gv0(v , ω,Λ) = K(v , ω,Λ) +W((v ,Λ)(v0,Λ
c))
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Uniqueness for a random minimisation problem

Minimizer under compact perturbation

u : Rd → R Minimizer under compact perturbations: For any

compact subdomain U ⊂ we have

Gu(u, ω,U) < ∞, a.s.

and

Gu(u, ω,U) ≤ Gv (v , ω,U) a.s.

for any v which coincides with u in R
d \ U.

u : Λ → R is v0-minimizer if it minimizes Gv0 among all functions which

coincide with v0 on R
d \ Λ.

These exist by standard arguments.
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Uniqueness for a random minimisation problem

Minimizers are ordered

u min. of Gu(·,Λ), v min. of Gv (·,Λ), then

• if u = v on Λc ⇒ u ≤ v on Λ or v ≤ u on Λ

• if u < v on open subset of Λc , then u ≤ v on Λ.

In general no uniqueness even on compact domains!

Idea:

G(u ∨ v ,Λ) + G(u ∧ v ,Λ) ≤ G(u,Λ) + G(v ,Λ).

Nicolas Dirr (Cardiff University ) Random Coefficients 8 / 25



Uniqueness for a random minimisation problem

Extremal K -minimizers

On compact domain with b.c. in general no uniqueness, but there

exists maximal and minimal minimizer.

Consider now constant b.c. ±K for K ≫ 1 and let u±,K ,Λn be the

extremal min. with b.c. ±K on Λn := (−n,n)d .

Define:

u±K (x , ω) := lim
n→∞

u±,K ,Λn(x , ω)

Pointwise increasing bounded sequence, converges in better function

spaces, consequence:

u±K (x , ω) are min. under compact perturbations!

Moreover: Translation covariant

i.e. u±K (x , ω) and u±K (y , ω) are the same in law.
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Uniqueness for a random minimisation problem

Extremal ergodic states

WANTED: Extremal min. under compact pert. on R
n. If they are

unique, all min. are equal.

Consequence of min. property of u±K and translation covariance:

uniform bounds on ‖u±K‖∞ which do not depend on K .

Consequence:

u±(x , ω) := lim
K→∞

u±K (x , ω)

well defined, uniformly bounded and min. under compact pert.

Show: u+ = u− a.s.

Now adapt ideas of Aizenman/Wehr
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Uniqueness for a random minimisation problem

Bound on difference of optimal energies

∣
∣
∣Gv+

(v+,Λ)− Gv−

1 (v−,Λ)
∣
∣
∣ ≤ C







|Λ|
d−1

d if s ∈ (1
2
,1)

|Λ|
d−2s

d if s ∈ (0, 1
2)

|Λ|
d−1

d log |Λ| if s = 1
2

.

Note: |Λn| ∼ nd .

Idea: Interpolate on the boundary between u+ and u−, estimate "cost"

by estimating singular integrals.
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Uniqueness for a random minimisation problem

Central Limit Theorem: Set-up

Note: Minimal energy and minimizer depend in complicated way on all

random variables g(z, ω).
σ-algebras:

• Bn,i = σ ({g(z), z ∈ Λn, z ≤ i}) where ≤ refers to lexicographic

ordering in Z
d .

• BΛn = σ ({g(z), z ∈ Λn})
• B(0) = σ (g(0))
Consider

Fn(ω) := E
[{

G(v+(ω), ω,Λn)− G(v−(ω), ω,Λn)
}
|BΛn

]

=
∑

i∈Zd∩Λn

(
E[Fn|Bn,i ]− E[Fn|Bn,i−1]

)
:=

∑

i∈Zd∩Λn

Yn,i .

Martingale Difference: CLT ⇒ Fn ∼
√

|Λ|N(0,D2) where

D2 = E

[

(E [Fn|B(0)])
2
]
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Uniqueness for a random minimisation problem

Central Limit Theorem: Result

Deterministic bound:

|Fn| ≤ C







nd−1 if s ∈ (1
2 ,1)

nd−2s if s ∈ (0, 1
2)

nd−1 log n if s = 1
2

.

Fluctuations: nd/2 unless D2 = 0.

Contradiction if d = 2, s ∈ (1
2 ,1) or d = 1, s ∈ [1

4 ,1) unless D2 = 0.
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Uniqueness for a random minimisation problem

"derivative" w.r.t. randomness

ω(0) 7→

∫

Q(0)
v+(ω(0), ω(0))dx

is nondecreasing.

∂G(v±(ω), ω,Λ)

∂ω(0)
= −

∫

(−1/2,1/2)d

v±(x , ω)dx .

Absolutely cont. random variables!

Heuristic: Suppose u(ω) minimises F (u, ω).

∂F (u(ω), ω)

∂ω
|(u(ω),ω) =

∂F (u, ω)

∂u
|(u(ω),ω) +

∂F (u, ω)

∂ω
|(u(ω),ω)

=
∂F (u, ω)

∂ω
|(u(ω),ω)

G(u, ω) = . . .−

∫

Λ
g(x , ω)u(x)dx
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Uniqueness for a random minimisation problem

Central Limit Theorem: Conclusion

0 = D2 = E

[

(E [Fn|B(0)])
2
]

= E

[

f 2(ω(0))
]

so 0 = f (s) a.s.

f ′(s) =
∂G(v+(ω), ω,Λ)

∂ω(0)
|ω(0)=s −

∂G(v−(ω), ω,Λ)

∂ω(0)
|ω(0)=s

=

∫

(−1/2,1/2)d

(
v+(x , ω) − v−(x , ω)

)
dx .

f (s) = 0 ⇒(mon.) f ′(s) = 0 a.s. ⇒ (ordered) v+ = v− a.s.
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Nonlinear Random Homogemization

u 7→ Fǫ(u) =

∫

D

(

a
(x

ǫ
, ω

)

|∇u(x)|q + f (x)u(x)
)

dx ,

0 < c < a(x , ω) < C

D compact, ⇒ unique minimizer uǫ in H
1,q
0 (D).

uǫ → u0 (weakly) as ǫto0.

Is there a homogenized deterministic functional

u 7→

∫

D

(ā|∇u(x)|p + f (x)u(x)) dx

such that u0 is its unique minimizer?

More general integrand: f (P, x , ω) with bounds

c|P|q < f (P, x , ω) < C|P|q

Important Condition for hom.: Fast decay of correlations in space!

E.g. Dal Maso-Modica: Ex. M > 0 s.t. independent for |x − y | > M.
Nicolas Dirr (Cardiff University ) Random Coefficients 16 / 25



Nonlinear Random Homogemization

Γ-convergence

Convergence Fǫ → F such that minimizers of Fǫ converge to a

minimizer of F .
Suppose Fǫ, F act on metric space (X ,d).
Fǫ → F (d -Γ) if and only if

1 For any sequence uǫ → u (w.r.t d ): F (u) ≤ lim inf Fǫ(uǫ)

2 For any u ∈ X there exists sequence vǫ → u (w.r.t. d ) s.t.

lim Fǫ(vǫ) = F (u).

Makes space of functionals a compact metric space
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Nonlinear Random Homogemization

Homogenized Functional

In the framework of Dal Maso-Modica: If integrand translation invariant

and under independence condition (ergodicity not assumed)

Fǫ(u,D) =

∫

D

f (Du, x/ǫ, ω)dx → (H1,q − Γ) F0(u,D) =

∫

D

f0(Du)dx

with

f0(P) = lim
n→∞

(2n)−d
E

[

min
u∈H

1,q
0

((−n,n)d )

∫

(−n,n)d

f (Du + P, x , ω)dx

]

Necessary condition: u linear function

Additional assumption: Ergodicity w.r.t. spatial translations ⇒ no

expectation necessary.

"Corrector"
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Nonlinear Random Homogemization

Subadditive ergodic theorem

(2kn)−d min
u∈H

1,q
0

((−n,n)d )

∫

(−kn,kn)d

f (Du + P, x , ω)dx

≤ n−d
∑

z∈(−n,n)d∩(2Z)d )

(2k)−d min
u∈H

1,q
0

((−k ,k)d )

∫

(−k ,k)d

f (Du + P, x + z, ω)dx

⇒ Convergence a.s.
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Nonlinear Random Homogemization

Kingman’s subadditive ergodic theorem

(Dal Maso-Modica)

Let m(A, ω) be a random fucntion on bounded subsets of Rd which is

• subadditive, i.e.

A =
⋃

k

Ak ⇒ m(A, ω) ≤
∑

k

m(Ak ) a.s.

• translation invariant: m(z + A, ω) = m(A, ω)

Then there ex. ϕ(ω) s.t. for almost all ω

lim
n→∞

1

|nQ|
m(nQ, ω) = ϕ(ω)

Ergodic: ϕ is constant

Nicolas Dirr (Cardiff University ) Random Coefficients 19 / 25



Nonlinear Random Homogemization Elliptic 2nd order: Caffarelli-Souganidis-Wang

Problem

F (D2u, x/ǫ, ω) = 0 on D

u = g on ∂D

Heuristic Ansatz:

uǫ(x , ω) = u0(x) + ǫ2u1(x , x/ǫ) + . . .

u1 corrector, treat x/ǫ as independent variable y

F (D2
xu0(x) + D2

yu1(x , y), y , ω) = 0

Corrector equation For any Q ∈ Rd×d
sym , fInd (v , F̄ ) such that

F (Q + D2v(y), y , ω) = F̄ (Q)
︸ ︷︷ ︸

nonlin.ev.

on R
d ,

v(y)

|y |2
→ 0 as |y | → ∞

No proof of existence

In some cases (first order) nonexistence shown

Nicolas Dirr (Cardiff University ) Random Coefficients 20 / 25
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Nonlinear Random Homogemization Elliptic 2nd order: Caffarelli-Souganidis-Wang

Do not need

F (Q + D2v(y), y , ω) = F̄ (Q)
︸ ︷︷ ︸

nonlin.ev.

on R
d ,

v(y)

|y |2
→ 0 as |y | → ∞

Need only for any Q unique F̄ (Q) such that if some vǫ(x , ω) solves

F (D2vǫ, y/ǫ, ω) = F̄(Q) in B1

vǫ = (x ,Qx) on ∂B1

then ‖vǫ(x)− (x ,Qx)‖L∞(B1) → 0.
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Nonlinear Random Homogemization Elliptic 2nd order: Caffarelli-Souganidis-Wang

Obstacle Problem

Rescale

F (D2wǫ, y , ω) = F̄ (Q) inB1/ǫ

wǫ = (x ,Qx) on ∂B1/ǫ

and compare with

F (D2uǫ, y/ǫ, ω) = h inB1/ǫ

uǫ = (x ,Qx) on ∂B1/ǫ

uǫ ≥ (x ,Qx)in B1/ǫ

Contact set |{x : uǫ(x , ω) = (x ,Qx)}| Satisfies conditions for

subadditive ergodic theorem, so measure of contact set m(h) det.

m(h) = 0 : Soln. of free and obstacle problem close

m(h) > 0 : Soln. of obstacle problem and (x ,Qx) close (strict ell.!)

Desired F̄ (Q) : Choose sup{h : m(h) = 0}.
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Nonlinear Random Homogemization Elliptic 2nd order: Caffarelli-Souganidis-Wang

Back to interfaces

• Curve oscillates sublinearly in moving frame (kinetic scaling

t = ǫ−1T , r = ǫ−1x .)

ε−1

ε−α

• positive average speed of subsolutions

Idea: Fastest plane below and slowest plane above graph (in ǫ−1-box)

have same average speed, which is deterministic (Obstacles i.i.d.)

∂τv(y , τ, ω) = ǫ∆v(y , τ, ω) + f (ǫ−1y , ǫ−1v(y , τ, ω), ω) + F

v(x ,0) = 0
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Nonlinear Random Homogemization Conclusion

Techniques

Large Deviations

Borel-Cantelli

Percolation

Martingale CLT

Subadditive ergodic theorem
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Nonlinear Random Homogemization Conclusion

Open Problems

Homogenisation for Random Obstacel Model/ randomly forced

MCF

Γ-limit for random functionals with double well potential in d ≥ 3

Homogenization for degenerate elliptic second-order PDEs

Homogenization for Hamilton-Jacobi equations

H(Du, x/ǫ, ω) + u = 0 if H is not convex in P.
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