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Outline – Lecture 1
Numerical Analysis of Elliptic PDEs with Random Coefficients

Motivation: uncertainty/lack of data & stochastic modelling
Examples of PDEs with random data

Model problem: groundwater flow and radwaste disposal
Elliptic PDEs with rough stochastic coefficients

What are the computational/analytical challenges?

Numerical Analysis

I Assumptions, existence, uniqueness, regularity

I FE analysis: Cea Lemma, interpolation error, functionals

I Variational crimes (truncation error, quadrature)

I Mixed finite element methods
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Outline – Lecture 2
Novel Monte Carlo Methods and Uncertainty Quantification

Stochastic Uncertainty Quantification (in PDEs)

The Curse of Dimensionality & the Monte Carlo Method

Multilevel Monte Carlo methods

Analysis of multilevel MC for the elliptic model problem

Quasi–Monte Carlo methods

Analysis of QMC for the elliptic model problem

Bayesian Inference (stochastic inverse problems):

Multilevel Markov Chain Monte Carlo
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Stochastic Modelling

Many reasons for stochastic modelling:
I lack of data (e.g. data assimilation for weather prediction)
I data uncertainty (e.g. uncertainty quantification in

subsurface flow)
I parameter identification (e.g. Bayesian inference in structural

engineering)
I unresolvable scales (e.g. atmospheric dispersion modelling)

Input: best knowledge about system (PDE), statistics of input
parameters, measured ouput data with error statistics,. . .

Output: stats of quantities of interest or entire state space
often very sparse (or no) output data → need a good physical model!

I Data assimilation in NWP: data misfit, rainfall at some location
I Radioactive waste disposal: flow at repository, ’breakthrough’ time
I Oil reservoir simulation: production rate
I Certification of carbon fibre composites in aeronautical engineering
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Examples

Navier–Stokes (e.g. modelling plane or forecasting weather):

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + µ∇2v + f in Ω

subject to IC v(x , 0) = v0(x) + BCs
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Navier–Stokes (e.g. modelling plane or forecasting weather):

ρ(ω)

(
∂v

∂t
+ v · ∇v

)
= −∇p + µ(ω)∇2v + f(x , ω) in Ω(ω)

subject to IC v(x , 0) = v0(x , ω) + BCs

uncertain ICs → data assimilation
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Examples

Structural Mechanics (e.g. composites, tires or bone):

∇ ·
(
C :

1

2

[
∇u +∇uT

])
+ F = 0 in Ω

subject to BCs
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Examples

Structural Mechanics (e.g. composites, tires or bone):

∇ ·
(
C (x , ω) :

1

2

[
∇u +∇uT

])
+ F(x , ω) = 0 in Ω(ω)

subject to BCs

fibre defects

contact problems A. Chernov
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Examples
Waves in Heterogeneous Media (e.g. seismic or optics):

photonic crystal fibre design

Subsurface Fluid Flow (e.g. oil reservoir simulation):

optimal well placement
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Model Problem: Uncertainty in Groundwater Flow
(e.g. risk analysis of radwaste disposal or CO2 sequestration)

QUATERNARY

MERCIA MUDSTONE

VN-S CALDER

FAULTED VN-S CALDER

N-S CALDER

FAULTED N-S CALDER

DEEP CALDER

FAULTED DEEP CALDER

VN-S ST BEES

FAULTED VN-S ST BEES

N-S ST BEES

FAULTED N-S ST BEES

DEEP ST BEES

FAULTED DEEP ST BEES

BOTTOM NHM

FAULTED BNHM

SHALES + EVAP

BROCKRAM

FAULTED BROCKRAM

COLLYHURST

FAULTED COLLYHURST

CARB LST

FAULTED CARB LST

N-S BVG

FAULTED N-S BVG

UNDIFF BVG

FAULTED UNDIFF BVG

F-H BVG

FAULTED F-H BVG

BLEAWATH BVG

FAULTED BLEAWATH BVG

TOP M-F BVG

FAULTED TOP M-F BVG

N-S LATTERBARROW

DEEP LATTERBARROW

N-S SKIDDAW

DEEP SKIDDAW

GRANITE

FAULTED GRANITE

WASTE VAULTS

CROWN SPACE

EDZ

Geology at Sellafield (former potential UK radwaste site) c©NIREX UK Ltd.

Darcy’s Law: ~q + k ∇p = ~f

Incompressibility: ∇ · ~q = g

+ Boundary Conditions

Uncertainty in k =⇒ Uncertainty in p & ~q

Stochastic Modelling!
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Darcy’s Law: ~q + k(x , ω)∇p = ~f (x , ω)

Incompressibility: ∇ · ~q = g(x , ω)

+ Boundary Conditions

Uncertainty in k =⇒ Uncertainty in p & ~q

Stochastic Modelling!
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Application: Longterm radioactive waste disposal
UK EPSRC funded research project with A Cliffe (Nottingham) & M Giles (Oxford)

Total current UK Waste (intermediate & highly radioactive):

≈220,000 m3

would stand about 17m deep on the pitch in Wembley Stadium

Long term solution: deep geological disposal
(CoRWM July 2006, HMG October 2006)

→ Multiple barriers: mechanical, chemical, physical

Assessing safety of potential sites of utmost importance
(long timescales of 1000s of years) → modelling essential!!

UK Gov Policy: Allow building new nuclear power stations,
but waste disposal problem has to be solved first !

Key aspect: How to quantify uncertainties in the models?
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WIPP (Waste Isolation Pilot Plant) Test Problem

Ernst

US Dept of Energy Radioactive Waste Repository in New Mexico

Cross section through the rock at
the WIPP site

Principal pathway for transport
of radionuclides is Culebra
dolomite layer
(2D to reasonable approximation)

Given measurements of k and p
at a few locations

Quantities of interest: flux at
repository, breakthrough time,
amount of spreading through
heterogeneity

Uncertainty in data −→
Uncertainty in predictions

PDE with random coeff. k
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Stochastic Modelling of Uncertainty (simplified)

Model uncertain conductivity tensor k as a random field k(x , ω)

k(x , ω) isotropic, scalar

log k(x , ω) = Gaussian field

with isotropic covariance (e.g. Matérn):

R(x , y) := σ2ρν

(
‖x − y‖

λ

)
Usually: σ2 > 1, λ < 1 & ν < 1
e.g. ρ1/2(r) = exp(−r) or ρ∞(r) = exp(−r2)

Compute statistics (eg. moments)
of functionals of p and ~q.

Inverse problem ⇒ MCMC

realisation (with λ = 1
64 , σ

2 = 8)

contrast: maxx,y
k(x)
k(y) = O(109)

(Reasonably good fit to some field data [Gelhar, 1975], [Hoeksema et al, 1985])
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Typical Quantities of Interest

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ = 0.3 and σ2 = 4

Expected value / moments / CDF / PDF of

pressure p or flux ~q
(point evaluations, norms, averages)

particle position at time t

travel time (to boundary), etc . . .

More Realistic Examples (e.g. Sellafield site or SPE10 Benchmark)
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Key Computational Challenges
PDEs with Highly Heterogeneous Random Coefficients

−∇·(k(x , ω)∇p(x , ω)) = f (x , ω), x ∈ D ⊂ Rd , ω ∈ Ω (prob. space)

Sampling from random field (log k(x , ω) Gaussian):

I truncated Karhunen-Loève expansion of log k
I matrix factorisation, e.g. circulant embedding (FFT)
I via pseudodifferential “precision” operator (PDE solves)

High-Dimensional Integration (especially w.r.t. posterior):

I stochastic Galerkin/collocation (+sparse)
I Monte Carlo, QMC & Markov Chain MC

Solve large number of multiscale deterministic PDEs:

I Efficient discretisation & FE error analysis
I Multigrid Methods, AMG, DD Methods
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−∇·(k(x , ω)∇p(x , ω)) = f (x , ω), x ∈ D ⊂ Rd , ω ∈ Ω (prob. space)

Sampling from random field (log k(x , ω) Gaussian):

I truncated Karhunen-Loève expansion of log k Lecture 1

I matrix factorisation, e.g. circulant embedding (FFT)
I via pseudodifferential “precision” operator (PDE solves)

High-Dimensional Integration (especially w.r.t. posterior):

I stochastic Galerkin/collocation (+sparse) Matthies,. . .

I Monte Carlo, QMC & Markov Chain MC Lecture 2

Solve large number of multiscale deterministic PDEs:

I Efficient discretisation & FE error analysis Lecture 1

I Multigrid Methods, AMG, DD Methods my backgound
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Why is it computationally so challenging?

Low regularity (global): k ∈ C 0,η, η < 1 =⇒ fine mesh h� 1

Large σ2 & exponential =⇒ high contrast kmax/kmin > 106

Small λ =⇒ multiscale + high stochast. dimension s > 100

e.g. for truncated KL expansion log k(x , ω) ≈
s∑

j=1

√
µjφj(x)Yj(ω)

Remainder
∑

j>J µj in 1D Truncation error of E[‖p‖L2(0,1)] w.r.t. s
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Why is it computationally so challenging? Lecture 2

Low regularity (global): k ∈ C 0,η, η < 1 =⇒ fine mesh h� 1

Large σ2 & exponential =⇒ high contrast kmax/kmin > 106
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Why is it mathematically interesting?

6 ∃kmin, kmax ∈ R such that

0 < kmin ≤ k(x, ω) ≤ kmax <∞ a.e. in D × Ω.

I Cannot apply Lax-Milgram directly to show ∃!
I All bounds need to be explicit in coefficient

I Need weight functions near boundary in QMC analysis

Typically only k(·, ω) ∈ C η(D) with η < 1

I Do not have full regularity, i.e. p(ω, ·) /∈ H2(D)

I Have to work in fractional-order Sobolev spaces

Differential operator is not affine in the stochastic parameters

Results need to be explicit and uniform in s
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I Have to work in fractional-order Sobolev spaces

Differential operator is not affine in the stochastic parameters

Results need to be explicit and uniform in s
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Stochastic Finite Element Analysis
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The Pioneers (in Stochastic Finite Elements)

Structural Engineers (from the 1980s):

I H Contreras, “The Stochastic Finite-Element Method”,
Computers & Structures, 1980

I . . .
I Spanos & Ghanem’s book in 1991 (their first paper is 1989)

Numerical Analysts (from ∼1997):

I Matthies, Babuska, Knio, Le Maitre, Karniadakis, Xiu,
Schwab, Tempone, Elman, Ernst, Nobile, Nouy, . . .

Analysis for Lognormal Coefficients (from ∼2009):

I Galvis, Sarkis, Gittelson, Ullmann, Charrier, . . .
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