Numerical Analysis of Elliptic PDEs with Random Coefficients (Lecture I)

Robert Scheichl

Department of Mathematical Sciences University of Bath

Workshop on PDEs with RANDOM COEFFICIENTS Weierstrass Institute, Berlin, 13–15 November, 2013

Outline - Lecture 1

Numerical Analysis of Elliptic PDEs with Random Coefficients

- Motivation: uncertainty/lack of data & stochastic modelling Examples of PDEs with random data
- Model problem: groundwater flow and radwaste disposal Elliptic PDEs with rough stochastic coefficients
- What are the **computational/analytical challenges**?
- Numerical Analysis
 - ► Assumptions, existence, uniqueness, regularity
 - FE analysis: Cea Lemma, interpolation error, functionals
 - Variational crimes (truncation error, quadrature)
 - Mixed finite element methods

Outline – Lecture 2

Novel Monte Carlo Methods and Uncertainty Quantification

- Stochastic Uncertainty Quantification (in PDEs)
- The Curse of Dimensionality & the Monte Carlo Method
- Multilevel Monte Carlo methods
- Analysis of multilevel MC for the elliptic model problem
- Quasi-Monte Carlo methods
- Analysis of QMC for the elliptic model problem
- Bayesian Inference (stochastic inverse problems): Multilevel Markov Chain Monte Carlo

Stochastic Modelling

- Many reasons for stochastic modelling:
 - lack of data (e.g. data assimilation for weather prediction)
 - data uncertainty (e.g. uncertainty quantification in subsurface flow)
 - parameter identification (e.g. Bayesian inference in structural engineering)
 - unresolvable scales (e.g. atmospheric dispersion modelling)

Stochastic Modelling

- Many reasons for stochastic modelling:
 - lack of data (e.g. data assimilation for weather prediction)
 - data uncertainty (e.g. uncertainty quantification in subsurface flow)
 - parameter identification (e.g. Bayesian inference in structural engineering)
 - unresolvable scales (e.g. atmospheric dispersion modelling)
- **Input:** best knowledge about system (PDE), statistics of input parameters, measured ouput data with error statistics,...

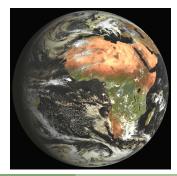
Stochastic Modelling

- Many reasons for stochastic modelling:
 - lack of data (e.g. data assimilation for weather prediction)
 - data uncertainty (e.g. uncertainty quantification in subsurface flow)
 - parameter identification (e.g. Bayesian inference in structural engineering)
 - unresolvable scales (e.g. atmospheric dispersion modelling)
- **Input:** best knowledge about system (PDE), statistics of input parameters, measured ouput data with error statistics,...
- Output: stats of quantities of interest or entire state space often very sparse (or no) output data → need a good physical model!
 - > Data assimilation in NWP: data misfit, rainfall at some location
 - Radioactive waste disposal: flow at repository, 'breakthrough' time
 - Oil reservoir simulation: production rate
 - Certification of carbon fibre composites in aeronautical engineering

• Navier-Stokes (e.g. modelling plane or forecasting weather):

$$\rho\left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}\right) = -\nabla p + \mu \nabla^2 \mathbf{v} + f \text{ in } \Omega$$

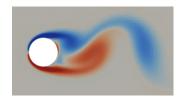
subject to IC $v(x, 0) = v_0(x) + BCs$



• Navier-Stokes (e.g. modelling plane or forecasting weather):

$$\rho(\omega) \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu(\omega) \nabla^2 \mathbf{v} + f \text{ in } \Omega$$

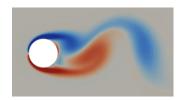
subject to IC $v(x, 0) = v_0(x) + BCs$

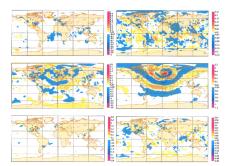


• Navier-Stokes (e.g. modelling plane or forecasting weather):

$$\rho(\omega) \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla p + \mu(\omega) \nabla^2 \mathbf{v} + \mathbf{f}(x, \omega) \text{ in } \Omega(\omega)$$

subject to IC $v(x, 0) = v_0(x, \omega) + \text{BCs}$



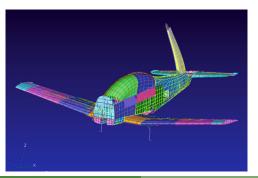


uncertain ICs \rightarrow data assimilation

• Structural Mechanics (e.g. composites, tires or bone):

$$\nabla \cdot \left(\overline{\overline{C}} : \frac{1}{2} \left[\nabla \mathbf{u} + \nabla \mathbf{u}^{T} \right] \right) + \mathbf{F} = \mathbf{0} \quad \text{in} \ \Omega$$

subject to BCs

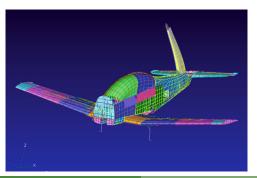


R. Scheichl (Bath)

• Structural Mechanics (e.g. composites, tires or bone):

$$abla \cdot \left(\overline{\overline{C}}(\mathbf{x},\omega): \frac{1}{2} \left[\nabla \mathbf{u} + \nabla \mathbf{u}^{T} \right] \right) + \mathbf{F} = \mathbf{0} \quad \text{in} \quad \Omega$$

subject to BCs

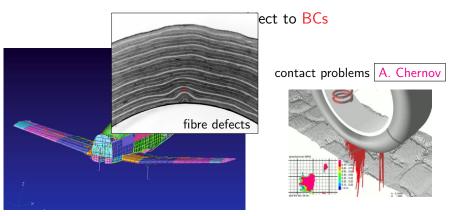




R. Scheichl (Bath)

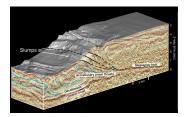
• Structural Mechanics (e.g. composites, tires or bone):

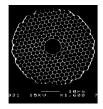
$$\nabla \cdot \left(\overline{\overline{C}}(x,\omega) : \frac{1}{2} \left[\nabla \mathbf{u} + \nabla \mathbf{u}^{T} \right] \right) + \mathbf{F}(x,\omega) = 0 \quad \text{in} \quad \Omega(\omega)$$



R. Scheichl (Bath)

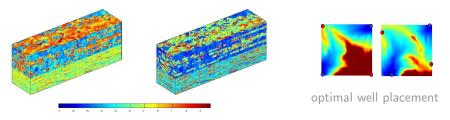
• Waves in Heterogeneous Media (e.g. seismic or optics):





photonic crystal fibre design

• Subsurface Fluid Flow (e.g. oil reservoir simulation):

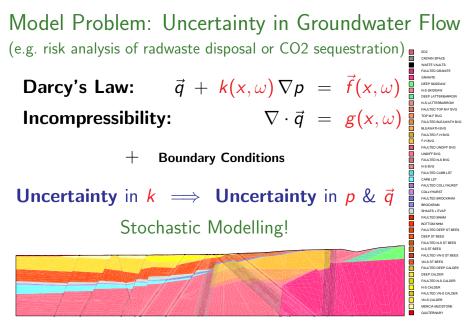


Model Problem: Uncertainty in Groundwater Flow (e.g. risk analysis of radwaste disposal or CO2 sequestration)

Darcy's Law:
$$\vec{q} + k \nabla p = \vec{f}$$

Incompressibility: $\nabla \cdot \vec{q} = g$

+ Boundary Conditions



Geology at Sellafield (former potential UK radwaste site) ©NIREX UK Ltd.

8 / 18

• Total current UK Waste (intermediate & highly radioactive):

 \approx **220,000 m**³

would stand about 17m deep on the pitch in Wembley Stadium

• Total current UK Waste (intermediate & highly radioactive):

 \approx **220,000 m**³

would stand about 17m deep on the pitch in Wembley Stadium

- Long term solution: deep geological disposal (CoRWM July 2006, HMG October 2006)
 - $\rightarrow~$ Multiple barriers: mechanical, chemical, physical

• Total current UK Waste (intermediate & highly radioactive):

 \approx **220,000 m**³

would stand about 17m deep on the pitch in Wembley Stadium

- Long term solution: deep geological disposal (CoRWM July 2006, HMG October 2006)
 - $\rightarrow~$ Multiple barriers: mechanical, chemical, physical
- Assessing safety of potential sites of utmost importance (long timescales of 1000s of years) → modelling essential!!

• Total current UK Waste (intermediate & highly radioactive):

 \approx **220,000 m**³

would stand about 17m deep on the pitch in Wembley Stadium

• Long term solution: deep geological disposal (CoRWM July 2006, HMG October 2006)

$\rightarrow~$ Multiple barriers: mechanical, chemical, physical

- Assessing safety of potential sites of utmost importance (long timescales of 1000s of years) → modelling essential!!
- UK Gov Policy: Allow building **new** nuclear power stations, <u>but</u> waste disposal problem has to be solved first !

• Total current UK Waste (intermediate & highly radioactive):

 \approx **220,000 m**³

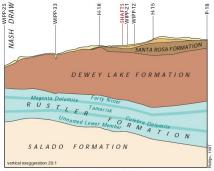
would stand about 17m deep on the pitch in Wembley Stadium

• Long term solution: deep geological disposal (CoRWM July 2006, HMG October 2006)

$\rightarrow~$ Multiple barriers: mechanical, chemical, physical

- Assessing safety of potential sites of utmost importance (long timescales of 1000s of years) → modelling essential!!
- UK Gov Policy: Allow building **new** nuclear power stations, <u>but</u> waste disposal problem has to be solved first !
- Key aspect: How to quantify uncertainties in the models?

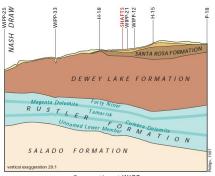
WIPP (Waste Isolation Pilot Plant) Test Problem US Dept of Energy Radioactive Waste Repository in New Mexico



Cross-section at WIPP

Cross section through the rock at the WIPP site

WIPP (Waste Isolation Pilot Plant) Test Problem US Dept of Energy Radioactive Waste Repository in New Mexico

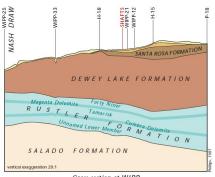


Cross-section at WIPP

Cross section through the rock at the WIPP site

- Principal pathway for transport of radionuclides is Culebra dolomite layer (2D to reasonable approximation)
- Given measurements of *k* and *p* at a few locations
- Quantities of interest: flux at repository, breakthrough time, amount of spreading through heterogeneity

WIPP (Waste Isolation Pilot Plant) Test Problem US Dept of Energy Radioactive Waste Repository in New Mexico



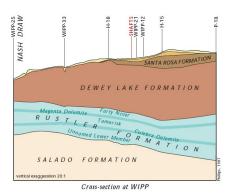
Cross-section at WIPP

Cross section through the rock at the WIPP site

- Principal pathway for transport of radionuclides is Culebra dolomite layer (2D to reasonable approximation)
- Given measurements of k and p at a few locations
- Quantities of interest: flux at repository, breakthrough time, amount of spreading through heterogeneity
- Uncertainty in data → Uncertainty in predictions

• PDE with random coeff. k

WIPP (Waste Isolation Pilot Plant) Test Problem Ernst US Dept of Energy Radioactive Waste Repository in New Mexico



Cross section through the rock at the WIPP site

- Principal pathway for transport of radionuclides is Culebra dolomite layer (2D to reasonable approximation)
- Given measurements of *k* and *p* at a few locations
- Quantities of interest: flux at repository, breakthrough time, amount of spreading through heterogeneity
- Uncertainty in data \longrightarrow Uncertainty in predictions

• PDE with random coeff. k

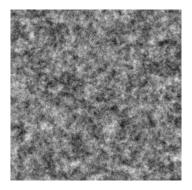
Stochastic Modelling of Uncertainty (simplified) Model uncertain conductivity tensor k as a random field $k(x, \omega)$

Stochastic Modelling of Uncertainty (simplified) Model uncertain conductivity tensor k as a random field $k(x, \omega)$

- $k(x, \omega)$ isotropic, scalar
- $\log k(x, \omega)$ = Gaussian field with isotropic covariance (e.g. Matérn):

$$R(x,y) := \sigma^2 \rho_{\nu} \left(\frac{\|x-y\|}{\lambda} \right)$$

- Usually: $\sigma^2 > 1$, $\lambda < 1$ & $\nu < 1$ e.g. $\rho_{1/2}(r) = \exp(-r)$ or $\rho_{\infty}(r) = \exp(-r^2)$
- Compute statistics (eg. moments) of functionals of p and d.



realisation (with $\lambda = \frac{1}{64}$, $\sigma^2 = 8$) contrast: $\max_{x,y} \frac{k(x)}{k(y)} = \mathcal{O}(10^9)$

(Reasonably good fit to some field data [Gelhar, 1975], [Hoeksema et al, 1985])

R. Scheichl (Bath)

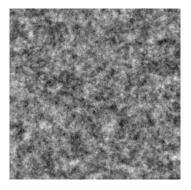
Stochastic Modelling of Uncertainty (simplified) Model uncertain conductivity tensor k as a random field $k(x, \omega)$

- $k(x, \omega)$ isotropic, scalar
- $\log k(x, \omega)$ = Gaussian field with isotropic covariance (e.g. Matérn):

$$R(x,y) := \sigma^2 \rho_{\nu} \left(\frac{\|x-y\|}{\lambda} \right)$$

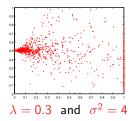
- Usually: $\sigma^2 > 1$, $\lambda < 1$ & $\nu < 1$ e.g. $\rho_{1/2}(r) = \exp(-r)$ or $\rho_{\infty}(r) = \exp(-r^2)$
- Compute statistics (eg. moments) of functionals of p and d.
- Inverse problem \Rightarrow **MCMC**

(Reasonably good fit to some field data [Gelhar, 1975], [Hoeksema et al, 1985])



realisation (with $\lambda = \frac{1}{64}$, $\sigma^2 = 8$) contrast: $\max_{x,y} \frac{k(x)}{k(y)} = \mathcal{O}(10^9)$

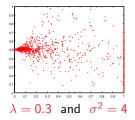
Typical Quantities of Interest



Expected value / moments / CDF / PDF of

- pressure p or flux q
 (point evaluations, norms, averages)
- particle position at time t
- travel time (to boundary), etc ...

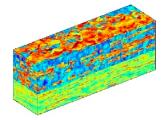
Typical Quantities of Interest



Expected value / moments / CDF / PDF of

- pressure p or flux q
 (point evaluations, norms, averages)
- particle position at time t
- travel time (to boundary), etc ...

More Realistic Examples (e.g. Sellafield site or SPE10 Benchmark)



PDEs with Highly Heterogeneous Random Coefficients

 $abla \cdot (k(x,\omega)
abla p(x,\omega)) = f(x,\omega), \quad x \in D \subset \mathbb{R}^d, \ \omega \in \Omega ext{ (prob. space)}$

PDEs with Highly Heterogeneous Random Coefficients

 $abla \cdot (m{k}(x,\omega)
abla p(x,\omega)) = f(x,\omega), \quad x\in D\subset \mathbb{R}^d, \ \omega\in \Omega ext{ (prob. space)}$

• **Sampling** from random field $(\log k(x, \omega)$ Gaussian):

- truncated Karhunen-Loève expansion of log k
- matrix factorisation, e.g. circulant embedding (FFT)
- via pseudodifferential "precision" operator (PDE solves)

PDEs with Highly Heterogeneous Random Coefficients

 $abla \cdot (m{k}(x,\omega)
abla p(x,\omega)) = f(x,\omega), \quad x\in D\subset \mathbb{R}^d, \ \omega\in \Omega ext{ (prob. space)}$

• **Sampling** from random field $(\log k(x, \omega) \text{ Gaussian})$:

- truncated Karhunen-Loève expansion of log k
- matrix factorisation, e.g. circulant embedding (FFT)
- via pseudodifferential "precision" operator (PDE solves)
- High-Dimensional Integration (especially w.r.t. posterior):
 - stochastic Galerkin/collocation (+sparse)
 - Monte Carlo, QMC & Markov Chain MC

PDEs with Highly Heterogeneous Random Coefficients

 $abla \cdot (k(x,\omega)
abla p(x,\omega)) = f(x,\omega), \quad x \in D \subset \mathbb{R}^d, \ \omega \in \Omega ext{ (prob. space)}$

• **Sampling** from random field $(\log k(x, \omega) \text{ Gaussian})$:

- truncated Karhunen-Loève expansion of log k
- matrix factorisation, e.g. circulant embedding (FFT)
- via pseudodifferential "precision" operator (PDE solves)
- High-Dimensional Integration (especially w.r.t. posterior):
 - stochastic Galerkin/collocation (+sparse)
 - Monte Carlo, QMC & Markov Chain MC
- Solve large number of multiscale deterministic PDEs:
 - Efficient discretisation & FE error analysis
 - Multigrid Methods, AMG, DD Methods

PDEs with Highly Heterogeneous Random Coefficients

 $abla \cdot (m{k}(x,\omega)
abla p(x,\omega)) = f(x,\omega), \quad x\in D\subset \mathbb{R}^d, \ \omega\in \Omega ext{ (prob. space)}$

• **Sampling** from random field $(\log k(x, \omega)$ Gaussian):

- truncated Karhunen-Loève expansion of $\log k$ Lecture 1
- matrix factorisation, e.g. circulant embedding (FFT)
- ▶ via pseudodifferential "precision" operator (PDE solves)
- High-Dimensional Integration (especially w.r.t. posterior):
 - stochastic Galerkin/collocation (+sparse)
 - Monte Carlo, QMC & Markov Chain MC
- Solve large number of multiscale deterministic PDEs:
 - Efficient discretisation & FE error analysis
 - Multigrid Methods, AMG, DD Methods

Matthies, . . .

13 / 18

my backgound

Why is it computationally so challenging?

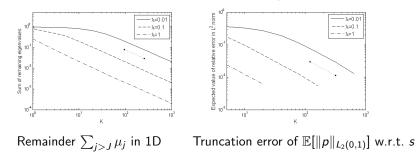
Why is it computationally so challenging?

- Low regularity (global): $k \in C^{0,\eta}, \ \eta < 1 \implies$ fine mesh $h \ll 1$
- Large σ^2 & exponential \implies high contrast $k_{\max}/k_{\min} > 10^6$
- Small $\lambda \implies$ multiscale + high stochast. dimension s > 100

Why is it computationally so challenging?

- Low regularity (global): $k \in C^{0,\eta}, \ \eta < 1 \implies$ fine mesh $h \ll 1$
- Large σ^2 & exponential \implies high contrast $k_{max}/k_{min} > 10^6$
- Small $\lambda \implies$ multiscale + high stochast. dimension s > 100

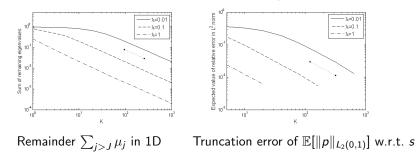
e.g. for truncated KL expansion log $k(x,\omega) \approx \sum_{i=1}^{3} \sqrt{\mu_i} \phi_i(x) Y_i(\omega)$



Why is it computationally so challenging? Lecture 2

- Low regularity (global): $k \in C^{0,\eta}, \ \eta < 1 \implies$ fine mesh $h \ll 1$
- Large σ^2 & exponential \implies high contrast $k_{max}/k_{min} > 10^6$
- Small $\lambda \implies$ multiscale + high stochast. dimension s > 100

e.g. for truncated KL expansion log $k(x,\omega) \approx \sum_{i=1}^{3} \sqrt{\mu_i} \phi_i(x) Y_i(\omega)$



• $\not\exists k^{min}, k^{max} \in \mathbb{R}$ such that

- ► <u>Cannot</u> apply Lax-Milgram directly to show ∃!
- All bounds need to be explicit in coefficient
- Need weight functions near boundary in QMC analysis

• $\not\exists k^{min}, k^{max} \in \mathbb{R}$ such that

- ► <u>Cannot</u> apply Lax-Milgram directly to show ∃!
- All bounds need to be explicit in coefficient
- Need weight functions near boundary in QMC analysis
- Typically only $k(\cdot,\omega) \in C^{\eta}(D)$ with $\eta < 1$
 - ▶ **Do not** have full regularity, i.e. $p(\omega, \cdot) \notin H^2(D)$
 - Have to work in fractional-order Sobolev spaces

• $\not\exists k^{min}, k^{max} \in \mathbb{R}$ such that

- ► <u>Cannot</u> apply Lax-Milgram directly to show ∃!
- All bounds need to be explicit in coefficient
- Need weight functions near boundary in QMC analysis
- Typically only $k(\cdot,\omega) \in C^{\eta}(D)$ with $\eta < 1$
 - ▶ **Do not** have full regularity, i.e. $p(\omega, \cdot) \notin H^2(D)$
 - Have to work in fractional-order Sobolev spaces
- Differential operator is **not affine** in the stochastic parameters

• $\not\exists k^{min}, k^{max} \in \mathbb{R}$ such that

- ► <u>Cannot</u> apply Lax-Milgram directly to show ∃!
- All bounds need to be explicit in coefficient
- Need weight functions near boundary in QMC analysis
- Typically only $k(\cdot,\omega) \in C^{\eta}(D)$ with $\eta < 1$
 - ▶ **Do not** have full regularity, i.e. $p(\omega, \cdot) \notin H^2(D)$
 - Have to work in fractional-order Sobolev spaces
- Differential operator is **not affine** in the stochastic parameters
- Results need to be explicit and uniform in *s*

Stochastic Finite Element Analysis

The Pioneers (in Stochastic Finite Elements)

- Structural Engineers (from the 1980s):
 - H Contreras, "The Stochastic Finite-Element Method", Computers & Structures, 1980
 - ▶ ...
 - ▶ Spanos & Ghanem's book in 1991 (their first paper is 1989)

The Pioneers (in Stochastic Finite Elements)

- Structural Engineers (from the 1980s):
 - H Contreras, "The Stochastic Finite-Element Method", Computers & Structures, 1980
 - ▶ ...
 - ▶ Spanos & Ghanem's book in 1991 (their first paper is 1989)
- Numerical Analysts (from ~1997):
 - Matthies, Babuska, Knio, Le Maitre, Karniadakis, Xiu, Schwab, Tempone, Elman, Ernst, Nobile, Nouy, ...

The Pioneers (in Stochastic Finite Elements)

- Structural Engineers (from the 1980s):
 - H Contreras, "The Stochastic Finite-Element Method", Computers & Structures, 1980
 - Spanos & Ghanem's book in 1991 (their first paper is 1989)
- Numerical Analysts (from ~1997):
 - Matthies, Babuska, Knio, Le Maitre, Karniadakis, Xiu, Schwab, Tempone, Elman, Ernst, Nobile, Nouy, ...
- Analysis for Lognormal Coefficients (from ~2009):
 - ► Galvis, Sarkis, Gittelson, Ullmann, Charrier, ...

My Collaborators

- KA Cliffe (Nottingham)
- M Giles (Oxford)
- AL Teckentrup (Florida State, previously Bath)
- J Charrier (Marseille)
- E Ullmann (Bath)
- IG Graham (Bath)
- F Kuo (UNSW Sydney)
- IH Sloan (UNSW Sydney)
- D Nuyens (Leuven)
- J Nicholls (UNSW Sydney)
- Ch Schwab (ETH Zürich)
- Ch Ketelsen (Boulder)