DIPOG-2.1

User Guide
 Direct Problems for Optical Gratings over Triangular Grids

A. Rathsfeld

Weierstraß-Institut für
Angewandte Analysis und Stochastik
Leibniz-Institut im Forschungsverbund Berlin e.V.
Mohrenstr. 39
D-10117 Berlin
Germany
rathsfeld@wias-berlin.de

Weierstrass Institute for Applied Analysis and Stochastics

Abstract

${ }^{1}$ This guide describes how to use the programs FEM_CHECK, GFEM_CHECK, FEM, GFEM, FEM_PLOT, GFEM_PLOT, FEM_FULLINFO, GFEM_FULLINFO, and OPTIMIZE of the package DIPOG-2.1. The package is a collection of finite element (FEM) programs to determine the efficiencies of the diffraction of light by a periodic grating structure. It is based on the software package PDELIB and solves the classical case of TE and Tm polarization and the case of conical diffraction. The code provides a conventional Fem and a generalized Fem (called Gfem). The latter is the variational approach of the conventional FEM combined with a new trial space. Other routines of DIPOG-2.1 determine optimal gratings of certain grating classes minimizing objective functionals depending on the efficiencies.

We note that the DIPOG-2.1 programs require the installation of the previous version DIPOG-1.3 or DIPOG-1.5, of the grid generator TRIANGLE-1.4, of the graphical user interface package FLTK, and of the equations solver PARDISQ ${ }^{2}$, Additionally, some of them need the graphical package openGL (or the MESA emulation of openGL) together with GLTOOLS-2.4 or, alternatively, the package GNUPLOT. Examples of data and output files are enclosed.

[^0]
Contents

1 Introductory Remarks and the Structure of the Package 4
1.1 What is DIPOG-2.1 and Dipog-1.5? 4
1.2 Programming language and used packages 4
1.3 Get executables, comment lines in input files 5
1.4 \quad Structure of the package 6
1.5 Environment variables 12
2 Diffraction Problems for Gratings 14
2.1 The classical TE problem 14
2.2 The classical TM problem 16
2.3 Conical problems 17
2.4 References 22
3 Geometry Input 23
3.1 Geometrical data in input file "name.dat" 23
3.2 How to get an input file "name1.inp" ? 24
3.3 Graded FEM-mesh generated through geometry input file 32
3.4 Input file "name1.inp" by TGUI 33
3.5 Code words to indicate special geometries 34
3.6 \quad Stack grating by code words 50
4 Input of Refractive Indices 55
5 Computation of Efficiencies Using FEM in CLASSICAL 60
5.1 How to get an input file "name2.dat"? 60
5.2 Simple calculation with minimal output 60
5.3 Check before computation, more infos, and plots? 61
6 Computation of Efficiencies Using GFEM in CLASSICAL 65
7 Computation of Efficiencies Using FEM/GFEM in CONICAL 67
8 Plot a Graph with the Efficiencies 68
9 Parameter Test for GFEM 69
10 Optimization Tools 73
10.1 Optimizing using OPTIMIZE in OPTIM 73
10.1.1 The optimization problem 73
10.1.2 Optimization via OPTIMIZE 75
10.1.3 The input file for the optimization 77
10.1.4 The locality of the solution. A warning 83
10.1.5 Maximum likelihood estimator 84
10.2 Classes of gratings which can be optimized 84
10.2.1 General parameters 84
10.2.2 Profile grating determined by a polygonal profile function 87
10.2.3 Profile grating determined by general polygonal profile curve I 87
10.2 .4 Profile grating determined by general polygonal profile curve II 88
10.2.5 Stack of trapezoids 89
10.2.6 Optimization of a polygonal interface inside a general grating 91
10.2.7 Bridge composed of trapezoids under light in the EUV range 95
10.3 Numerical methods of optimization 98
10.3.1 General parameters of optimization algorithm 98
10.3.2 Conjugate gradient method with projection 99
10.3.3 Interior point method 101
10.3.4 Method of augmented Lagrangian 104
10.3.5 Simulated annealing 106
10.3.6 Newton type method with projection 108
10.3.7 Levenberg-Marquardt method 110
10.4 References 110
11 The graphical user interface program DIPOG-2.1-GUI 111
12 Enclosed Files 112
12.1 Geometry input file "example.inp" 112
12.2 Data file "example.dat" for CLASSICAL 114
12.3 Data file "generalized.Dat" for CLASSICAL resp. "conical.Dat" in CONI-CAL . 127
12.4 Data file "example.dat" for CONICAL 129
12.5 Output file "example.res" of FEM-FULLINFO in CLASSICAL 142
12.6 Output file "example.res" of GFEM in CLASSICAL 150
12.7 Output file "example.res" of FEM in CONICAL 152
12.8 Data file "example.dat" of OPTIMIZE in OPTIM 156
12.9 Output file "example.res" of OPTIMIZE in OPTIM 203
13 Copyright 206

1 Introductory Remarks and the Structure of the Package

1.1 What is DIPOG-2.1 and Dipog-1.5?

DIPOG-2.1 is a finite element (FEM) program to determine the efficiencies of the diffraction of light by a periodic grating structure. The unbounded domain is treated by coupling with boundary element methods. DIPOG-2.1 solves the classical TE and TM cases, i.e. the cases of incident light in the plane perpendicular to the grooves of the periodic grating, and the case of conical diffraction, i.e. of oblique incidence of light. The code is based on the package PDELIB which is a collection of software components to create simulators based on partial differential equations:

http://www.wias-berlin.de/software/pdelib

DIPOG-2.1 provides a conventional FEM approach as well as a generalized FEM version called GFEm. The latter is nothing else than the variational approach of the conventional FEM combined with a new trial space for the approximation of the unknown solution. To compute follow the subsequent instructions.

The earlier version Dipog-1.5 does the same for the special case of binary (lamellar) grating $\left\{^{3}\right\}$ i.e. if the different grating material pieces are of rectangular shape with sides parallel to the axes. Whenever the user is confronted with binary grating geometries, he can use Dipog-1.5 or DIPOG-2.1. However, he should prefer the more efficient Dipog-1.5. The fast generalized FEM used in Dipog-1.5 cannot be applied to general polygonal geometries.

Beside the simulation of the diffraction by gratings, DIPOG-2.1 can optimize a few classes of grating structures. Local gradient based optimization methods and the global simulated annealing method is used, to determine optimal geometry parameters and optimal refractive indices, respectively. The algorithms work for classical and conical diffraction. The geometry classes admissible for our optimization are:

- gratings with a polygonal profile separating the cover and substrate material
- special classes of multilayered trapezoidal gratings
- fixed grating structures, where a part of a polygonal interface is to be optimized

Note that, for the classical case, Dipog-1.5 computes optimal binary gratings for given efficiency sequences or for prescribed energy restrictions. For Dipog-1.5, we refer to the German Benutzer-Handbuch:
http://www.wias-berlin.de/software/DIPOG

1.2 Programming language and used packages

All programs are written in fortran, c or c++ language and based on the UNIX system. The programs require the previous version DIPOG-1.3 or DIPOG-1.5, the grid generator TRIANGLE1.4, the graphical user package FLTK, and the linear equations solver PARDISO together with some LAPACK and BLAS routines. For good visualization the package openGL (or at least

[^1]the MESA emulation of openGL) is needed together with the auxiliary package GLTOOLS. A minor visualization is possible with the program package GNUPLOT. In emergency case, the computations run also without any visualization, i.e. without openGL and GNUPLOT.

For non-comercial use, the Levenberg-Marquardt algorithm levmar-2.2 by Manolis Lourakis can be applied for optimization. The package DIPOG-2.1 can use the refractive indices from the tables of the program package IMD (cf. Section 4). To this end all the files from the IMD directory "imd/imd/nk.dir" must be copied to the DIPOG-2.1 directory "refr_ind_data". Of course, the user must observe the copyrights of the package IMD.

To get informations on the above mentioned necessary packages, we refer to:

DIPOG:	http://www.wias-berlin.de/software/DIPOG
TRIANGLE:	http://www.cs.cmu.edu/~quake/triangle.html
GLTOOLS:	http://www.wias-berlin.de/software/gltools
GNUPLOT:	http://www.gnuplot.info
FLTK:	http://www.fltk.org
IMD:	http://cletus.phys.columbia.edu/ \sim windt/idl
levmar:	http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
PARDISO:	http://www.computational.unibas.ch/cs/scicomp/software/pardiso

Note that the compilation of the graphical user interface (GUI) "GEOMETRIES/TGUI" fails with newer versions of "fltk". The version "fltk-1.4.4" is O.K. Moreover, this GUI requires the pachackes "doxygen", "glu-devel", the library "libpng-compat-devel", and the include files "png.h", "pngconf.h".

1.3 Get executables, comment lines in input files

Firstly, install triangle. Go to the directory of triangle, e.g., to directory triangle inside of the DIPOG-2.1 home directory. Remove the old files "triangle", "showme", and "triangle.o". Generate source files from "triangle.shar" by calling
sh triangle.shar
and actualize the files makefile and Makefile_DIPOG-2.1. In particular set the correct environments variables CC and CSWITCHES. Then call
make
make ./triangle.o
Finally set the correct path TRIANGLE_HOME pointing to the directory hosting the new files "triangle", "showme", and "triangle.o" in the file DIPOG-2.1/MAKES/MHEAD. Note that triangle will be generated if it does not exist and if the subsequent command make is replaced by make all_plus_triangle. However, the licence of triangle requires that this is done by the user! The package triangle is linked to DIPOG-2.1 and not included. In other words, the use of make all_plus_triangle is legal only for the developers.

Next install the gl tools. Remove the old directory gltools-2-4 or at leat the old library libgltools.a. To get a new gltools-2-4 in the DIPOG-2.1 home directory call
tar xfvz gltools_tar/gltools-2-4.tar.gz
and change to this directory. Actualize Makefile. In particular set the correct environ-
ments variables CC. Then call
make
and a new library libgltools.a is generated. Note that gltools-2-4 and libgltools.a will be automatically generated if they do not exist. Similarly to package libgltools.a in gltools-2-4, we can install liblevmar.a in optim/levmar-2-2, where the source levmar-2-2.tar.gz is in optim/levmar-2-2.

If the executable programs do not exist, then generate them by using the file "makefile" located in the DIPOG-2.1 home directory. To do so, produce a header file MHEAD in the subdirectory MAKES of the DIPOG-2.1 home directory. Just copy one of the example files MHEAD_SGI, MHEAD_LINUX, or MHEAD_DEC to MHEAD and change the operating system, the paths, and the flags according to your computer system ${ }^{4}$ Then go to the home directory
cd DIPOG-2.1
and add the commands:
make clean
make
If the package is installed, then the programs can be used by different users simultaneously. To this end, each user should have a private DIPOG-2.1 home directory containing the first six subdirectories. These subdirectories together with all data and example files and with the correct links to the executables can be created automatically in the chosen new private home directory by calling the executable MAKEHOME. Note that MAKEHOME has just been created by "make" in the subdirectory MAKES of the installed package. Before a user runs the executables, he has to set the environment variable LD_LIBRARY_PATH such that the directory containing PARDISO is included. Setting the environment variable OMP_NUM_THREADS to a non-negative integer, he limits the number of used CPUs. The solver routine PARDISO runs parallel.

Most of the subsequent executables can be called without argument. Then one gets information on the necessary arguments. Usually, all input files contain a lot of explanations and informations. Indeed, each line beginning with the sign "\#" is a comment. Such lines can be added or deleted without any problem.

1.4 Structure of the package

The directory containing the README.txt file is the home directory of DIPOG-2.1. We suppose in this user guide that it is named DIPOG-2.1. There exist the following important subdirectories:

GEOMETRIES \rightarrow| | input files "name.inp" |
| ---: | :--- |
| | \quad (geometrical data of the gratings), |
| | executable SHOW |
| | (to visualize the input data "name.inp", exists only with |

[^2]openGL, argument:"name.inp")
executable TGUI
(graphical user interface to create input files "name.inp") executable GEN_INPUT
(to generate a general input file, no argument)
executable GEN_ECHELLEA
(to generate an input file for an echelle grating of type A, first argument: name without tag "inp" of file to be created, second argument: letter A,L,R,
third argument: depth/angle,
fourth argument: width of first part of layer, fifth argument: width of second part of layer)
executable GEN_ECHELLEB
(to generate an input file for an echelle grating of type B, first argument: name without tag "inp" of file to be created, second argument: angle, third argument: width of layer) executable GEN_ECHELLE
(to generate an input file for a general echelle grating, first argument: name without tag "inp" of file to be created, second argument: letter "A" for apex angle, "R" for right blaze angle, "L" for left blaze angle or "D" for depth, third argument: angle/depth, fourth argument: letter "A" for apex angle, "R" for right blaze angle, "L" for left blaze angle or "D" for depth, fifth argument: angle/depth, sixth argument: width of layer over left blaze side, seventh argument: width of layer over right blaze side) executable GEN_TRAPEZOID
(to generate an input file for a trapezoidal grating, first argument: name without tag "inp" of file to be created, second argument: angle, third argument: length of basis, fourth argument: number of material layers in trapezoid, next arguments: heights of material layers, last argument: height of coating layer) executable GEN_MTRAPEZOID
(to generate an input file for a grating with several trapezoids, one beside the other, first argument: name without tag "inp" of file to be created, second argument: name of input file "mtrapezoid.INP" containing data of grating) executable GEN_LAMELLAR (to generate an input file for a lamellar grating, first argument: name without tag "inp" of file to be created, second argument: name of input file "lamellar.INP" containing location and widths of layers) file lamellar.INP
(to define location and widths of layers in grating generated by GEN_LAMELLAR)
executable GEN_POLYGON
(to generate an input file for a grating with polygonal profile curve, first argument: name without tag "inp" of file to be created, second argument: name "file1" of file with nodes of polygon)
executable GEN_POLYGON2
(to generate an input file for a grating with polygonal profile curve and with coating, first argument: name without tag "inp" of file to be created, second argument: name "file1" of file with nodes of polygon, third argument: name "file2" of file with nodes of boundary of coated layer)
file file1
(to define profile line for a polygonal grating generated by GEN_POLYGON or GEN_POLYGON2)
file file2
(to define polygonal boundary line for the coated layer of polygonal grating generated by GEN_POLYGON2) executable GEN_PROFILE
(to generate an input file for a profile grating given by c-code, first argument: name without tag "inp" of file to be created, second argument: stepsize of polygonal approximation)
c-code file profile.c
(to define profile line for a profile grating of GEN_PROFILE) executable GEN_PROFILES
(to generate an input file for a grating given by many profile lines defined by c-code, first argument: name without tag "inp" of file to be created, second argument: stepsize of polygonal approximation)
c-code file profiles.c
(to define profile lines for a profile grating of GEN_PROFILES) executable GEN_PIN
(to generate an input file for a pin grating given by a profile line defined by c-code, first argument:
name of input file to be created, second argument: stepsize of polygonal approximation)
c-code file pin.c
(to define the profile line for a pin grating of GEN_PIN)
executable GEN_CPIN
(to generate an input file for a coated pin grating given by profile lines defined by c-code, first argument:
name of input file to be created, second argument:
stepsize of polygonal approximation)
c-code file cpin.c
(to define profile lines for a coated pin grating of GEN_CPIN) executable POINT_CLOUD_INP
(to generate an input file for an advanced grating with point clouds to enforce a mesh grading at the corner points, first argument: name without tag "inp" of file to be improved, second argument: number of cloud points at circular layer, third argument: number of layers, fourth argument:
threshold angle for corners with point clouds, output:
geometry input file with a "+" added to the name before the tag ".inp")
executable GEN_CPIN2
(to generate an input file for a coated pin grating of type 2 given by
profile lines defined by c-code, first argument:
name of input file to be created, second argument:
stepsize of polygonal approximation)
c-code file cpin2.c
(to define profile lines for a coated pin grating of GEN_CPIN2)
CLASSICAL \rightarrow input files "name.dat"
(non-geometrical data of the gratings),
data file "generalized.Dat"
(data for the GFEM),
executables FEM and GFEM
(for simple calculation, case of classical diffraction,
argument "name.dat"),
executables FEM_CHECK, GFEM_CHECK
(for check of input, exists only with openGL, argument "name.dat"),
executables FEM_PLOT and GFEM_PLOT
(for calculation with plots of resulting fields, case of classical diffraction, exists only with openGL or GNUPLOT, argument "name.dat"),
executable GFEM_MATLAB
(for calculation with plots of resulting fields, case of classical diffraction, plots in form of Matlab file, argument "name.dat"), executables FEM_FULLINFO and GFEM_FULLINFO
(for calculation with additional information, case of classical diffraction, argument "name.dat")
executable GFEM_MOVIE
(creates movie of z -coordinate of fields depending on time, case of classical diffraction, movie in form of Matlab file, argument "name.dat"),

CONICAL	\rightarrow input files "name.dat" (non-geometrical data of the gratings), data file "conical.Dat" (data for the GFEM), executables FEM and GFEM (for simple calculation, case of conical diffraction, argument "name.dat"), executables FEM_CHECK, GFEM_CHECK (for check of input, case of conical diffraction, exists only with openGL, argument "name.dat"), executables FEM_PLOT and GFEM_PLOT (for calculation with plots of resulting fields, case of conical diffraction, exists only with openGL or GNUPLOT, argument "name.dat"), executables FEM_FULLINFO and GFEM_FULLINFO (for calculation with additional information, case of conical diffraction, argument "name.dat")
OPTIM	\rightarrow input files "name.dat" (data of the gratings and optimization), data file "conical.Dat" (data for the generalized finite elements), executable OPTIMIZE (using various flags, this does all the work: check data, check gradients, plot gradients, optimize grating, plot solution of optimization) executable CONVTEST (runs a convergence tests with initial solution set to corners of box domain defining the constraints, input file is the same as for OPTIMIZE, but the initial solution of input file must be the exact solution) executable OPTIM20PTIM (extracts new data input file for OPTIMIZE from old input file with reduced number of data in objective functional) executable SHOWMEAS (creates plots of data used in objective functional, input is data input file for OPTIMIZE) executable CLASSIC2OPTIM (extracts test data input file for OPTIMIZE from input and result file of GFEM in CLASSICAL) executable SENSITIVITY (extracts optimal sets of data for quadratic objective functional in OPTIMIZE, input files are the data file for OPTIMIZE and files with Jacobians generated by OPTIMIZE) executable OPTIM2JACOBIAN (alternative executable to produce files with Jacobians

$\left.\begin{array}{ll} & \begin{array}{l}\text { for SENSITIVITY) } \\ \\ \\ \text { executable NOISETEST } \\ \\ \text { (executable to test the dependency of the optimization } \\ \\ \\ \text { result on noisy data) }\end{array} \\ \rightarrow & \text { input files "name.dat" } \\ & \text { (non-geometrical data of the gratings, like in CLASSICAL } \\ & \text { and CONICAL), } \\ & \text { data files "generlized.Dat" and "conical.Dat" } \\ & \text { (data for the generalized finite elements, like in CLASSICAL }\end{array}\right\}$

There exist subdirectories with technical files:
grid_tri $\quad \rightarrow$ programs and input files for grating and grid data
dpogtr \rightarrow programs and input file for the FEM computation in the
classical case

gdpogtr	\rightarrow programs and input file for the GFEM computation in the classical case
conical	\rightarrow programs and input file for the FEM computation in the conical case
conical2	\rightarrow programs and input files for the GFEM computation in the conical case
optim	\rightarrow programs and input files for the optimization with OPTIMIZATION in the directory OPTIM
dipog-2.1-gui	\rightarrow programs, object files, and input files for the graphical user interface program DIPOG-2.1-GUI in the directory GUI
refr_ind_data	\rightarrow data files for the refractive indices
results	\rightarrow plot programs

Possibly, there exist subdirectories to install necessary packages ${ }^{5}$.
dipog-1.3 \rightarrow necessary source files from previous version of DIPOG-1.3, in dipog- $1.3 / \mathrm{gsl} / \mathrm{src}$: files to install libhur.a
tgui $\quad \rightarrow$ necessary sources to create TGUI in the directory GEOMETRIES
gltools_tar $\quad \rightarrow$ necessary source files for Fuhrmann's package GLTOOLS-2.4, this produces subdirectory gltools-2-4 during installation
triangl $]^{6} \quad \rightarrow$ necessary source files for Shewchuk's package TRIANGLE-1.4
In case of a simultaneous use of the package, each user has its own home directory containing the six subdirectories GEOMETRIES, CLASSICAL, CONICAL, OPTIM, GUI, and RESULTS. The subdirectories contain the same example and data files as described above for the directories of the package. However, the executables are replaced by symbolic links to the executables of the package.

1.5 Environment variables

The following environment variables are mandatory:
LD_LIBRARY_PATH: This search path for loading program libraries must contain the address of the solver PARDISO (cf. Section 1.3).
OMP_NUM_THREADS: This is to be set to the number of CPUs which should be used for solving linear systems of equations by PARDISO (cf. Section 1.3).
Additionally, the following environment variables can be set:
ADD_STRIPS: If this is set to "yes" and if an optimization in the class of "bridges composed of trapezoids under light in the EUV range", is performed, then, automatically, a strip beneath the bridge is included into the FEM domain (cf. Section 10.2.7).
BND_MESH_SIZE: If this is set to a positive number and if an optimization is per-

[^3]formed, then the bound for the mesh size of the FEM partition at level one is set to this number (cf. Section 10.2.1).
BND_n_LFEM: If this is set to a positive integer, then, for the non-local boundary value condition, the number of discretization points in each interval of the uniform partition of the upper and lower boundary line is set to this value (cf. Section (6).
CHOOSE_PMETHOD: If this is set to "yes", then, like in the p-method of the FEM algorithm with $p=n_{\text {DOF }}+1$ and with elimination of interior degrees of freedom, the local trial functions are the solution of a $[3 p] \times[3 p]$ system of equations (cf. Section 6).
COND_NMB_IT: If this is set to a positive integer, if the environment variable
GET_COND_NUMB is set, and if one of the executables GFEM, GFEM_FULLINFO, or
GFEM_PLOT from the directory DIPOG-2.1/CLASSICAL is used, then this integer will be chosen as the number of iterations to improve the minimal eigenvalue in, the estimate of the condition number of the linear system of equations. The standard value is 10 .
EFF_PLO: If this is set to "yes", then the efficiencies for grating corresponding to the approximate solution are plotted and compared to the values prescribed in the objective functional.
EFFRES: If this is set, then the efficiencies for the grating corresponding to the optimal solution are added to the result file "name.res".
EPS_OUT_VAL: On screen and in result files only those numbers (efficiencies, energies, Rayleigh coefficients, phase shifts) are printed which are greater than $5 \cdot 10^{-9} \%$. However, this threshold $5 \cdot 10^{-9}$ can be changed to any positive number setting the environment variable EPS_OUT_VAL. Moreover, any value independent of its size is printed if EPS_OUT_VAL equals minus one.
EUV_SWA_90: Performing an optimization in the class of EUV bridges (i.e. integer parameter i_geom_param $[1]=6$), the user can restrict the search to bridges with sidewall angle less or equal to 90° by setting EUV_SWA_90 to "yes". This changes the meaning of the parameters (cf. Section 10.2.7).
GET_COND_NUMB: If this is set, then the executables GFEM, GFEM_FULLINFO, and GFEM_PLOT in the directory DIPOG-2.1/CLASSICAL will print estimates for the condition numbers instead of the memory requirements for the solver.
H_PROFILE: If this is set, then the mesh size of the initial partition (level one) is set to this value.
MESH_SIZE_FACT: If this is set to a positive number and if geometry is generated by the code word "polygon", then the lower bound 0.1 for the mesh size of the triangles is set to the product of 0.1 and this factor.
MIN_ANG_TRI: If this is set to a positive number and if no geometry input file "name.inp" is used, then the lower bound for the minimal angle of the triangles of the FEM partition is set to this number.
NMB_OF_DATA: Performing an optimization, the objective functional is allowed to depend on 999 values of efficiencies/phase shifts/energies. If this number is not sufficient, then the user can enlarge it setting the environment variable to the required number (cf. Section 10.1.3).

POLYGON_STRETCH_FACT: If this is set to a positive number and if the geometry is given by the code word "polygon", then the vertical components of the knots of the polygon are stretched by multiplying with the number of this environmental variable.
POLYGON_SPEC_MS: If this is set to a positive number and if the geometry is given by the code word "polygon", then this will be the mesh size of the initial mesh at level one.
POLYGON_SPEC_AW: If this is set to a positive number and if the geometry is given by the code word "polygon", then the width of the additional layers above and below will be set to this value.
STE_DIF_FOR: If this is set to a positive number, then the standard step size $2 \cdot 10^{-7}$ in the difference formula for derivatives w.r.t. the parameters of the multi-layer system is changed to this value (cf. Section 10.2.7).
TMPDIR: If this is set to the name of an existing directory, then the temporary directory, used for auxiliary files in the programs, is changed from the directory prescribed during installation to the new one with the given name.
WI_GRA_LAY: Suppose an optimization of an EUV bridge without the sidewall angle restriction (i.e. with EUV_SWA_90="no") is required, where the bridge is located strictly in the middle of a period and where no additional layer is generated beside the bridge. If the electro-magnetic field changes fastly in the vicinity of the interface between cover material and grating, then a grading of the FEM grid towards this interface can improve the approximation essentially. This grading can be enforced by introducing a small "layer" beside the interface filled with cover material. The diameters of the triangles of the FEM grid will change smoothly from the maximal value to the width of this small layer. The width of this small layer is the number defined by the environment variable WI_GRA_LAY.

2 Diffraction Problems for Gratings

2.1 The classical TE problem

Consider an ideal optical grating (cf. the cross section in Figure 1). We choose the coordinate system such that the z-axis shows in the direction of the grooves and that the y-axis is orthogonal to the plane of the grooves. The width of the grooves in x direction is the periodicity d of the grating. The refractive index of the cover material is \mathbf{n}^{+}, that of the substrate under the grating surface structure \mathbf{n}^{-}. The grating part consists of several materials with indices \mathbf{n}_{i}. Above and below the grating structure there may exist some coated layers with different refractive index (cf. the indices $\mathbf{n}^{u c}$ and $\mathbf{n}^{l c}$ for one upper and one lower coating layer in Figure 11. We suppose that a plane wave is incident from above with a direction located in the $x-y$ plane (i.e. in the plane perpendicular to the grooves) and under the incident angle θ. The wave length of the light in air is λ and we consider the case of TE polarization where the electric field vector is parallel to the grooves, i.e. it shows in the z direction. Hence, if μ_{0} is the magnetic permeability of vacuum and c the
speed of light, then the transverse z coordinate of the electric field is given as

$$
\begin{align*}
& \mathcal{E}_{z}^{\text {incident }}(x, y, z, t)=E_{z}^{\text {incident }}(x, y, z) \exp (-\mathbf{i} \omega t), \quad \omega=\frac{2 \pi c}{\lambda} \tag{2.1}\\
& E_{z}^{\text {incident }}(x, y, z)=\frac{1}{\sqrt{\mathbf{n}^{+}}} \exp \left(\mathbf{i} k^{+} \sin \theta x-\mathbf{i} k^{+} \cos \theta y\right), \quad k^{+}=\omega \sqrt{\mu_{0} \varepsilon_{0}} \mathbf{n}^{+}
\end{align*}
$$

The light is diffracted by the grating structure. Beside some evanescent part the diffracted light splits into a finite number of reflected and transmitted TE polarized plane wave modes, the propagation directions of which are independent of the grating geometry and the grating materials. The problem is to determine the amplitude and the phase of the reflected and transmitted modes. Note that the normalization factor $1 / \sqrt{\mathbf{n}^{+}}$in the second line of (2.1) has been introduced to obtain an incident light wave with a fixed intensity (length of Poynting vector) independent of the cover material. If the cover material is air, then $\mathbf{n}^{+}=1$ and the wave is normalized such that the amplitude of the electric field vector is of unit length. Of course the values of the efficiencies and phase shifts of the reflected and transmitted plane wave modes are independent of this normalization factor. The subsequent Rayleigh coefficients, however, depend on this scaling.

Using Maxwell's equations, it can be shown that the transverse component E_{z} satisfies the scalar Helmholtz equation $\left\{\triangle+k^{2} I\right\} E_{z}=0$ in any domain of the cross section plane with constant material as well as some transmission conditions on the interfaces between materials of different refractive indices. The wave number k is equal to ω / c times the refractive index of the material. Thus we can determine E_{z} by the standard method for elliptic differential equations by the Fem. Using the periodicity of the problem and standard coupling techniques with the boundary element method, the domain of numerical computation can be reduced to a rectangle Ω (cf. Figure 11). This covers one period of the grating and is bounded by the horizontal lines $\Gamma^{ \pm}$located inside the last upper and first lower coating layer (counted from above to below) resp. in the cover material and substrate material for gratings without coatings. ${ }^{7}$

Above resp. beneath the grating structure (including all the layers) the component E_{z} admits an expansion into the Rayleigh series of the form

$$
\begin{align*}
E_{z}(x, y)= & \sum_{n=-\infty}^{\infty} A_{n}^{+} \exp \left(+\mathbf{i} \beta_{n}^{+} y\right) \exp \left(\mathbf{i} \alpha_{n} x\right)+A_{0}^{i n c} \exp \left(-\mathbf{i} \beta_{0}^{+} y\right) \exp (\mathbf{i} \alpha x), \tag{2.2}\\
E_{z}(x, y)= & \sum_{n=-\infty}^{\infty} A_{n}^{-} \exp \left(-\mathbf{i} \beta_{n}^{-} y\right) \exp \left(\mathbf{i} \alpha_{n} x\right) \tag{2.3}\\
& \beta_{n}^{ \pm}=\sqrt{\left[k^{ \pm}\right]^{2}-\left[\alpha_{n}\right]^{2}}, \\
& k^{ \pm}=\frac{\omega \mathbf{n}^{ \pm}}{c}, \quad A_{0}^{i n c}=\frac{1}{\sqrt{\mathbf{n}^{+}}} \\
& \alpha=k^{+} \sin \theta,
\end{align*}
$$

Here d is the period of the grating and the complex constants $A_{n}^{ \pm}$are the so-called Rayleigh

[^4]

Figure 1: Cross section of grating.
coefficients. The interesting Rayleigh coefficients are those with $n \in \mathcal{U}^{ \pm}$,

$$
\mathcal{U}^{ \pm}= \begin{cases}\left\{n \in \mathbb{Z}:\left|\alpha_{n}\right| \leq k^{ \pm}\right\} & \text {if } \Im m k^{ \pm}=0 \\ \emptyset & \text { if } \Im m k^{ \pm}>0\end{cases}
$$

Indeed, these coefficients $A_{n}^{ \pm}$describe magnitude and phase shift of the propagating plane waves. More precisely, the modulus $\left|A_{n}^{ \pm}\right|$is the amplitude of the nth reflected resp. transmitted wave mode and $\arg \left[A_{n}^{ \pm} /\left|A_{n}^{ \pm}\right|\right]$the phase shift. The terms with $n \notin \mathcal{U}^{ \pm}$lead to evanescent waves, only. The optical efficiencies of the grating are defined by

$$
\begin{equation*}
e_{n}^{ \pm}=\frac{\beta_{n}^{ \pm}}{\beta_{0}^{+}} \frac{\left|A_{n}^{ \pm}\right|^{2}}{\left|A_{0}^{\text {inc }}\right|^{2}}, \quad(n, \pm) \in\left\{(n,+): n \in \mathcal{U}^{+}\right\} \cup\left\{(n,-): n \in \mathcal{U}^{-}\right\} \tag{2.4}
\end{equation*}
$$

which is the ratio of energy of the incident wave entailed to the nth propagating mode. Note that these efficiencies of propagating modes exist for non-absorbing materials, i.e. for $\Im m k^{ \pm}=0$. If the transverse component E_{z} has been computed approximately, then the Rayleigh coefficients can be obtained by a discretized Fourier series expansion applied to the Fem solution restricted to $\Gamma^{ \pm}$(cf. (2.2) and (2.3)). Formula (2.4) yields the efficiencies.

2.2 The classical TM problem

The case of Tm polarization is quite similar to TE. Indeed, this time the vector of the magnetic field \mathcal{H} shows in the direction of the grooves, i.e. in the direction of the z axis.

Analogously to formula (2.1) given in the last subsection for the incident electric field, we get

$$
\begin{align*}
& \mathcal{H}_{z}^{\text {incident }}(x, y, z, t)=H_{z}^{\text {incident }}(x, y, z) \exp (-\mathbf{i} \omega t), \tag{2.5}\\
& H_{z}^{\text {incident }}(x, y, z)=\frac{\sqrt{\varepsilon_{0}} \sqrt{\mathbf{n}^{+}}}{\sqrt{\mu_{0}}} \exp \left(\mathbf{i} k^{+} \sin \theta x-\mathbf{i} k^{+} \cos \theta y\right), \quad k^{+}=\omega \sqrt{\mu_{0} \varepsilon_{0}} \mathbf{n}^{+}
\end{align*}
$$

for the z component of the incident magnetic field $\mathcal{H}_{z}^{\text {incident }}$. Note that the additional factor $\sqrt{\varepsilon_{0}} \sqrt{\mathbf{n}^{+}} / \sqrt{\mu_{0}}$ in the definition of $H_{z}^{\text {incident }}$ guarantees that the incident light wave has a fixed intensity (length of Poynting vector) independent of the cover material. If the cover material is air, then the wave is normalized such that the amplitude of the electric field vector is of unit length. Like in the TE case, the values of the efficiencies and phase shifts of the reflected and transmitted plane wave modes are independent of this normalization factor. Only the subsequent Rayleigh coefficients depend on this scaling.

The z component of the complete field H_{z} satisfies the scalar Helmholtz equation $\left\{\triangle+k^{2} I\right\} H_{z}=0$ in any domain of the cross section plane with constant materials. However, the transmission conditions on the interfaces are different. We can solve the transmission problem of the Helmholtz equation by Fem. Again we have a finite number of transmitted and reflected modes and the Rayleigh expansions hold for E_{z} replaced by H_{z}. More precisely, the Rayleigh coefficients are the $B_{n}^{ \pm}$of the expansions

$$
\begin{align*}
\frac{\sqrt{\mu_{0}}}{\sqrt{\varepsilon_{0}}} H_{z}(x, y)= & \sum_{n=-\infty}^{\infty} B_{n}^{+} \exp \left(+\mathbf{i} \beta_{n}^{+} y\right) \exp \left(\mathbf{i} \alpha_{n} x\right)+B_{0}^{i n c} \exp \left(-\mathbf{i} \beta_{0}^{+} y\right) \exp (\mathbf{i} \alpha x) \tag{2.6}\\
\frac{\sqrt{\mu_{0}}}{\sqrt{\varepsilon_{0}}} H_{z}(x, y)= & \sum_{n=-\infty}^{\infty} B_{n}^{-} \exp \left(-\mathbf{i} \beta_{n}^{-} y\right) \exp \left(\mathbf{i} \alpha_{n} x\right) \tag{2.7}\\
& B_{0}^{i n c}=\sqrt{\mathbf{n}^{+}}
\end{align*}
$$

The objective is to compute the Rayleigh coefficients. They result from the Fem solution of the new transmission problems and from the discretization of the Fourier series expansion (2.6) and (2.7). The efficiencies (cf. (2.4)) are computed by

$$
\begin{equation*}
e_{n}^{ \pm}=\frac{\beta_{n}^{ \pm}}{\beta_{0}^{+}} \frac{\left[k^{+}\right]^{2}}{\left[k^{ \pm}\right]^{2}} \frac{\left|B_{n}^{ \pm}\right|^{2}}{\left|B_{0}^{\text {inc }}\right|^{2}}, \quad(n, \pm) \in\left\{(n,+): n \in \mathcal{U}^{+}\right\} \cup\left\{(n,-): n \in \mathcal{U}^{-}\right\} . \tag{2.8}
\end{equation*}
$$

Finally, we note that the case of an incident wave propagating in a direction of the $x-y$ plane together with an arbitrary polarization is the superposition of TE and Tm polarization.

2.3 Conical problems

The essential difference between the classical diffraction of the last two subsections and the conical one is that the direction of the incident light wave is oblique, i.e. it is not restricted to the $x-y$ plane. Whereas in the classical case the directions of the finitely many reflected and transmitted plane wave modes remain located in the $x-y$ plane, now they are located on a cone in the $x-y-z$ space. The FEM approach is analogous to the
classical case. However, instead of a transmission problem for a scalar Helmholtz equation, Maxwell's system reduces to a coupled system of two scalar Helmholtz equations for the two transverse components E_{z} and H_{z} of the electric and magnetic field. Consequently, we have two Rayleigh expansions and two sequences of Rayleigh coefficients.

More precisely, skipping the time harmonic factor, we have an incident wave of the form

$$
\begin{aligned}
& E^{\text {incident }}(x, y, z)=E^{i n c} \exp (\mathbf{i}[\alpha x-\beta y+\gamma z]) \\
& H^{i n c i d e n t}(x, y, z)=H^{i n c} \exp (\mathbf{i}[\alpha x-\beta y+\gamma z])
\end{aligned}
$$

with constant vectors $E^{i n c}$ and $H^{i n c}$ and a wave vector $\vec{k}=(\alpha,-\beta, \gamma)$ such that the wave number k^{+}is the modulus of \vec{k} and the direction of the incoming plane wave is \vec{k} / k^{+}. Here k^{+}is the same wave number as in the classical TE and TM case. The direction \vec{k} / k^{+}must be prescribed by the user of DIPOG-2.1. This can be characterized by two parameters, namely by the angles θ_{i} and ϕ_{i} which are the spherical coordinates of (α, β, γ). We emphasize that θ_{i} and ϕ_{i} are the spherical coordinates of (α, β, γ) and not those of the normalized wave vector $\vec{k} / k^{+}=(\alpha,-\beta, \gamma) .{ }^{8}$ Contrary to this, the angles θ and ϕ of the reflected and transmitted plane wave modes are exactly the spherical coordinates of the normalized wave vectors. Unfortunately, this traditional notation is a little bit confusing.

Either we use the spherical coordinate system with the $x-y$ plane as basis plane ($x y$ system) or the spherical coordinates based on the $x-z$ plane ($x z$ system). In the $x y$ system we define the direction $D_{x y}=(\alpha, \beta, \gamma)$ as (cf. Figure 2):

$$
D_{x y}=\left(\sin \theta_{x y} \cos \phi_{x y}, \cos \theta_{x y} \cos \phi_{x y}, \sin \phi_{x y}\right)
$$

Here $\theta_{x y} \in\left(-90^{\circ}, 90^{\circ}\right)$ is the angle of inclination of the plane, containing the direction $D_{x y}$ and the z axis, from the $y-z$ plane. Angle $\phi_{x y} \in\left(-90^{\circ}, 90^{\circ}\right)$ is the angle of direction $D_{x y}$ inside this inclined plane, i.e. the angle between $D_{x y}$ and the orthogonal projection of $D_{x y}$ to the $x-y$ plane.

For the $x z$ system the direction $D_{x z}=(\alpha, \beta, \gamma)$ is given by (cf. Figure 3):

$$
D_{x z}=\left(\sin \theta_{x z} \cos \phi_{x z}, \cos \theta_{x z}, \sin \theta_{x z} \sin \phi_{x z}\right)
$$

Here $\phi_{x z}$ is the angle of inclination of the plane, containing the direction $D_{x z}$ and the y axis, from the $x-y$ plane. Angle $\theta_{x z} \in\left[0,90^{\circ}\right)$ is the angle of direction $D_{x z}$ inside this inclined plane, i.e. the angle between $D_{x z}$ and the y-axis. To change between the $x y$ system and the $x z$ system the following formulae are useful

$$
\begin{aligned}
\phi_{x y} & =\arcsin \left(\sin \theta_{x z} \sin \phi_{x z}\right), \quad \theta_{x y}=\arcsin \left(\frac{\sin \theta_{x z} \cos \phi_{x z}}{\sqrt{1-\sin ^{2} \theta_{x z} \sin ^{2} \phi_{x z}}}\right) \\
\theta_{x z} & =\arccos \left(\cos \theta_{x y} \cos \phi_{x y}\right)
\end{aligned}
$$

[^5]

Figure 2: Coordinate system based on $x-y$ plane.

$$
\phi_{x z}= \begin{cases}\arcsin \left(\frac{\sin \phi_{x y}}{\left.\sqrt{1-\cos ^{2} \theta_{x y} \cos ^{2} \phi_{x y}}\right)}\right. & \text { if } \theta_{x y}>0 \\ \pm \pi-\arcsin \left(\frac{\sin \phi_{x y}}{\sqrt{1-\cos ^{2} \theta_{x y} \cos ^{2} \phi_{x y}}}\right) & \text { else }\end{cases}
$$

Though the user can choose his favourite spherical coordinate system for the input of the direction of incidence, the output of the directions for the reflected and transmitted modes are presented in the $x z$ system.

Clearly, the fields $E^{i n c}$ and $H^{i n c}$ must be orthogonal. Moreover, the two vectors are uniquely determined by the normalization condition, by Maxwell's equation, and by the polarization type prescribing the polarization direction. Here the normalization condition

$$
\mathbf{n}^{+}\left[E_{z}^{i n c}\right]^{2}+\frac{1}{\mathbf{n}^{+}}\left[B_{z}^{i n c}\right]^{2}=\frac{\left[k^{+}\right]^{2}-\gamma^{2}}{\left[k^{+}\right]^{2}}, \quad B_{z}^{i n c}=\frac{\sqrt{\mu_{0}}}{\sqrt{\varepsilon_{0}}} H_{z}^{i n c}
$$

means that the incident light wave has a fixed intensity (length of Poynting vector) independent of the cover material. If the cover material is air, then the wave is normalized such that the amplitude of the electric field vector is of unit length. The values of the efficiencies and phase shifts of the reflected and transmitted plane wave modes are not effected by the normalization factor. Only the subsequent Rayleigh coefficients depend on this scaling.

The polarization type must be prescribed by the user of DIPOG-2.1. There are three possibilities. The first is to choose Te polarization with the electric field vector $E^{i n c}$ pointing in the direction perpendicular to the wave vector (incidence direction) and to the y axis. The second is Tm polarization with the magnetic field vector $H^{i n c}$ pointing in the direction perpendicular to the wave vector (incidence direction) and to the y axis. Note that the direction perpendicular to the wave vector and to the y axis is, by definition, the z axis if wave vector and y axis should be collinear. The third choice is to prescribe the angle ψ (cf. Figure 4) enclosed by the x axis and by the projection of the electric field vector $E^{i n c}$ to the $x-z$ plane.

Figure 3: Coordinate system based on $x-z$ plane.

Fixing the incident field, the resulting total field is determined and can be computed by Fem. It remains to describe the output data of DIPOG-2.1. The Rayleigh expansions above resp. below the grating take the form

$$
\begin{aligned}
E(x, y, z)= & E^{i n c} \exp (\mathbf{i}[\alpha x-\beta y+\gamma z])+\sum_{n \in \mathbb{Z}} \vec{A}_{n}^{+} \exp \left(\mathbf{i}\left[\alpha_{n} x+\beta_{n}^{+} y+\gamma z\right]\right) \\
H(x, y, z)= & H^{i n c} \exp (\mathbf{i}[\alpha x-\beta y+\gamma z])+\sum_{n \in \mathbb{Z}} \vec{C}_{n}^{+} \exp \left(\mathbf{i}\left[\alpha_{n} x+\beta_{n}^{+} y+\gamma z\right]\right) \\
& \alpha_{n}=\alpha+\frac{2 \pi}{d} n, \beta_{n}^{ \pm}=\sqrt{\left[k^{ \pm}\right]^{2}-\left[\alpha_{n}\right]^{2}-\gamma^{2}}, \Re \mathrm{e} \beta_{n}^{ \pm}>0, \Im \mathrm{~m} \beta_{n}^{ \pm} \geq 0
\end{aligned}
$$

resp.

$$
\begin{aligned}
E(x, y, z) & =\sum_{n \in \mathbb{Z}} \vec{A}_{n}^{-} \exp \left(\mathbf{i}\left[\alpha_{n} x-\beta_{n}^{-} y+\gamma z\right]\right) \\
H(x, y, z) & =\sum_{n \in \mathbb{Z}} \vec{C}_{n}^{-} \exp \left(\mathbf{i}\left[\alpha_{n} x-\beta_{n}^{-} y+\gamma z\right]\right) .
\end{aligned}
$$

Now there are three variants of output data. The first computes the third components, i.e. the z components of the Rayleigh coefficients

$$
p_{n}^{ \pm}=\left[\vec{A}_{n}^{ \pm}\right]_{z}, \quad q_{n}^{ \pm}=\left[\vec{B}_{n}^{ \pm}\right]_{z}, \quad \vec{B}_{n}^{ \pm}=\frac{\sqrt{\mu_{0}}}{\sqrt{\varepsilon_{0}}} \vec{C}_{n}^{ \pm}
$$

and the efficiencies

$$
\begin{align*}
e_{n}^{+} & =\frac{\beta_{n}^{+}}{\beta} \frac{\left[k^{+}\right]^{2}}{\left[k^{+}\right]^{2}-\gamma^{2}}\left[\mathbf{n}^{+}\left|p_{n}^{+}\right|^{2}+\frac{1}{\mathbf{n}^{+}}\left|q_{n}^{+}\right|^{2}\right] \tag{2.9}\\
e_{n}^{-} & =\frac{\beta_{n}^{-}}{\beta} \frac{1}{\left[k^{-}\right]^{2}-\gamma^{2}}\left[\mathbf{n}^{+}\left[k^{-}\right]^{2}\left|p_{n}^{-}\right|^{2}+\frac{1}{\mathbf{n}^{+}}\left[k^{+}\right]^{2}\left|q_{n}^{-}\right|^{2}\right]
\end{align*}
$$

Figure 4: Coordinate system based on $x-z$ plane.
of the nth reflected resp. transmitted wave mode. The second output variant computes the Te and Tm part of the total wave, i.e. if $\mathbf{s}_{n}^{ \pm}$stands for the direction perpendicular to the y axis and to the direction of propagation of the nth reflected resp. transmitted plane wave mode $\left(\mathbf{s}_{n}^{ \pm}=\left(\alpha_{n}, \pm \beta_{n}^{ \pm}, \gamma\right) \times(0,1,0) /\left|\left(\alpha_{n}, \pm \beta_{n}^{ \pm}, \gamma\right) \times(0,1,0)\right|\right)$, then the output coefficients are the scalar products

$$
\begin{aligned}
\left\langle\vec{A}_{n}^{ \pm}, \mathbf{s}_{n}^{ \pm}\right\rangle & =\frac{a p_{n}^{ \pm}+b c q_{n}^{ \pm} / \mathbf{n}^{ \pm}}{\left(1-c^{2}\right) \sqrt{a^{2}+c^{2}}} \\
\left\langle\vec{B}_{n}^{ \pm}, \mathbf{s}_{n}^{ \pm}\right\rangle & =\frac{a q_{n}^{ \pm}-b c p_{n}^{ \pm} \mathbf{n}^{ \pm}}{\left(1-c^{2}\right) \sqrt{a^{2}+c^{2}}}, \quad(a, b, c)=\frac{\left(\alpha_{n}, \pm \beta_{n}^{ \pm}, \gamma\right)}{\sqrt{\alpha_{n}^{2}+\left[\beta_{n}^{ \pm}\right]^{2}+\gamma^{2}}}
\end{aligned}
$$

The efficiencies of the second output are the total efficiencies $e_{n}^{ \pm}$of (2.9) and the efficiencies corresponding to the Te and Tm parts

$$
\frac{\beta_{n}^{ \pm}}{\beta}\left|\left\langle\vec{A}_{n}^{ \pm}, \mathbf{s}_{n}^{ \pm}\right\rangle\right|^{2} \mathbf{n}^{+}, \quad \frac{\beta_{n}^{ \pm}}{\beta} \frac{\mathbf{n}^{+}}{\left[\mathbf{n}^{ \pm}\right]^{2}}\left|\left\langle\vec{B}_{n}^{ \pm}, \mathbf{s}_{n}^{ \pm}\right\rangle\right|^{2}
$$

i.e. the efficiencies of the projection of the nth reflected resp. transmitted wave mode to the component with electric resp. magnetic field polarized in $\mathbf{s}_{n}^{ \pm}$direction. Finally, the third variant computes the S - and P -parts of the electric field, i.e. the components of the Jones vector. If $\mathbf{s}_{n}^{ \pm}$is defined as above and if $\mathbf{p}_{n}^{ \pm}$is the direction orthogonal to $\mathbf{s}_{n}^{ \pm}$ and the direction of propagation of the nth reflected resp. transmitted plane wave mode $\left(\mathbf{p}_{n}^{ \pm}=\left(\alpha_{n}, \pm \beta_{n}^{ \pm}, \gamma\right) \times \mathbf{s}_{n}^{ \pm} /\left|\left(\alpha_{n}, \pm \beta_{n}^{ \pm}, \gamma\right) \times \mathbf{s}_{n}^{ \pm}\right|\right)$, then the S- and P-parts of the Rayleigh coefficients are

$$
\left\langle\vec{A}_{n}^{ \pm}, \mathbf{s}_{n}^{ \pm}\right\rangle=\frac{a p_{n}^{ \pm}+b c q_{n}^{ \pm} / \mathbf{n}^{ \pm}}{\left(1-c^{2}\right) \sqrt{a^{2}+c^{2}}}
$$

$$
\left\langle\vec{A}_{n}^{ \pm}, \mathbf{p}_{n}^{ \pm}\right\rangle=-\frac{1}{\mathbf{n}^{ \pm}}\left\langle\vec{B}_{n}^{ \pm}, \mathbf{s}_{n}^{ \pm}\right\rangle=\frac{b c p_{n}^{ \pm}-a q_{n}^{ \pm} / \mathbf{n}^{ \pm}}{\left(1-c^{2}\right) \sqrt{a^{2}+c^{2}}} .
$$

The efficiencies of the third output are the total efficiencies $e_{n}^{ \pm}$of (2.9) and the efficiencies corresponding to the S- and P-parts, i.e. the efficiencies of the projection of the nth reflected resp. transmitted wave mode to the component with electric field polarized in $\mathbf{s}_{n}^{ \pm}$resp. $\mathbf{p}_{n}^{ \pm}$ direction

$$
\frac{\beta_{n}^{ \pm}}{\beta}\left|\left\langle\vec{A}_{n}^{ \pm}, \mathbf{s}_{n}^{ \pm}\right\rangle\right|^{2} \mathbf{n}^{+}, \quad \frac{\beta_{n}^{ \pm}}{\beta}\left|\left\langle\vec{A}_{n}^{ \pm}, \mathbf{p}_{n}^{ \pm}\right\rangle\right|^{2} \mathbf{n}^{+} .
$$

2.4 References

For more details, see the following publications and the references therein:

- G. Bao, D.C. Dobson, and J.A. Cox: Mathematical studies in rigorous grating theory, J. Opt. Soc. Amer. A 12, pp. 1029-1042 (1995).
- J. Elschner and G. Schmidt: Diffraction in periodic structures and optimal design of binary gratings I: Direct problems and gradient formulas, Math. Meth. Appl. Sci. 21, pp. 1297-1342 (1998).
- J. Elschner and G. Schmidt: The numerical solution of optimal design problems for binary gratings, J. Comput. Physics 146, pp. 603-626 (1998).
- J. Elschner, R. Hinder and G. Schmidt: Finite element solution of conical diffraction problems, Adv. Comput. Math. 16, pp. 139-156 (2002).
- J. Elschner, R. Hinder and G. Schmidt: Direct and inverse problems for Diffractive Structures- Optimization of binary gratings, In: W. Jäger, H.J. Krebs (eds.), Mathematics, key technology for the future: joint projects between universities and industry, Springer Verlag Berlin Heidelberg, 2003, pp. 293-304.
- R. Petit (ed.): Electromagnetic Theory of Gratings, Springer, Berlin, 1980.
- H.P. Urbach: Convergence of the Galerkin method for two-dimensional electromagnetic problems, SIAM J. Numer. Anal. 28, pp. 697-710 (1991).
For generalized Fem methods applied to the Helmholtz equation (modified and described in the subsequent Sections 6 and 7), we refer to:
- I. Babuška, F. Ihlenburg, E. Paik, and S. Sauter: A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comp. Methods Appl. Mech. Eng. 128, pp. 325-359 (1995).
- O. Cessenat and B. Depres: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM J. Numer. Anal. 35, 255-299 (1998).
- F. Ihlenburg: Finite element analysis of acoustic scattering, Springer Verlag New-York Berlin Heidelberg, Applied Mathematical Sciences 132, 1998.
- J.M. Melenk and I. Babuška: The partition of unity method: Basic theory and applications, Comp. Methods Appl. Mech. Eng. 139, pp. 289-314 (1998).
For the solver of the linear system of equations, we refer to:
- O. Schenk, K. Gärtner, and W. Fichtner: Efficient Sparse LU Factorization with LeftRight Looking Strategy on Shared Memory Multiprocessors, BIT, Vol.40, 158-176 (2000).
- O. Schenk and K. Gärtner: Solving unsymmetric sparse systems of linear equations with PARDISO, Journal of Future Generation Computer Systems 20, pp. 475-487, 2004.
- O. Schenk and K. Gärtner: On fast factorization pivoting methods for symmetric indefinite systems, Elec. Trans. Numer. Anal. 23, pp. 158-179, 2006.

3 Geometry Input

3.1 Geometrical data in input file "name.dat"

Computation starts with the change of the working directory to directory CLASSICAL (for classical diffraction) or to CONICAL (conical diffraction) and by calling an executable (e.g. FEM or GFEM) followed by the data file "name.dat" as argument of the executable. Here "name.dat" contains all information on the grating and the light.
cd DIPOG-2.1/CLASSICAL
FEM name.dat
or
cd DIPOG-2.1/CONICAL
GFEM name.dat
On the screen there will appear the output data of the computation and the name of an additional output file, where the output data is stored.

Mainly, the geometrical information of the input data in "name.dat" is fixed by the lines:

```
# Length factor of additional shift of grating geometry.
# This is shift into the x-direction.
# This is length of shift relative to period.
    0.
# Stretching factor for grating in y-direction:
    1.
# Length of additional shift of grating in micro meter.
# This is shift in y-direction.
    0.
# Period of grating in micro meter:
    1.
# Grating data:
    name1
```

Here "name1" refers either to a file "name1.inp" with geometrical data located in the subdirectory GEOMETRIES or to some special code words to fix the geometry of the grating. We describe how to get the file "name1.inp" in point 3.2 and the alternative code words in the subsequent point 3.5 of this section.

As mentioned above, the computation starts in the directory "CLASSICAL" and is based upon a geometry input file "GEOMETRIES/name1.inp" indicated in "name.dat". However, if the code is started from a directory different from "CLASSICAL" or if the geometry data file is located in a different directory with the path "path1", then the file is to be specified by adding its path in "name.dat" as:
\# Grating data. path1/name1

In particular, for a geometry input file in the current working directory use:

$$
\begin{aligned}
& \text { \# Grating data. } \\
& \text {./name1 }
\end{aligned}
$$

Note that the geometry data in "name1.inp" should be given relative to the period which is specified in the data file "name.dat" of directory CLASSICAL resp. CONICAL. All data of "name1.inp" will later be multiplied by the given length of period (e.g. by $1 \mu \mathrm{~m}$).

Additional geometrical information, fixed in file "name.dat", concerns the coated layers. In principle, the grating part is a rectangular domain (cf. Ω in figure 1). Above and below this part we can add a few number of coated layers in form of strips parallel to the upper and lower side of the rectangle. The numbers of these layers together with the corresponding thickness is given in special lines of "name.dat". Explanations of the lines in "name.dat" can be found directly in the neighbouring comment lines starting with symbol "\#".

3.2 How to get an input file "name1.inp"?

The elementary way to create "name1.inp" is the following. Change to subdirectory GEOMETRIES. Copy an existing file like e.g. "example.inp" (cf. the enclosed file in 12.1), and change its name into e.g. "name1.inp".
cd DIPOG-2.1/GEOMETRIES
cp example.inp name1.inp
Change "name1.inp" in your editor (emacs,vi?) according to your requirements. You will find the necessary information as comments in the file "name1.inp". Indeed, each line beginning with "\#" is a comment. For example, the number $n_{m a t}$ of different materials is fixed in "name1.inp" by the input lines:

$$
\begin{aligned}
& \text { \# Number of materials: } \\
& n_{m a t}
\end{aligned}
$$

We emphasize that this number must include the two materials located immediately over and under the grating area since two rectangular layers from these adjacent regions are added to the area of FEM computation. Consequently, $n_{\text {mat }} \geq 2$, and $n_{m a t}=2$ holds if the grating structure is manufactured from the same two materials filling the regions adjacent to the grating structure. In the case of the grating in Figure 1, we have two materials with the refractive indices n_{1} and n_{2} inside the grating structure and two adjacent materials with indices $n^{l c}$ and $n^{u c}$, i.e. $n_{\text {mat }}=4$. Generally, the materials inside the grating structure are to be indicated in "name1.inp" by an index between 1 and $n_{\text {mat }}$. In particular, index 1

Figure 5: Pictures of grid produced by SHOW.
stands for the material immediately over the grating and $n_{m a t}$ for that immediately under it. Of course, the corresponding $n_{m a t}$ refractive indices are listed in the input file "name.dat" and not in "name1.inp". Finally, we remark that the file "name1.inp" contains its name "name1" without the tag ".inp". This name must include the complete path if the file is not located in the directory GEOMETRIES.

To check the geometry described by "name1.inp", enter the command:
SHOW name1.inp

You will see a first picture (cf. left picture in Figure 5) with the chosen points of a polygonal structure. After pressing Escape or Bar/Space you see a second picture (cf. right picture in Figure 5) with a coarse triangulation and with the different regions (later distinguished by different optical indices) in different colours. Press Escape or Bar/Space to end the check. If you enter

> SHOW v name1.inp
then, additionally, an eps-file of the picture is produced.
Alternatively, to create "name1.inp", one can call the executable GEN_INPUT from the subdirectory GEOMETRIES and work interactively. Just enter the command:

GEN_INPUT
This program prompts you for everything needed. Nevertheless, we recommend the first way of copying and modifying an existing file.

The programs of DIPOG-2.1 are based on a coupling of finite elements and boundary elements over the upper and lower boundary lines of the FEM domain. This coupling requires that the refractive indices of the materials on both sides of the boundary lines coincide. Therefore the FEM domain is extended by additional rectangular strips adjacent to the upper and lower boundary lines. The positive width (relative to the period) of these two strips is fixed in the "name1.inp" file, e.g. by the lines:

> \# Width of additional strip above and below: 0.5

The material of the upper strip is the grating material of index one, that of the lower has index $n_{\text {mat }}$. In order to have the same material on both sides of the upper and lower boundary lines, the refractive index of the lowest upper coated layer resp. the cover material must be the same as that of the grating material with index one, and the refractive index of the highest lower coating layer resp. the substrate material must be the same as that of the grating material with index $n_{m a t}$. Adding the widths of the upper and lower coated layers, the user must not forget about the rectangular strips included already in the grating structure.

The width of the additional rectangular strips adjacent to the upper and lower boundary lines can be chosen automatically by adding the width input zero in the "name1.inp" file. More precisely, adding a zero for the width, the width is set to

$$
\begin{equation*}
\min \{0.05, \text { upper bound of meshsize }\} \times \text { period } \tag{3.10}
\end{equation*}
$$

which approximates zero for the meshsize tending to zero. The new rectangular strips are borrowed from the adjacent coated layer resp. from the substrate or cover material, i.e. the widths of the adjacent coated layers are reduced by the width of the strip. In other words, the automatic choice of the widths of the additional strips requires that the expression in (3.10) is less than the widths of the adjacent coated layers.

Now suppose that the width of the additional strips is chosen automatically and that there exist upper coated layers above the grating geometry fixed by the "name1.inp" file. The natural starting point of the additional upper strip is the point of the grating geometry with the highest y-coordinate which belongs to an area occupied by a material different from that of the adjacent upper coated layer. For technical reasons, the grating geometry without the additionally added layers must not contain a strip of the upper coating material above the natural starting point of the strip to be added automatically. Similarly, suppose that the width of the additional strips is chosen automatically and that there exist lower coated layers below the grating geometry. The natural starting point of the additional lower strip is the point of the grating geometry with the lowest y-coordinate which belongs to an area occupied by a material different from that of the adjacent lower coated layer. Again, for technical reasons, the grating geometry without the additionally added layers must not contain a strip of the lower coating material below the natural starting point.

If the coated layer adjacent to the boundary line is very thin, then the automatically added additional layer in the FEM domain is thin, and a huge number of small triangles appear in the triangulation. The resulting large number of degrees of freedom can be avoided in the case of classical Te polarization, where the coupling of finite elements and boundary elements does not require the same material on both sides of the boundary lines.

Avoiding an additional strip below resp. above the FEM domain requires two assumptions:

- The upper resp. lower polygonal boundary line of the FEM domain should form a horizontal straight line segment 9^{9}
- All corners with maximal resp. minimal y coordinate must have an x coordinate which is the product of period times a rational number k / l with $l<1000$. ${ }^{10}$
To switch off the automatic generation of additional strips in the FEM domain, the user must work with a geometry input file "name1.inp" containing the lines:
\# Width of additional strip above and below: no

Sometimes the additional strip is required below the grating structure, but it should be switched off above it. This can be indicated by
\# Width of additional strip above and below: no_up 0 .
Here the number following the no_up is the thickness of the additional layer beneath the grating. Similarly, an additional strip above and no strip below can be indicated by
\# Width of additional strip above and below: no_lo 0 .

If the automatic generation of additional strips is switched off, then the input counter of the materials $n_{m a t}$ as well as the list of refractive indices of the grating must not include the materials of the omitted additional strips.

As mentioned above, special gratings like echelle gratings, lamellar, trapezoidal, and simple profile gratings need not to be generated by an input file "name1.inp". Special code words will generate automatically hidden files of this type. However, in some situations the user might wish to change the automatically generated "name1.inp" files. He might wish to add small modifications to the geometry, or he wants to change the meshsize. To do this the user can create the otherwise hidden "name1.inp" files explicitly by the following executables.

If an input file for an echelle grating of type A is needed (right-angled triangle with hypotenuse parallel to the direction of the periodicity, cf. Figure 6), then this can be accomplished by calling the executable GEN_ECHELLEA from the subdirectory GEOMETRIES. More precisely, the command

GEN_ECHELLEA name R 0.30 .030 .04
creates the file "name.inp" of the desired echelle profile grating, with right blaze angle greater than 45°, with a depth (triangle height) of 0.3 times period of the grating and with coated layers of height 0.03 resp. 0.04 times period over the first resp. second part of the grating (measured in direction perpendicular to the echelle profile, height greater or equal to zero). If the input letter \mathbf{R} is replaced by an \mathbf{L}, then the left blaze angle is greater than

[^6]45 degrees. Moreover, if the input letter \mathbf{R} is replaced by an \mathbf{A} and the following input number 0.3 by 60 ., then the left blaze angle is 60°.

If an input file for an echelle grating of type B is needed (right-angled triangle with one of the legs parallel to the direction of the periodicity, cf. Figure 7), then this can be accomplished by calling the executable GEN_ECHELLEB from the subdirectory GEOMETRIES. More precisely, the command GEN_ECHELLEB name 60. 0.05
creates the file "name.inp" of the desired echelle profile grating, with angle 60° (angle enclosed by hypotenuse and by the leg parallel to the period) and with a coated layer of height 0.05 times period of the grating (measured in direction perpendicular to echelle profile, height greater or equal to zero).

If an input file for a general echelle grating is needed, then this can be accomplished by calling the executable GEN_ECHELLE from the subdirectory GEOMETRIES. More precisely, the command

GEN_ECHELLE name A 120. L 30. 0.050 .1
creates the file "name.inp" of the desired echelle profile grating, with an apex angle of 120°, with a left blaze angle of 30°, with a coated layer over the left blaze side of height 0.05 times length of period of the grating (measured in direction perpendicular to echelle profile, height greater or equal to zero), and with a coated layer over the right blaze side of height 0.1 times length of period of the grating (measured in direction perpendicular to echelle profile, height greater or equal to zero, must be zero if previous height is zero). Instead of the two inputs "A 120." and "L 30." one can choose also the inputs "R 110 ." for a right blaze angle of 110° or "D 0.4^{\prime} for a depth of the grating equal to 0.4 times length of period of the grating. Any combination of two inputs of the types "A 120.", "L 30.", "R 110. ", and "D 0.4 " is accepted. However, the choice "A 120 ." and "D 0.2 " is ambiguous. By definition it fixes an echelle grating with right blaze angle larger than the left. To get the flipped grating with left blaze angle larger than the right, the input should be "A 120." and "D -0.2". Figure 6 corresponds to a call of GEN_ECHELLE with the parameter arguments "A 90. D 0.30 .030 .04 ".

If an input file for a trapezoidal grating is needed (isosceles trapezoid with the basis parallel to the direction of the periodicity, cf. Figure 8), then this can be accomplished by calling the executable GEN_TRAPEZOID from the subdirectory GEOMETRIES. More precisely, the command

GEN_TRAPEZOID name 60. 0.630 .20 .10 .10 .05
creates the file "name.inp" of the desired trapezoidal profile grating, with angle 60° (angle enclosed by basis and the sides) with a basis of length 0.6 times period of the grating consisting of 3 material layers of heights 0.2 times period, 0.1 times period, and 0.1 times period, respectively, and with a coated layer of height 0.05 times period (greater or equal to zero).

If an input file for a grating with several trapezoids one beside the other is needed (symmetric trapezoids with the basis parallel to the direction of the periodicity), then this can be accomplished by calling the executable GEN_MTRAPEZOID from the subdirectory GEOMETRIES.

More precisely, the command

GEN_MTRAPEZOID name1 name2

creates the file "name1.inp" of the desired multitrapezoidal profile grating, with data taken from the input file "name2.INP". In particular, this contains lines with (all lengths relative to period, all angles in degrees)

- number m of layers in one bridge
- m heights of the layers (from above to below)
- m sidewall angles (from above to below)
- height at which lateral width is given
- number n of bridges
- n lateral widths of bridges
- n x-coordinates of midpoints of bridges.

If an input file for a lamellar grating is needed (rectangular grating consisting of several materials placed in rectangular subdomains, cf. Figure 10), then this can be accomplished by calling the executable GEN_LAMELLAR from the subdirectory GEOMETRIES. More precisely, if the file "GEOMETRIES/lamellar.INP" contains the numbers (each number in a separate line) $3,4,0.2,0.6,-0.2,1.0,0 ., 0.5,0.70, .0,0.50,0.900, .00,0.500$, and 0.900 , then the command

GEN_LAMELLAR name lamellar.INP

creates the file "name.inp" of the desired lamellar profile grating, with 3 columns each divided into 4 rectangular layers, first column with x coordinate in $0<x<0.2$, second column with $0.2<x<0.6$, third column with $0.6<x<1$ (all coordinates are normalized with respect to the period: period corresponds to $\mathrm{x}=1$), whole grating with y coordinate s.t. $-0.2<y<1.0$, first column: first layer with $-0.2<y<0$., second with $0 .<y<0.5$, third with $0.5<y<0.7$ and fourth with $0.7<y<1$., second column: first layer with $-0.2<y<0.0$, second with $0.0<y<0.50$, third with $0.50<y<0.90$ and fourth with $0.90<y<1$., third column: first layer with $-0.2<y<0.00$, second with $0.00<y<0.500$, third with $0.500<y<0.900$ and fourth with $0.900<y<1$..

If an input file for a simple layer grating is needed, then this can be accomplished by calling the executable GEN_LAMELLAR from the subdirectory GEOMETRIES. More precisely, if the file "GEOMETRIES/lamellar.INP" contains the numbers (each number in a separate line) $1,1,0.2$, and 0.8 , then the command

GEN_LAMELLAR name lamellar.INP

creates the file "name.inp" of the desired layer grating, with layer material s.t. the y coordinate satisfies $0.2<y<0.8$ (all coordinates are normalized with respect to the period: period corresponds to $\mathrm{x}=1$).

If an input file for a grating with a polygonal profile line is needed (cf. Figure 11), then this can be accomplished by calling the executable GEN_POLYGON from the subdirectory GEOMETRIES. More precisely, if the file "GEOMETRIES/file1" contains the corner points of a polygonal profile line (in "GEOMETRIES/file1": in each line beginning without '\#' there should be the x - and y-coordinate of one of the consecutive corner points, first point with
x-coordinate 0 , last point with x-coordinate 1 , same y-coordinate for first and last point, all x-coordinates between 0 and 1 , at least two different y-coordinates, last line should be "End"), then the command

GEN_POLYGON name file1
creates the file "name.inp" of the desired polygonal grating.
If an input file for a grating determined by two polygonal profile lines is needed (cf. Figure 12), then this can be accomplished by calling the executable GEN_POLYGON2 from the subdirectory GEOMETRIES. More precisely, if the file "GEOMETRIES/file1" contains the corner points of a polygonal profile line (in "GEOMETRIES/file1": in each line beginning without ' $\#$ ' there should be the x - and y-coordinate of one of the consecutive corner points, first point with x-coordinate 0 , last point with x-coordinate 1 , same y-coordinate for first and last point, all x-coordinates between 0 and 1 , at least two different y-coordinates, last line should be "End") and if the file "GEOMETRIES/file2" contains the corner points of a second polygonal profile line (in "GEOMETRIES/file2": in each line beginning without '\#' there should be the x - and y-coordinate of one of the consecutive corner points, first and last point must be corner of first polygon, second polygon must be on left-hand side of first, one to one correspondence of the corners on the two polygons between first and last point of second polygon ${ }^{11}$, quadrilateral domain between corresponding segments on the left of first polygon, these quadrilaterals must be disjoint, last line should be "End"), then the command

GEN_POLYGON2 name file1 file2

creates the file "name.inp" of the desired polygonal grating.
If an input file for a grating determined by profile line given as $\left\{\left(f_{x}(t), f_{y}(t)\right): 0 \leq t \leq\right.$ $1\}$ is needed, then this can be accomplished by calling the executable GEN_PROFILE from the subdirectory GEOMETRIES. More precisely, suppose the profile line $\left\{\left(f_{x}(t), f_{y}(t)\right): 0 \leq\right.$ $t \leq 1\}$ is given by the functions $t \mapsto f_{x}(t)$ and $t \mapsto f_{y}(t)$ defined by the c-code in the file "GEOMETRIES/profile.c". Then

GEN_PROFILE name 0.06
creates the file "name.inp" of the desired profile grating, where the profile curve is approximated by a polygonal line with a stepsize equal to 0.06 times the length of period (cf. Figure 13 where $f_{x}(t)=t$ and $\left.f_{y}(t)=\{1.5+0.2 \exp (\sin (6 \pi t))+0.3 \exp (\sin (8 \pi t))\} /\{2 \pi\}\right)$.

If an input file for a grating determined by more than one non-intersecting and periodic profile lines given as $\left\{\left(f_{x}(j, t), f_{y}(j, t)\right): 0 \leq t \leq 1\right\}, j,=1, \ldots, n$ is needed, then this can be accomplished by calling the executable GEN_PROFILES from the subdirectory GEOMETRIES. More precisely, suppose n and the profile lines $\left\{\left(f_{x}(j, t), f_{y}(j, t)\right): 0 \leq t \leq 1\right\}$ are given by the c-code in the file "GEOMETRIES/profiles.c". Then

GEN_PROFILES name 0.06

[^7]creates the file "name.inp" of the desired profile grating, where the profile curves are approximated by a polygonal line with a stepsize equal to 0.06 times the length of period (cf. Figure 16 where $n=3, f_{x}(j, t)=t, f_{y}(1, t)=\sin (2 \pi t), f_{y}(2, t)=\sin (2 \pi t)-0.5$, and $\left.f_{y}(3, t)=\sin (2 \pi t)-1\right)$.

If an input file for a pin grating determined by a simple non-intersecting profile line given as $\left\{\left(f_{x}(t), f_{y}(t)\right): 0 \leq t \leq 1\right\}$ is needed ${ }^{12}$, then this can be accomplished by calling the executable GEN_PIN from the subdirectory GEOMETRIES. More precisely, suppose $x_{\text {min }}$ and the profile line $\left\{\left(f_{x}(t), f_{y}(t)\right): 0 \leq t \leq 1\right\}$ are given by the c-code in the file "GEOMETRIES/pin.c". Then

GEN_PIN name 0.06

creates the file "name.inp" of the desired profile grating, where the profile curves are approximated by a polygonal line with a stepsize equal to 0.06 times the length of period (cf. Figure 17 where $x_{\text {min }}=0.2, f_{x}(t)=x_{\text {min }}+\left(1-2 x_{\text {min }}\right) t$, and $f_{y}(t)=0.5 \sin (\pi t)$).

If an input file for a coated pin grating determined by the simple non-intersecting profile lines given as $\left\{\left(f_{x}(j, t), f_{y}(j, t)\right): 0 \leq t \leq 1\right\}, j=1,2$ is needed ${ }^{13}$, then this can be accomplished by calling the executable GEN_CPIN from the subdirectory GEOMETRIES. More precisely, suppose $x_{\text {min }}, a_{1}, a_{2}$ and the profile lines $\left\{\left(f_{x}(j, t), f_{y}(j, t)\right): 0 \leq t \leq 1\right\} \boldsymbol{j}=1,2$ are given by the c-code in the file "GEOMETRIES/cpin.c". Then

GEN_CPIN name 0.06

creates the file "name.inp" of the desired profile grating, where the profile curves are approximated by a polygonal line with a stepsize equal to 0.06 times the length of period (cf. Figure 18 where $x_{\text {min }}=0.2, a_{1}=0.2, a_{1}=0.8, f_{x}(1, t)=x_{\text {min }}+\left(1-2 x_{\text {min }}\right) t$, $f_{y}(1, t)=0.5 \sin (\pi t)$, and $\left\{\left(f_{x}(2, t), f_{y}(2, t)\right): 0 \leq t \leq 1\right\}$ is the polygonal curve connecting the four points $\left(f_{x}\left(1, a_{1}\right), f_{y}\left(1, a_{1}\right)\right),\left(f_{x}\left(1, a_{1}\right), f_{y}(1,0.5)+0.1\right),\left(f_{x}\left(1, a_{2}\right), f_{y}(1,0.5)+0.1\right)$, and $\left.\left(f_{x}\left(1, a_{2}\right), f_{y}\left(1, a_{2}\right)\right)\right)$.

If an input file for a coated pin grating of type 2 determined by the simple nonintersecting profile lines given as $\left\{\left(f_{x}(j, t), f_{y}(j, t)\right): 0 \leq t \leq 1\right\}, j=1,2$ is needed ${ }^{14}$,

[^8]then this can be accomplished by calling the executable GEN_CPIN2 from the subdirectory GEOMETRIES. More precisely, suppose $x_{\text {min }}$ and the profile lines $\left\{\left(f_{x}(j, t), f_{y}(j, t)\right): 0 \leq t \leq\right.$ $1\} \mathrm{j}=1,2$ are given by the c-code in the file "GEOMETRIES/cpin2.c". Then

GEN_CPIN2 name 0.05
creates the file "name.inp" of the desired profile grating, where the profile curves are approximated by a polygonal line with a stepsize equal to 0.05 times the length of period (cf. Figure 19 where $x_{\text {min }}=0.2, f_{x}(1, t)=x_{\text {min }}+\left(1-2 x_{\min }\right) t, f_{y}(1, t)=0.5 \sin (\pi t)$, and $\left.f_{x}(2, t)=0.5 x_{\text {min }}+\left(1-x_{\text {min }}\right) t, f_{y}(2, t)=0.8 \sin (\pi t)\right)$.

In some applications the user might think that meshes graded towards the corner points of the polygonal interfaces should improve the convergence behaviour of the FEM solution. Such graded meshes can be generated by adding clouds of points to the neighbourhood of the corners. If a geometry is given by the input file "name.inp", then an advanced input file "name+.inp" including point clouds at the corners can be generated by the command

$$
\text { POINT_CLOUD_INP name } 305100 .
$$

Here the last argument 100 is the angle in degrees such that "name+.inp" contains point clouds at all interface corners of "name.inp" with angles less than 100°. The third argument 5 is the number of layers in the point clouds, i.e. the cloud points are located at circular curves around the corner with radii $\varrho * 0.5, \varrho * 0.5^{2}, \ldots, \varrho * 0.5^{5}$. The positive real ϱ is chosen as large as possible such that the point clouds do not intersect other point clouds or corner points. Finally, the second argument 30 is the number of points at each circular curve. In other words, the cloud points are the intersections of the circular curves with rays through the corner points such that the angle between two neighbour rays is about $360^{\circ} / 30$.

3.3 Graded FEM-mesh generated through geometry input file

The geometry is read from the input file "name1.inp" and the mesh generator will create a finite element partition with given refinement level. The generator tries to compute regular (almost uniform) triangles. Over the generated finite element mesh the trial functions and approximate solutions are determined.

Sometimes the field solution of the problem is difficult to approximate by the trial functions defined over regular meshes. For instance, the field solutions may have singular points at corners and surface layers close to the interfaces. If the corresponding field components by the executables GFEM_PLOT resp. FEM_PLOT are visualised and if the the isoline mode is switched on (cf. Subsection 5.3), then a huge number of isoline curves surrounding a point indicate a singularity point. Many isolines located close and parallel to the interface lines indicate surface layers. For these cases, graded meshes can enhance the approximation of the FEM and GFEM.

A mesh grading towards a corner point can be enforced if additional points close to
the first point $\left(x_{1}, 0\right)=\left(f_{x}(2,0), f_{y}(2,0)\right)$ with the last point $\left(x_{2}, 0\right)=\left(f_{x}(2,1), f_{y}(2,1)\right)$. Moreover, $\left\{\left(f_{x}(2, t), f_{y}(2, t)\right): 0 \leq t \leq 1\right\}$ is a simple open arc above $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$ such that $0<f_{x}(2, t)<1,0<t<1$. The functions $f_{x}(1,),. f_{x}(2,),. f_{y}(1,),$. and $f_{y}(2,$.$) and the parameter x_{\text {min }}$ are defined by the code of the file "../GEOMETRIES/cpin2.c".
the corners are introduced in the input file "name1.inp". We recommend to approach the corner by these additional points from one, two or three directions at distances of size $0.1 * 2^{l}, l=1,2, \ldots$ These points need not to be included into the list of triangle corners. The mesh generator, however, will include the points into the finite element mesh such that a grading towards the corner is achieved. Note that mesh gradings toward points does not increase the overall number of mesh points, essentially.

A mesh grading towards an interface line can be enforced if a tiny additional layer on one side of the interface is introduced by the geometry input file "name1.inp". This layer must have a different index of material. Of course, the refractive index chosen for this material index in the data file "name.dat" must be the same as for the material from which the layer is artificially separated. The mesh generator resolves the tiny layer structure by small regular triangles and the size of the triangles close to the layer grows slowly with the distance to the layer. Unfortunately, the overall number of mesh points notably increases if the width of the additional layer decreases. Nevertheless, the approximation using a graded mesh is often better than that of a comparable refined uniform mesh.

Finally, we should mention the different level refinement strategies for regular and graded meshes. The standard way of mesh refinement is to increase the level in the input file "name.dat" (cf. Subsection 5.2). If the level l is large such that the maximal meshsize $h_{0} 2^{1-l}$ is less than the minimal distance of the additional points to the singular point and less than the width of the additional layer, then the generated mesh is regular again. In other words, the degree of grading of the meshes is reduced by increasing the level of discretization. Alternatively to increasing the level by one, the parameter $n_{\text {UPA }}$ of the control files "generalised.Dat" and "conical.Dat" (cf. Sections 6 and 7) can be doubled. In this case the degree of grading of the meshes is maintained.

3.4 Input file "name1.inp" by TGUI

The easiest way to create a geometry input file "name1.inp" is to use the graphical user interface program TGUI in the subdirectory GEOMETRIES. Just call TGUI and draw one period of the cross section of the grating. Note that TGUI is equipped with a complete help system. For the special DIPOG-2.1 format, we mention the following.

The dimensions of the cross section details including the period (horizontal dimension) of the grating are measured in nano meters. Typically, the vertical and horizontal diameters are about 1000 nano meters. Note, however, that the geometry will be scaled to period 1 for the input format and the actual period is fixed in the data file "name.dat" (cf. Sects. 3.1 and 5.1).

The cross section domain is bounded by two lateral sides as well as an upper and lower boundary curve connecting the upper resp. lower points of the lateral sides. Possibly, this domain is split into several material parts by polygonal interfaces. If the upper or the lower curve is a horizontal straight line segment, then DIPOG can add additional upper and lower rectangular strips to the geometry. However, these strips are described in the data file "name.dat" (cf. Sect. 5.1) and not by the geometry input format "name1.inp".

The lateral sides of the cross section domain must form straight line segments in exactly vertical direction. The segment indicator of the segments of these sides must be 3, whereas the segments forming the upper and lower boundaries get indicator 2 and 1 , respectively.

The indices of the material parts can be fixed to any positive integer. Suppose that $n_{\text {mat }}$ is the maximal index. Then the materials will be determined in a list of $n_{\text {mat }}$ refractive indices (optical indices) given in the data file "name.dat" of DIPOG (cf. Sect. 5.1). Note that index 1 is reserved for the refractive index of the material adjacent to the cross section domain from the upper side (either cover material or lowest upper additional strip) and index $n_{m a t}$ for the refractive index of the material adjacent to the cross section domain from the lower side (either substrate material or highest lower additional strip).

The domain for the Fem computation is a rectangle which is a slight extension of the just mentioned cross section domain into the upper and lower direction. The additional strips are possibly not contained in the Fem domain since they are treated via boundary operators. Even if the cross section domain is rectangular, small strips are added in order to enable a fast treatment of the boundary operators.

However, in case of classical Te polarization and if the upper resp.lower boundary curves are horizontal straight lines of the cross section domain, the extension to the Fem domain by small upper resp. lower strips can be suppressed (cf. Sect. 3.2). To this end the indicators of the boundary segments must be changed from 2 resp. 1 to 5 resp. 4. Moreover, since the fast treatment of the boundary operators requires uniform partitions, the node points on the upper resp. lower boundary lines must be rational. More precisely, for left and right end points A and B, the node points must be of the form $A+(B-A) * r$ with $r=p / q$ and $0<p<q<1000$.

3.5 Code words to indicate special geometries

One can indicate special grating geometries in the input file "name.dat" by special code words. We explain these here.
\# Grating data:
echellea R 0.30 .030 .04
indicates an Echelle Grating Type A (right-angled triangle with hypotenuse parallel to the direction of the periodicity, right interior angle greater than 45°, cf. Figure 6) with depth of $0.3 \mu \mathrm{~m}$ (i.e., triangle height $=0.3 \mu \mathrm{~m}$) and with coated layers of height $0.03 \mu \mathrm{~m}$ resp. $0.04 \mu \mathrm{~m}$ over the first resp. second part of the grating (measured in direction perpendicular to the echelle profile, height greater or equal to zero).
\# Grating data:
echellea L 0.30 .030 .04
indicates an Echelle Grating Type A (right-angled triangle with hypotenuse parallel to the direction of the periodicity, left interior angle greater than 45°) with parameters like above.
\# Grating data:
echellea A 60. 0.030 .04
indicates an Echelle Grating Type A (right-angled triangle with hypotenuse parallel to the direction of the periodicity) with left interior angle $\alpha=60^{\circ}$ (i.e. the depth is equal to the period multiplied by $\sin (\alpha) \cos (\alpha))$ and other parameters like above.

Figure 6: Echelle grating of type A.

```
# Grating data:
    echelleb 60. 0.05
```

indicates an Echelle Grating Type B (right-angled triangle with one of the legs parallel to the direction of the periodicity, cf. Figure 7) with angle 60° (angle enclosed by hypotenuse and by the leg parallel to the period) and with a coated layer of height $0.05 \mu \mathrm{~m}$ (measured in direction perpendicular to echelle profile, height greater or equal to zero).
\# Grating data:
echelle L 100. R 30. 0.050 .1
indicates a General Echelle Grating with a left blaze angle of 100°, with a right blaze angle of 30°, with a coated layer over the left blaze side of height $0.05 \mu \mathrm{~m}$ (measured in direction perpendicular to the echelle profile, height greater or equal to zero) and with a coated layer over the right blaze side of height $0.1 \mu \mathrm{~m}$ (measured in direction perpendicular to the echelle profile, height greater or equal to zero, must be zero if the previous height is zero). Instead of the two inputs "L 100. ." and "R 30 ." one can choose also the inputs "A 90." for an apex angle of 90° or "D $0.2^{\prime \prime}$ for a depth of the grating equal to $0.2 \mu \mathrm{~m}$. Moreover, any combination of two inputs of the types "A 90.", "L 110.", "R 90.", and "D 0.2 " is accepted. However, the choice "A 90 ." and "D 0.2 " might be ambiguous. By definition it fixes an echelle grating with right blaze angle larger than the left. To get the flipped grating with left blaze angle larger than the right, the input should be "A 90." and "D -0.2". Figure 6 corresponds to a period of $1 \mu \mathrm{~m}$ and to the code words "echelle A 90 . D 0.30 .030 .04 ".

[^9]

Figure 7: Echelle grating of type B.
indicates a Trapezoidal Grating (isosceles trapezoid with the basis parallel to the direction of the periodicity, cf. Figure 8) with angle of 60° (angle enclosed by basis and the sides) with a basis of length $0.6 \mu \mathrm{~m}$ consisting of 3 material layers of heights $0.2 \mu \mathrm{~m}, 0.1$ $\mu \mathrm{m}$, and $0.1 \mu \mathrm{~m}$, respectively, and with a coated layer of height $0.05 \mu \mathrm{~m}$ (greater or equal to zero)

$$
\begin{aligned}
& \text { \# Grating data: } \\
& \text { mtrapezoid } \\
& 2 \\
& 0.020 .06 \\
& 90.80 . \\
& 0.04 \\
& 3 \\
& 3 \\
& 0.16 \\
& 0.25 \\
& 0.21 \\
& 0.50
\end{aligned} \quad 0.18
$$

indicates a Multi Trapezoidal Grating (trapezoids with bases parallel to the direction of the periodicity, cf. Figure 9) each trapezoid consists of 2 layers with height $0.02 \mu \mathrm{~m}$ and $0.06 \mu \mathrm{~m}$, respectively; side-wall angle of these trapezoidal layers are 90° and 80°; the number of trapezoids is 3 and the lateral width of the trapezoids measured at a height of $0.04 \mu \mathrm{~m}$ is $0.16 \mu \mathrm{~m}, 0.21 \mu \mathrm{~m}$, and $0.18 \mu \mathrm{~m}$, respectively; finally the midpoints of the trapezoids have the lateral distances $0.25 \mu \mathrm{~m}, 0.50 \mu \mathrm{~m}$, and $0.75 \mu \mathrm{~m}$ to the starting point of a period.
\# Grating data:
lAmellar 34
0.20 .6
-0.2 1.0

Figure 8: Trapezoidal grating.

$$
\begin{aligned}
& 0 . \\
& 0.50 .7 \\
& 0.0 \\
& 0.50 \quad 0.90 \\
& 0.00 \\
& 0.500
\end{aligned}
$$

indicates a Lamellar Grating (rectangular grating consisting of several materials placed in rectangular subdomains, cf. Figure 10 with 3 columns each divided into 4 rectangular layers, first column with x-coordinate in $0 \mu \mathrm{~m}<\mathrm{x}<0.2 \mu \mathrm{~m}$, second column with $0.2 \mu \mathrm{~m}<\mathrm{x}<0.6$ $\mu \mathrm{m}$, third column with $0.6 \mu \mathrm{~m}<\mathrm{x}<$ period (period given above), whole grating with y coordinate s.t. $-0.2 \mu \mathrm{~m}<\mathrm{y}<1.0 \mu \mathrm{~m}$, first column: first layer with $-0.2 \mu \mathrm{~m}<\mathrm{y}<0 . \mu \mathrm{m}$, second with $0 . \mu \mathrm{m}<\mathrm{y}<0.5 \mu \mathrm{~m}$, third with $0.5 \mu \mathrm{~m}<\mathrm{y}<0.7 \mu \mathrm{~m}$ and fourth with $0.7 \mu \mathrm{~m}<\mathrm{y}<1 . \mu \mathrm{m}$, second column: first layer with $-0.2 \mu \mathrm{~m}<\mathrm{y}<0.0 \mu \mathrm{~m}$, second with $0.0 \mu \mathrm{~m}<\mathrm{y}<0.50 \mu \mathrm{~m}$, third with $0.50 \mu \mathrm{~m}<\mathrm{y}<0.90 \mu \mathrm{~m}$ and fourth with $0.90 \mu \mathrm{~m}<\mathrm{y}<1$. $\mu \mathrm{m}$, third column: first layer with $-0.2 \mu \mathrm{~m}<\mathrm{y}<0.00 \mu \mathrm{~m}$, second with $0.00 \mu \mathrm{~m}<\mathrm{y}<0.500 \mu \mathrm{~m}$, third with $0.500 \mu \mathrm{~m}<\mathrm{y}<0.900$ $\mu \mathrm{m}$ and fourth with $0.900 \mu \mathrm{~m}<\mathrm{y}<1 . \mu \mathrm{m}$.
\# Grating data:
lAmellar 11
0.20 .8
indicates a Simple Layer (special case of lamellar grating) with layer material s.t. y coordinate satisfies $0.2 \mu \mathrm{~m}<\mathrm{y}<0.8 \mu \mathrm{~m}$.

```
# Grating data:
```


Figure 9: Multi-trapezoidal grating.

Figure 10: Lamellar grating.
polygon file1
indicates a Grating Determined by a Polygonal Line (cf. Figure 11) defined by the data in the file with name "GEOMETRIES/file1". The x - and y-coordinates of the points in "GEOMETRIES/file1" are supposed to be scaled such that the period is one (in "GEOMETRIES/file1": in each line beginning without ' $\#$ ' there should be the x - and y coordinate of one of the consecutive corner points, first point with x-coordinate 0 , last point with x-coordinate 1 , same y-coordinate for first and last point, all x-coordinates between 0 and 1, at least two different y-coordinates, last line should be "End"). If the program does not find the file "GEOMETRIES/file1", then it takes the file "file1" of the current working directory.

$$
\begin{aligned}
& \text { \# Grating data: } \\
& \text { polygon2 file1 file2 }
\end{aligned}
$$

indicates a Coated Grating Determined by Polygonal Lines (cf. Figure 12), i.e. the grating profile line is defined by the data in the file with name "GEOMETRIES/file1" (in "GEOMETRIES/file1": in each line beginning without ' $\#$ ' there should be the x - and y coordinate of one of the consecutive corner points, first point with x-coordinate 0 , last point with x-coordinate 1 , same y-coordinate for first and last point, all x-coordinates between 0 and 1, at least two different y-coordinates, last line should be "End") and the coated layer is enclosed between the polygonal line of "GEOMETRIES/file1" and the polygonal line of the file with name "GEOMETRIES/file2" (in "GEOMETRIES/file2": in each line beginning without ' $\#$ ' there should be the x - and y-coordinate of one of the consecutive corner points, first and last point must be corner of first polygon, second polygon must be on left-hand

Figure 11: Grating determined by a polygonal line.
side of first, one to one correspondence of the corners on the two polygons between first and last point of second polygon ${ }^{15}$, quadrilateral domain between corresponding segments on the left of first polygon, these quadrilaterals must be disjoint, last line should be "End"). The x - and y-coordinates of the points in "GEOMETRIES/file1" and "GEOMETRIES/file2" are supposed to be scaled such that the period is one. If the program does not find the files "GEOMETRIES/file1" and "GEOMETRIES/file2", then it takes the files "file1" and "file2" of the current working directory.

$$
\begin{aligned}
& \text { \# Grating data: } \\
& \text { profile }
\end{aligned}
$$

indicates a Grating Determined by a Smooth Parametric Curve, i.e. grating determined by profile line given as \{period $\left.\cdot\left(f_{x}(t), f_{y}(t)\right): 0 \leq t \leq 1\right\}$, where the functions $t \mapsto f_{x}(t)$ and $t \mapsto f_{y}(t)$ are defined by the c-code of the file "GEOMETRIES/profile.c" (cf. Figure 13 where $f_{x}(t)=t$ and $\left.f_{y}(t)=\{1.5+0.2 \exp (\sin (6 \pi t))+0.3 \exp (\sin (8 \pi t))\} /\{2 \pi\}\right)$. If the program does not find the file "GEOMETRIES/profile.c", then it takes the file "profile.c" of the current working directory.

> \# Grating data:
> profile_par 23

[^10]

Figure 12: Grating determined by polygonal lines.
indicates a Grating Determined by a Smooth Parametric Curve, With PaRAMETERS, i.e. grating determined by profile line given as \{period $\cdot\left(f_{x}(t), f_{y}(t)\right)$: $0 \leq$ $t \leq 1\}$, where the functions $t \mapsto f_{x}(t)$ and $t \mapsto f_{y}(t)$ are defined by the c-code of the file "GEOMETRIES/profile_par.c". The last code uses 2 integer parameters and 3 real parameters named IPARaM1, IPARaM2, RPARaM1, RPARaM2, and RPARaM3. The integer parameters take the values 1 and 0 following the first line of the calling sequence and the real parameters take the values $0.15,1$., and 0 . following the integer parameter values (cf. Figure 13 where $f_{x}(t)=t$ and $f_{y}(t)=\{1.5+0.2 \exp (\sin (6 \pi t))+0.3 \exp (\sin (8 \pi t))\} /\{2 \pi\}$, parameter 1 is the index of the curve chosen from "GEOMETRIES/profile_par.c", parameter 0 is the number of corners of the curve, parameters $1.5,0.2$, and 0.3 are scaling parameters in the y-coordinate of the curve). Note that any number of parameters is possible for a corresponding file "GEOMETRIES/profile_par.c". If the program does not find the file "GEOMETRIES/profile_par.c", then it takes the file "profile_par.c" of the current working directory.

$$
\begin{aligned}
& \text { \# Grating data: } \\
& \quad \text { profile } 0.125 * \sin (2 . * \text { M_PI } * t)
\end{aligned}
$$

Figure 13: Grating determined by a smooth parametric curve.
indicates a Grating Determined by a Simple Smooth Function (cf. Figure 14), i.e. grating determined by a profile line given as $\left\{\right.$ period $\left.\cdot\left(t, f_{y}(t)\right): 0 \leq t \leq 1\right\}$, where the function $t \mapsto f_{y}(t)$ is defined by the c-code $f_{y}(t)=0.125 \sin (2 \pi t)$, (do not use any blank/space in the c-code).

```
# Grating data:
```


indicates a Grating Determined by a Simple Smooth Parametric Curve (cf. Figure 15), i.e., grating determined by ellipsoidal profile line given as $\left\{\operatorname{period} \cdot\left(f_{x}(t), f_{y}(t)\right)\right.$: $0 \leq t \leq 1\}$, where the functions $t \mapsto f_{x}(t)$ and $t \mapsto f_{y}(t)$ are defined by the c-codes $f_{x}(t)=0.5+0.5 \cos (\pi(1-t))$ and $f_{y}(t)=0.25 \sin (\pi t)$, respectively (no blank/space in c-code!).

$$
\begin{aligned}
& \text { \# Grating data: } \\
& \text { profiles }
\end{aligned}
$$

indicates a Grating Determined by Smooth Parametric Curves, i.e. grating determined by n non-intersecting and periodic profile lines given from above to below as $\left\{\operatorname{period} \cdot\left(f_{x}(j, t), f_{y}(j, t)\right): 0 \leq t \leq 1\right\}, \quad j=1, \ldots, n$, where n and the functions $t \mapsto f_{x}(j, t)$ and $t \mapsto f_{y}(j, t)$ are defined by the c-code of the file "GEOMETRIES/profiles.c" (cf. Figure 16 where $n=3, f_{x}(j, t)=t, f_{y}(1, t)=\sin (2 \pi t), f_{y}(2, t)=\sin (2 \pi t)-0.5$, and $\left.f_{y}(3, t)=\sin (2 \pi t)-1\right)$. If the program does not find the file "GEOMETRIES/profiles.c", then it takes the file "profiles.c" of the current working directory.
\# Grating data:

Figure 14: Grating determined by a simple smooth function.
profiles_par 12
3
0.5
0.50
indicates a Grating Determined by Smooth Parametric Curves, With ParamETERS, i.e. grating determined by n non-intersecting and periodic profile lines given from above to below as $\left\{\operatorname{period} \cdot\left(f_{x}(j, t), f_{y}(j, t)\right): 0 \leq t \leq 1\right\}, j=1, \ldots, n$, where n and the functions $t \mapsto f_{x}(j, t)$ and $t \mapsto f_{y}(j, t)$ are defined by the c-code included in the file "GEOMETRIES/profiles_par.c". The last code uses 1 integer parameter and 2 real parameters named IPARaM1, RPARaM1, and RPARaM2. The integer parameter takes the value 3 following the first line of the calling sequence and the real parameters take the values 0.5 and 1. following the integer parameter values (cf. Figure 16 where $n=3, f_{x}(j, t)=t$, $f_{y}(1, t)=\sin (2 \pi t), f_{y}(2, t)=\sin (2 \pi t)-0.5$, and $f_{y}(3, t)=\sin (2 \pi t)-(0.5+0.50)$, parameter 3 is the number n of boundary and interface curves, parameter 0.5 is the width of the first layer and parameter 0.50 that of the second). Note that any number of parameters is possible for a corresponding file "GEOMETRIES/profiles_par.c". If the program does not find the file "GEOMETRIES/profiles_par.c", then it takes the file "profiles_par.c" of the current working directory.

> \# Grating data:
> pin
indicates a Pin Grating Determined By Parametric Curve (cf. Figure 17 where $x_{\text {min }}=0.2, f_{x}(t)=x_{\text {min }}+\left(1-2 x_{\text {min }}\right) t$, and $\left.f_{y}(t)=0.5 \sin (\pi t)\right)$, i.e. over a flat grating

Figure 15: Grating determined by a simple smooth parametric curve.
with surface $\{$ period $\cdot(x, 0): 0 \leq x \leq 1\}$ a material part is attached which is located between $\{$ period $\cdot(x, 0): 0 \leq x \leq 1\}$ and $\left\{\operatorname{period} \cdot\left(f_{x}(t), f_{y}(t)\right): 0 \leq t \leq 1\right\}$. Here $\left\{\left(f_{x}(t), f_{y}(t)\right): 0 \leq t \leq 1\right\}$ is a simple open arc connecting $\left(f_{x}(0), f_{y}(0)\right)=\left(x_{\text {min }}, 0\right)$ with $\left(f_{x}(1), f_{y}(1)\right)=\left(1-x_{\text {min }}, 0\right)$ such that $0<x_{\text {min }}<0.5$ is a fixed number, such that $0<f_{x}(t)<1,0<t<1$, and such that $0<f_{y}(t), 0<t<1$. The functions f_{x}, f_{y} and the parameter $x_{\text {min }}$ are defined by the code in "../GEOMETRIES/pin.c". If the program does not find the file "GEOMETRIES/pin.c", then it takes the file "pin.c" of the current working directory.

$$
\begin{aligned}
& \text { \# Grating data: } \\
& \text { cpin }
\end{aligned}
$$

indicates a Coated Pin Grating Determined By Two Parametric Curves (cf. Figure 18 where $x_{\text {min }}=0.2, a_{1}=0.2, a_{1}=0.8, f_{x}(1, t)=x_{\text {min }}+\left(1-2 x_{\text {min }}\right) t, f_{y}(1, t)=$ $0.5 \sin (\pi t)$, and $\left\{\left(f_{x}(2, t), f_{y}(2, t)\right): 0 \leq t \leq 1\right\}$ is the polygonal curve connecting the four points $\left(f_{x}\left(1, a_{1}\right), f_{y}\left(1, a_{1}\right)\right),\left(f_{x}\left(1, a_{1}\right), f_{y}(1,0.5)+0.1\right),\left(f_{x}\left(1, a_{2}\right), f_{y}(1,0.5)+0.1\right)$, and $\left(f_{x}\left(1, a_{2}\right), f_{y}\left(1, a_{2}\right)\right)$), i.e. over a flat grating with surface $\{\operatorname{period} \cdot(x, 0): 0 \leq x \leq 1\}$ a material part is attached which is located between $\{$ period $\cdot(x, 0): 0 \leq x \leq 1\}$ and $\left\{\operatorname{period} \cdot\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$. Here $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$ is a simple open arc connecting $\left(f_{x}(1,0), f_{y}(1,0)\right)=\left(x_{\text {min }}, 0\right)$ with $\left(f_{x}(1,1), f_{y}(1,1)\right)=$ $\left(1-x_{m i n}, 0\right)$ such that $0<x_{\text {min }}<0.5$ is a fixed number, such that $0<f_{x}(1, t)<1$, $0<t<1$, and such that $0<f_{y}(1, t), 0<t<1$. Additionally, a coating layer is attached located between the first curve $\left\{\right.$ period $\left.\cdot\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$ and a second curve \{period $\left.\cdot\left(f_{x}(2, t), f_{y}(2, t)\right): 0 \leq t \leq 1\right\}$. The last connects the

Figure 16: Grating determined by smooth parametric curves.
first point period $\cdot\left(f_{x}\left(1, a_{1}\right), f_{y}\left(1, a_{1}\right)\right)=$ period $\cdot\left(f_{x}(2,0), f_{y}(2,0)\right)$ with the last point period $\cdot\left(f_{x}\left(1, a_{2}\right), f_{y}\left(1, a_{2}\right)\right)=\operatorname{period} \cdot\left(f_{x}(2,1), f_{y}(2,1)\right)$. Moreover, $\left\{\left(f_{x}(2, t), f_{y}(2, t)\right): 0 \leq\right.$ $t \leq 1\}$ is a simple open arc above $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$ such that $0<f_{x}(2, t)<1$, $0<t<1$. The functions $f_{x}(1,),. f_{x}(2,),. f_{y}(1,$.$) , and f_{y}(2,$.$) and the parameters a_{1}, a_{2}$, and $x_{\text {min }}$ are defined by the code of the file "../GEOMETRIES/cpin.c". If the program does not find the file "GEOMETRIES/cpin.c", then it takes the file "cpin.c" of the current working directory.

$$
\begin{aligned}
& \text { \# Grating data: } \\
& \text { cpin2 }
\end{aligned}
$$

indicates a Coated Pin Grating Determined By Two Parametric Curves, Type 2 (cf. Figure 19 where $x_{\text {min }}=0.2, f_{x}(1, t)=x_{\text {min }}+\left(1-2 x_{\text {min }}\right) t, f_{y}(1, t)=0.5 \sin (\pi t)$, and $f_{x}(2, t)=0.5 x_{\text {min }}+\left(1-x_{\min }\right) t, f_{y}(2, t)=0.8 \sin (\pi t)$), i.e. over a flat grating with surface $\{$ period $\cdot(x, 0): 0 \leq x \leq 1\}$ a material part is attached which is located between the line $\{\operatorname{period} \cdot(x, 0): 0 \leq x \leq 1\}$ and $\left\{\operatorname{period} \cdot\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$. Here $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$ is a simple open arc connecting $\left(f_{x}(1,0), f_{y}(1,0)\right)=$ $\left(x_{\min }, 0\right)$ with $\left(f_{x}(1,1), f_{y}(1,1)\right)=\left(1-x_{\min }, 0\right)$ such that $0<x_{\text {min }}<0.5$ is a fixed number, such that $0<f_{x}(1, t)<1,0<t<1$, and such that $0<f_{y}(1, t), 0<t<1$. Additionally, a coating layer is attached located between the first curve $\left\{\right.$ period $\cdot\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq$ $t \leq 1\}$ united with the the two straight line segments \{period $\left.\cdot(x, 0): x_{1} \leq x \leq x_{\min }\right\}$ and $\left\{\right.$ period $\left.\cdot(x, 0): 1-x_{\min } \leq x \leq x_{2}\right\}$ and a second curve $\left\{\operatorname{period} \cdot\left(f_{x}(2, t), f_{y}(2, t)\right): 0 \leq t \leq\right.$ $1\}$. The last connects the first point period $\cdot\left(x_{1}, 0\right)=\operatorname{period} \cdot\left(f_{x}(2,0), f_{y}(2,0)\right)$ with the last point period $\cdot\left(x_{2}, 0\right)=\operatorname{period} \cdot\left(f_{x}(2,1), f_{y}(2,1)\right)$. Moreover, $\left\{\left(f_{x}(2, t), f_{y}(2, t)\right): 0 \leq t \leq 1\right\}$

Figure 17: Pin grating determined by parametric curve.
is a simple open arc above $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$ such that $0<f_{x}(2, t)<1$, $0<t<1$. The functions $f_{x}(1,),. f_{x}(2,),. f_{y}(1,$.$) , and f_{y}(2,$.$) and the parameter x_{\min }$ are defined by the code of the file "../GEOMETRIES/cpin2.c". If the program does not find the file "GEOMETRIES/cpin2.c", then it takes the file "cpin2.c" of the current working directory.

```
    \# Period of grating in micro meter:
    2.
    \# Grating data:
    bOX 0.1
    -1. 1 .
    23
    \{ \(2 .{ }^{*} \mathrm{t}\) \}
    \{ -0.6 \}
    \(\left\{1 .+0.4^{*} \cos \left(2 .{ }^{*} \mathrm{M}_{-} \mathrm{PI}^{*} \mathrm{t}\right)\right\}\)
    \(\left\{0.4{ }^{*} \sin \left(2 .{ }^{*} \mathrm{M}_{-} \mathrm{PI}^{*} \mathrm{t}\right)\right\}\)
    1. 0.8
    1. 0 .
    1.-0.8
```

indicates a Box Grating (cf. Figure 20) where the box is $[0 .$, period $=2] \times.[-1 ., 1$.$] given$ in $\mu \mathrm{m}$. The number 0.1 behind the code word BOX is a factor for the mesh size of the FEM discretization of the box. The box is divided by 2 curves into 3 different material parts. The curves are given by the c-code in the following 2 times two lines. The first code line is the x-component of the first curve, the second the y-component of the first curve, the third

Figure 18: Coated pin grating determined by two parametric curves.
the x-component of the second curve, etc.. The last three input lines define material points. Material with index one is located in that part of the box which is separated by the above curves and contains the point $(1 ., 0.8)$. Material with index two is located in that part of the box which is separated by the above curves and contains the point (1.,0.), etc.. Note that the curves must be simple not self intersecting, and they must be contained in the box. The only allowed intersection points of two different curves are the end points of the curves. Finally, the material areas separated by the curves in the box must be such that the area with the first index contains a whole strip under the upper boundary side of the box and that the area with the last index contains a whole strip over the lower boundary side. If these conditions are violated, then the computational result will be complete nonsense.

> \# Grating data:
> rough_mls name
indicates a Multilayer System With Rough Interfaces (cf. (21)), i.e., $n_{l a}$ layers followed by $n_{m l d}$ times $n_{l d}$ layers and followed by $n_{l b}$ lowest layers. This system is described by the file "name", which is contained in the directory "../GEOMETRIES" (alternatively, "name" must contain the path of the file). This input file "name" contains the following ordered data each in a separate line (comment lines begin with ' $\#$ '):

- dummy, file name
- width of additional layer above and below the structure (must be positive or could be 'no' for no additional layer)
- period of grating

Figure 19: Coated pin grating determined by two parametric curves, Type 2.

- number $n_{l a}$ of layers above multilayer system
- number $n_{l b}$ of layers below multilayer system
- number $n_{m l d}$ of multilayers inbetween
- number $n_{l d}$ of layers in each multilayer
- number $n_{\text {corn }}$ of corner points in each polygonal approximation (interfaces=randomly generated polygon)
- number $n_{\text {rand }}$ of standard Gaussian distributed random numbers needed to generate interfaces (automatically created if $n_{\text {rand }}=0$, otherwise $\left.n_{\text {rand }}=n_{\text {corn }}\left(n_{l a}+n_{l d} n_{\text {mld }}+n_{l b}\right)\right)$
- (optional) standard Gaussian distributed random numbers
- $n_{l a}$ widths of layers above multilayer system
- $n_{l d}$ widths of layers in each multilayer
- $n_{l b}$ widths of layers below multilayer system
- standard deviation $\sigma[i]$ of each layer interface for $i=0, \ldots,\left(n_{l a}+n_{l d} n_{m l d}+n_{l b}-1\right)$
- correlation length corl[i] of each layer interface, for $i=0, \ldots,\left(n_{l a}+n_{l d} n_{m l d}+n_{l b}-1\right)$

Note that the first of the subsequent refractive indices of the grating must be that of the superstrate resp. that of the adjacent upper layer. If the width of the additional layers is positive, then the last of the subsequent refractive indices of the grating must be that of

Figure 20: Box grating with two curves.
the substrate resp. that of the adjacent lower layer.
\# Grating data:
rough_mls k name
indicates a Multilayer System With Rough Interfaces k Times. This is just like above. However, k random realizations are computed and the output values are replaced by the mean values over the k computations. Standard deviations are added, too.

Figure 21: Rough multi-layer grating.

3.6 Stack grating by code words

For the stack grating, there appear the following code words in the geometry input of the name.dat file:
\# Grating data:
stack k
line $_{1}$
line $_{2}$
\ldots
line $_{2 k}$

Here k is the number of profile curves in the stack. These profile curves are defined by the following $2 k$ code word lines. Each profile curve is represented by two of the lines. They are listed from above to below. No intersection points of these curves are allowed. With the exception of pin curves the j-th curve $(j=1, \ldots, k)$ takes the form $\left\{\left(f_{x}(j, t), f_{y}(j, t)\right)\right.$: $0 \leq t \leq 1\}$ with the first end point such that $f_{x}(j, 0)=0$, with the second end point such that $f_{x}(j, 1)=1$, and with $0<f_{x}(j, t)<1$ for $0<t<1$.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1} \\
& \operatorname{line}_{2 j}=h_{1}
\end{aligned}
$$

then we get an Echelle Type A grating profile with right blaze angle greater than 45°, with depth d_{1} and without coated layer (cf. Section 3.5). The profile is vertically shifted by $h_{1} \mu \mathrm{~m}$. Note that $0<d_{1}$ and d_{1} is less than half the period d. If the input letter \mathbf{R} is replaced by \mathbf{L}, then the left interior angle is greater than 45°. Moreover, if the input letter \mathbf{R} is replaced by \mathbf{A} and the following number d_{1} by α, then the left interior angle is α degrees.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1} \quad \text { echelleb } \alpha \\
& \operatorname{line}_{2 j}=h_{1}
\end{aligned}
$$

then we get an Echelle Type B grating profile with angle α and without coated layer (cf. Section 3.5). The profile is vertically shifted by $h_{1} \mu \mathrm{~m}$. Note that $0<\alpha<90$.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1}=\text { echelle } \mathrm{L} \alpha \mathrm{R} \beta_{\mathrm{line}_{2 j}}^{=} \quad h_{1}
\end{aligned}
$$

then we get a General Echelle grating profile with a left blaze angle α (in degrees) and with a right blaze angle β (in degrees). Instead of the two inputs " $\mathrm{L} \alpha$ " and " $\mathrm{R} \beta$ " one can choose also the inputs "A γ " for an apex angle γ (in degrees) or "D d_{0} " for a depth of the grating equal to d_{0} (in $\mu \mathrm{m}$). Moreover, any combination of two inputs of the types "A γ ", " $\mathrm{L} \alpha$ ", " $\mathrm{R} \beta$ ", and " $\mathrm{D} d_{0}$ " is accepted. However, the choice "A γ " and " $\mathrm{D} d_{0}$ " might be ambiguous. By definition it fixes an echelle grating with right blaze angle larger than the left. To get the flipped grating with left blaze angle larger than the right, the input should be "A $\gamma \mathrm{D}-d_{0}$ " (cf. the last section). The profile is vertically shifted by h_{1} (in $\mu \mathrm{m}$). Note that, for technical reasons, the blaze angles α and β must be less than 90°.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1} \quad \text { binary } i d_{0} d_{1} d_{2} \ldots d_{2 i} \\
& \operatorname{line}_{2 j}=h_{1}
\end{aligned}
$$

then we get a Binary Grating Profile with i teeth, with height d_{0}, with transition points $d_{1}, d_{2}, \ldots, d_{2 i}$, and without coating layer. In other words, before the shift, the grating function is zero between 0 and d_{1}, between d_{2} and d_{3}, \ldots, between $d_{2 i-2}$ and $d_{2 i-1}$, and between $d_{2 i}$ and the period d. The grating function is d_{0} between d_{1} and d_{2}, between d_{3} and d_{4}, \ldots, between $d_{2 i-3}$ and $d_{2 i-2}$, and between $d_{2 i-1}$ and $d_{2 i-1}$. The profile is vertically shifted by $h_{1} \mu \mathrm{~m}$. Note that $i \leq 6,0<d_{0}, 0<d_{1}<d_{2}<\ldots<d_{2 i}<d$ with d the period. For i equal to 1 or 2 , either $d_{1}=0$ or $d_{2 i}=d$ is allowed.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1}=\quad \text { trapezoid } d_{1} d_{2} d_{3} \alpha \\
& \operatorname{line}_{2 j}=h_{1}
\end{aligned}
$$

then we get a symmetric Trapezoidal Grating profile (cf. Section 3.5) with the trapezoid starting at $x=d_{1}$, ending at $x=d_{2}$, and with the angle α and the height d_{3}. The profile is vertically shifted by $h_{1} \mu \mathrm{~m}$. Note that we require $d_{3}>0,0 \leq d_{1}<d_{2} \leq d$, and $0<\alpha<90$ with d the period. The height must be sufficiently small such that the trapezoid does not degenerate.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1} \\
& \text { line }_{2 j}=h_{1}
\end{aligned}
$$

then we get a profile curve Determined By A Smooth Simple Curve defined by $f_{x}(j, t)=t$ and $f_{y}(j, t)=$ ccode. The profile is vertically shifted by $h_{1} \mu \mathrm{~m}$. Note that ccode is an expression of the parameter argument $t, 0 \leq t \leq 1$, written in the c programming language. This expression will appear in the code as " $f c t=c c o d e ;$ ". Even an if case is possible. E.g. substituting the code " $0 ; i f(t<0.3) f c t=t$; else $i f(t<0.6) f c t=$ $0.6-t$; else $f c t=0 . "$ into " $f c t=$ ccode;" leads to the meaningful code:

$$
\begin{array}{lll}
& & \text { fct }=0 ; \\
\text { if } & & (\mathrm{t}<0.3) \\
\text { else } \quad \text { fct }=\mathrm{t} ; \\
\text { else } & \quad(\mathrm{t}<0.6) & \mathrm{fct}=0.6-\mathrm{t} ; \\
\text { fct=0. }
\end{array}
$$

The code must be simple since the program can read no more than 399 symbols per input line.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1}=\text { profile }^{\text {ccode }} / \# \# / \operatorname{ccode}_{2} \\
& \text { line }_{2 j}=h_{1}
\end{aligned}
$$

then we get a profile curve Determined By A Smooth Simple Parametric Curve defined by $f_{x}(j, t)=\operatorname{ccode} e_{1}$ and $f_{y}(j, t)=c \operatorname{code} e_{2}$. The profile is vertically shifted by $h_{1} \mu \mathrm{~m}$. The same remarks as in the previous mode apply.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1} \\
& \text { profilei ccode }^{l_{n e}}
\end{aligned}=\begin{aligned}
& 2 j \\
& h_{1} d_{1} d_{2} \ldots d_{i}
\end{aligned}
$$

then we get a profile curve Determined By A Non-smooth Simple Curve defined by $f_{x}(j, t)=t$ and $f_{y}(j, t)=$ ccode. The curve has $i(1 \leq i \leq 9)$ corners with the parameter arguments $d_{1}, d_{2}, \ldots, d_{i}$ such that $0<d_{1}<d_{2}<\ldots<d_{i}$. The profile is vertically shifted by $h_{1} \mu \mathrm{~m}$. The same remarks as in the previous mode apply.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1} \quad \text { profile } \text { ccode }_{1} / \# \# / \text { ccode }_{2} \\
& \text { line }_{2 j}=h_{1} d_{1} d_{2} \ldots d_{i}
\end{aligned}
$$

then we get a profile curve Determined By A Non-smooth Simple Parametric Curve defined by $f_{x}(j, t)=$ ccode $_{1}$ and $f_{y}(j, t)=$ ccode $_{2}$. The curve has $i(1 \leq i \leq 9)$ corners with the parameter arguments $d_{1}, d_{2}, \ldots, d_{i}$ such that $0<d_{1}<d_{2}<\ldots<d_{i}$. The profile is vertically shifted by $h_{1} \mu \mathrm{~m}$. The same remarks as in the previous mode apply.

Beside the above profile curves, pin curves are possible. Then the meaning of f_{x} and f_{y} is changed. The curve $t \mapsto\left(f_{x}(j, t), f_{y}(j, t)\right)$ with $0 \leq t \leq 1$ connects the points $\left(f_{x}(j, 0), f_{y}(j, 0)\right)=(0,0)$ and $\left(f_{x}(j, 1), f_{y}(j, 1)\right)=(1,0)$. The corresponding pin curve is just the affine image of the last curve connecting the two points $\left(f_{x}\left(j_{2}, p_{1}\right), f_{y}\left(j_{2}, p_{1}\right)\right)$ and $\left(f_{x}\left(j_{2}, p_{2}\right), f_{y}\left(j_{2}, p_{2}\right)\right)$ of the profile curve with index j_{2}. I.e.:

$$
\begin{aligned}
t \mapsto(& f_{x}\left(j_{2}, p_{1}\right) \\
& +f_{x}(j, t) *\left[f_{x}\left(j_{2}, p_{2}\right)-f_{x}\left(j_{2}, p_{1}\right)\right] \\
& -f_{y}(j, t) *\left[f_{y}\left(j_{2}, p_{2}\right)-f_{y}\left(j_{2}, p_{1}\right)\right] \\
& f_{y}\left(j_{2}, p_{1}\right) \\
& +f_{x}(j, t) *\left[f_{y}\left(j_{2}, p_{2}\right)-f_{y}\left(j_{2}, p_{1}\right)\right] \\
& \left.+f_{y}(j, t) *\left[f_{x}\left(j_{2}, p_{2}\right)-f_{x}\left(j_{2}, p_{1}\right)\right]\right)
\end{aligned}
$$

Thus, for each of the above profile curves, we can define several areas with new material attached to it and bounded by the just mentioned pin curves. These areas are listed immediately before the profile curve and in correspondence with their attachment from the right to the left. In other words, the index j_{2} of the profile curve to which the j-th pin curve is attached to is the smallest integer l larger than j such that l is an ordinary profile curve, and, in case of two and more pins, the j-th pin curve is located to the right of the $(j+1)$-th pin curve. No intersections of pin and profile curves are allowed.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1} \\
& \text { line }_{2 j}
\end{aligned}=\begin{aligned}
& \text { pin ccode } \\
& p_{1} p_{2}
\end{aligned}
$$

then we get a Simple Smooth Pin Curve defined by $f_{x}(j, t)=t$ and $f_{y}(j, t)=c c o d e$. The parameter arguments p_{1} and p_{2} of the connection points to the ordinary profile curve are fixed by the second line. The remarks on the profile curves apply also here.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1}=\text { pin ccode } 1 / \# \# / \text { ccode }_{2} \\
& \operatorname{line}_{2 j}=p_{1} p_{2}
\end{aligned}
$$

then we get a Simple Smooth Parametric Pin Curve defined by $f_{x}(j, t)=c^{c}$ code ${ }_{1}$ and $f_{y}(j, t)=$ ccode $_{2}$. The parameter arguments p_{1} and p_{2} of the connection points to the ordinary profile curve are fixed by the second line. The remarks on the profile curves apply also here.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1} \quad \text { pin } i \text { ccode } \\
& \text { line }_{2 j}=p_{1} p_{2} d_{1} d_{2} \ldots d_{i}
\end{aligned}
$$

then we get a Simple Non-smooth Pin Curve defined by $f_{x}(j, t)=t$ and $f_{y}(j, t)=c c o d e$. The curve has $i(1 \leq i \leq 9)$ corners with the parameter arguments $d_{1}, d_{2}, \ldots, d_{i}$ such that $0<d_{1}<d_{2}<\ldots<d_{i}$. The remarks on the profile curves apply also here.

If the defining two lines are

$$
\begin{aligned}
& \operatorname{line}_{2 j-1}=\text { pin } i \text { ccode }_{1} / \# \# / \text { ccode }_{2} \\
& \operatorname{line}_{2 j}=p_{1} p_{2} d_{1} d_{2} \ldots d_{i}
\end{aligned}
$$

then we get a Simple Non-smooth Parametric Pin Curve defined by $f_{x}(j, t)=c \operatorname{code} e_{1}$ and $f_{y}(j, t)=$ ccode $_{2}$. The curve has $i(1 \leq i \leq 9)$ corners with the parameter arguments $d_{1}, d_{2}, \ldots, d_{i}$ such that $0<d_{1}<d_{2}<\ldots<d_{i}$. The remarks on the profile curves apply also here.

For example, Figure 22 presents the stack grating generated by

```
\# Grating data:
    stack 5
    echellea R 0.3
    1.2
    profile \(0.3 * \sin \left(2 . * M_{-} P I * t\right)\)
    0.8
    pin \(0.5-0.5 * \cos \left(M_{-} P I * t\right) / \# \# / \sin \left(M_{-} P I * t\right)\)
    0.60 .9
    pin1 0; if \((t<0.5) f c t=t\); else \(f c t=1 .-t\)
    0.10 .40 .5
    profile \(t / \# \# / 0\).
    0 .
```


Figure 22: Stack grating.

4 Input of Refractive Indices

The optical properties of the materials involved in the grating are characterized by the refractive indices. Hence, for each material piece, the corresponding index must be added through the input file "name.dat". This is done in lines like the following:

```
# Optical index (refractive index) of cover material.
    Air
# Optical indices of the materials of the upper coatings.
    1 . 1
    1.2
# Optical indices of the materials of the lower coatings.
    2.3 +i .0
    2.2+i . 5
    2.1 +i .0
# Optical index of substrate material.
    Al
# Wave length in micro m (lambda).
    .635
# Temperature:
    2 0 .
# Optical indices of grating materials.
    1.2
    user
    1.7 +i .0
    2.3+i .0
```

As seen in this example, the indices can be added as real or complex numbers (e.g. "1.1" resp. " $2.2+\mathrm{i} .5$ ") or as code words of known materials (e.g. "Al" for aluminum). In the last case there is a program which interpolates the refractive index from a table in dependence on the temperature and on the wave length. The temperature enters only through such materials given by code words. If the indices are all numbers, then the temperature is not used. The code words for materials can be "Air", "Ag", "Al", "Au", "CsBr", "Cu", "InP", "MgF2", "NaCl", "PMMA", "PSKL", "SF5", "Si", "TlBr", "TlCl", "Cr", "ZnS", "Ge", "TiO2r", "Quarz", "AddOn", and "Si1.0" - "Si2.0". Here "Sia.b" with the real number "x=a.b" indicates a blending of " SiO " and " SiO_{2} " with the refractive index $n=(2-x) \cdot n_{S i O}+(x-1) \cdot n_{S i O_{2}}$. For example, "Air" corresponds to an index $n=1$. Additionally, if the user has linked the right sources, the refractive indices of the program package IMD can be used as well. These are:

a-Al2O3_hagemann	a-Al2O3_llnl_cxro	a-Al2O3
a-Al2O3_palik	a-C_hagemann	a-C_llnl_cxro
Ac_llnl_cxro	a-C	Ac
a-C_palik	a-C_windt88	a-C_windt91
a-C_windt	Ag2O_llnl_cxro	Ag2O
Ag_hagemann	Ag_leveque	Ag_llnl_cxro
IMD-Ag	Ag_palik	Ag_windt
Al2O3-e	Al2O3-e_palik	Al2O3
Al2O3_palik	Al.3Ga.7As	Al.3Ga.7As_palik
AlAs	AlAs_palik	Al_llnl_cxro
IMD-Al	AlN_llnl_cxro	AlN
Al_palik	AlSb	AlSb_palik
Al_shiles	Al_windt	a-SiC_kortright
a-SiC_llnl_cxro	a-SiC	a-SiH
a-SiH_palik	a-Si_llnl_cxro	a-Si
a-SiO2_llnl_cxro	a-SiO2	a-SiO2_palik
a-Si_palik	a-Si_windt88	a-Si_windt91
a-Si_windt92	Au_canfield	Au_hagemann
Au_llnl_cxro	Au_nilsson	IMD-Au
Au_palik	Au_weaver	Au_windt
B2O3_llnl_cxro	B2O3	B4C_llnl_cxro
B4C	BaTiO3-e	BaTiO3-e_palik
BaTiO3	BaTiO3_palik	Be_llnl_cxro
Be	BeO_llnl_cxro	BeO
BeO_palik	Be_palik	B_llnl_cxro
B	BN_llnl_cxro	BN
C10H8O4_llnl_cxro	C10H8O4	C5H8O2_llnl_cxro
C5H8O2	CaF2_llnl_cxro	CaF2
CaF2_palik	CH2CCl2_llnl_cxro	CH2CCl2
CH2_llnl_cxro	CH2	Co2O3_llnl_cxro
Co2O3	Co3O4_llnl_cxro	Co3O4
Co_llnl_cxro	Co	CoO_llnl_cxro
CoO	Co_palik	CoSi2_llnl_cxro
CoSi2	Cr2O3_llnl_cxro	Cr2O3
Cr3C2_llnl_cxro	Cr3C2	Cr3C2_windt
Cr_llnl_cxro	IMD-Cr	CrO_llnl_cxro
Cr_palik	CsI_llnl_cxro	CsI
CsI_palik	Cu2O_llnl_cxro	Cu2O
Cu2O_palik	Cu4Si_llnl_cxro	Cu 4 Si
Cu_llnl_cxro	IMD-Cu	CuO_llnl_cxro
CuO	CuO_palik	Cu_palik
$\mathrm{c}-\mathrm{ZnSe}$	c-ZnSe_palik	c-ZnS
c-ZnS_palik	d-C_llnl_cxro	d-C
d-C_palik	d-C_windt	Fe2O3_llnl_cxro

Fe2O3	Fe3O4_llnl_cxro	Fe3O4
Fe_llnl_cxro	Fe	FeO_llnl_cxro
FeO	Fe_palik	GaAs_llnl_cxro
GaAs	GaAs_palik	GaAs_windt
GaP_llnl_cxro	GaP	GaP_palik
GaSb_llnl_cxro	GaSb	GaSb_palik
g-C_llnl_cxro	g-C	Ge_llnl_cxro
Ge	Ge_palik	H2O_llnl_cxro
H2O	H2O_palik	Hf_llnl_cxro
Hf	HfO2_llnl_cxro	HfO2
Hf-te_lynch	Hf-tm_lynch	Hf_windt
Hg_llnl_cxro	Hg	Hg_palik
HgTe	HgTe_palik	h-ZnS-e
h-ZnS-e_palik	h-ZnS	h-ZnS_palik
InAs	InAs_palik	IMD-InP
InP_palik	InSb	InSb_palik
Ir_llnl_cxro	Ir	Ir_palik
Ir_windt	ir-ZnSe	ir-ZnSe_palik
ir-ZnS	ir-ZnS_palik	KBr
KBr_palik	KCl	KCl_palik
K	K_palik	LiF
LiF_palik	LiNbO3-e	LiNbO3-e_palik
LiNbO3	LiNbO3_palik	Li
Li_palik	MgF2-e	MgF2-e_palik
IMD-MgF2	MgF2_palik	Mg_llnl_cxro
Mg	MgO_llnl_cxro	MgO
MgO_palik	Mn3O4_llnl_cxro	Mn3O4
Mn_llnl_cxro	Mn	MnO2_llnl_cxro
MnO 2	Mo2C_llnl_cxro	Mo2C
MoC_llnl_cxro	MoC	Mo_llnl_cxro
Mo	MoO2_llnl_cxro	MoO 2
MoO3_llnl_cxro	MoO3	Mo_palik
MoS2_llnl_cxro	MoS2	MoSi2_llnl_cxro
MoSi2	MoSi2_windt	Mo_windt88
Mo_windt91	Mo_windt92	IMD-NaCl
NaCl_palik	NaF	NaF_palik
Na	Na_palik	Nb2O5_llnl_cxro
Nb 2 O 5	Nb_llnl_cxro	Nb
NbO2_llnl_cxro	NbO 2	NbO_llnl_cxro
NbO	Nb_palik	Nb_weaver
Nb_windt	Ni.8Cr.2_llnl_cxro	Ni.8Cr. 2
Ni.93V.07_llnl_cxro	Ni.93V. 07	Ni_llnl_cxro
Ni	NiO_llnl_cxro	NiO
Ni_palik	Os_llnl_cxro	Os_lynch

Os	OsO2_llnl_cxro	OsO2
Os_palik	Os_windt	PbSe
PbSe_palik	PbS	PbS_palik
PbTe	PbTe_palik	Pd_llnl_cxro
Pd	PdO_llnl_cxro	PdO
Pd_palik	Pd_weaver	Pd_windt
Pt_llnl_cxro	Pt	PtO2_llnl_cxro
PtO 2	PtO_llnl_cxro	PtO
Pt_palik	Pt_weaver	Pt_windt
Re2O7_llnl_cxro	Re 2 O 7	Re_llnl_cxro
Re	ReO2_llnl_cxro	ReO 2
ReO3_llnl_cxro	ReO3	Re-te_lynch
Re-tm_lynch	Re_windt	Rh2O3_llnl_cxro
Rh2O3	Rh_llnl_cxro	Rh
Rh_palik	Rh_weaver	Rh_windt
Ru_cox	Ru_llnl_cxro	Ru
RuO2_llnl_cxro	RuO 2	RuO4_llnl_cxro
RuO 4	RuSi_llnl_cxro	RuSi
Ru-te_weaver	Ru-tm_weaver	Ru_weaver
Ru_windt88	Ru_windt92	Sc2O3_llnl_cxro
Sc 2 O 3	Sc_llnl_cxro	Sc
ScN_llnl_cxro	ScN	Se-e
Se-e_palik	Se	Se_palik
Si.25Ge. 75	Si.25Ge.75_palik1	Si.25Ge.75_palik2
Si3N4_llnl_cxro	Si3N4	Si3N4_palik
Si3N4_windt	Si.5Ge. 5	Si.5Ge.5_palik1
Si.5Ge.5_palik2	Si.8Ge. 2	Si.8Ge.2_palik1
Si.8Ge.2_palik2	SiC_llnl_cxro	SiC
SiC_osantowski	SiC_palik	SiC_windt
SiC_yanagihara	Si_llnl_cxro	IMD-Si
SiO2-e	SiO2-e_palik	SiO2_llnl_cxro
SiO2	SiO2_palik	SiO_llnl_cxro
SiO	SiO_palik	Si_palik
Si_windt	Sn_llnl_cxro	Sn
SnO2_llnl_cxro	SnO 2	SnO_llnl_cxro
SnO	SnTe	SnTe_palik
SrTiO3	SrTiO3_palik	Ta2O5_llnl_cxro
Ta 2 O 5	TaC_llnl_cxro	TaC
Ta_llnl_cxro	Ta	TaN_llnl_cxro
TaN	Ta_palik	Ta_weaver
Ta_windt	Te-e	Te-e_palik
Te	Te_palik	ThF4
ThF4_palik	TiC_llnl_cxro	TiC
TiC_palik	Ti_kihara	Ti_llnl_cxro

Ti	TiN_llnl_cxro	TiN
TiN_palik	TiO2-e	TiO2-e_palik
TiO2_llnl_cxro	TiO2	TiO2_palik
Ti_weaver	Ti_windt	V2O3_llnl_cxro
V2O3	V2O5_llnl_cxro	V2O5
VC_llnl_cxro	VC	VC_palik
V_kihara	V_llnl_cxro	V
VN_llnl_cxro	VN	VN_palik
VO2_llnl_cxro	VO2	VO_llnl_cxro
VO	V_palik	V_weaver
W_llnl_cxro	W	WO2_llnl_cxro
WO2	WO3_llnl_cxro	WO3
W_palik	WSi2_llnl_cxro	WSi2
W_weaver	W_windt88	W_windt91
Y2O3_llnl_cxro	Y2O3	Y2O3_palik
Y_llnl_cxro	Y	Y_windt
Zn_llnl_cxro	Zn	ZnO_llnl_cxro
ZnO	ZnTe	ZnTe_palik
Zr_llnl_cxro	Zr_lynch	Zr
ZrN_llnl_cxro	ZrN	ZrO2_llnl_cxro
ZrO2	Zr-te_lynch	Zr_windt

On the other hand, the value of the refractive index can be interpolated from a user defined table, indicated by the name of the file. This file is to be located in the current directory of the computation (CLASSICAL/CONICAL/OPTIM). Its name must begin with the letter " u ", must not have a " \sim " as a second letter, and may consist of no more than five letters like e.g. "user". The file consists of at most 1000 lines each with three real numbers, the first is the wave length in micro meter, the second the real part of the corresponding optical index, and the third the imaginary part of the index. At the end of each line a comment beginning with the sign \# can be added. Also the lines beginning with \# are comments. Optical indices with negative real or imaginary parts are not admitted.

If the refractive index is given by a number, then its value is independent for all computations invoked by the input file. However, if the wavelength is varying in accordance with the input file, then a refractive index independent of the wavelength is not realistic. Hence, for varying wavelength, the input of refractive indices through user defined tables resp. through the above mentioned code words is mandatory. In this case an input by numbers is not accepted.

As seen in the example presented at the beginning of this section, first the index of the cover material is given. Then the indices of the materials of upper coated layers follow. These are rectangular layers over the whole period, and their number and widths are given in extra lines before the indices not presented in the example lines from above. If the number of coated layers is zero, then no lines with optical indices are needed. Next the indices of the materials of lower coated layers and that of the substrate follow. The indices of the materials in the area between upper and lower coatings (resp. between cover and substrate material if no rectangular coatings exist) are the last refractive indices of the
input files. These indices are listed from above to below if possible. In some cases the ordering is indicated in the description of the geometrical part, or the indices have to be in accordance with the numbering of the material parts in the file "name.inp". In any case, the first index of the "grating materials" is to be the same as that of the adjacent last upper coating layer (resp. of the cover if there does not exist any rectangular upper coating) and the last index of the "grating materials" is to be the same as that of the adjacent first lower coating layer (resp. of the substrate if there does not exist any rectangular lower coating).

The input of refractive indices can be checked using the executables FEM_CHECK resp. GFEM_CHECK (cf. Sect. 5.3).

5 Computation of Efficiencies Using FEM in CLASSICAL

5.1 How to get an input file "name2.dat"?

First an input file "name2.dat" (cf. the enclosed data file in 12.2) in the subdirectory CLASSICAL is needed. To get this, change the directory to CLASSICAL, copy one of the existing files with tag ".dat", e.g. the file "example.dat" and call it "name2.dat".
cd DIPOG-2.1/CLASSICAL
cp example.dat name2.dat
Change "name2.dat" in the editor according to your requirements. You will find the necessary information as comments in the file "name2.dat". Indeed, each line beginning with "\#" is a comment. Comment lines can be added and deleted without any trouble.

5.2 Simple calculation with minimal output

Now enter the command:
FEM name2
The program is running and produces an output on the screen. Additionally, a result file is produced (compare the similar file enclosed in point 12.6) the name of which is announced on the screen. You will find all Rayleigh coefficients, the efficiencies, and energies on both the screen and in this file. Note that the result file has the tag ".res" and is located in the subdirectory RESULTS. If a lot of data is produced, then computer programs should have an easy access to the data. To enhance readability by computer, a second output file can be produced setting a switch in "name2.dat" to yes. The name of this second file is the same as that of the first but with tag ".erg" instead of tag ".res". The file is normally located in the subdirectory RESULTS. The name "name3" of the result files "../RESULTS/name3.res" resp. "../RESULTS/name3.erg" is indicated by the "name2.dat" lines:

$$
\begin{aligned}
& \text { \# Name of output file. } \\
& \text { name3 }
\end{aligned}
$$

However, if the code is started from a directory different from CLASSICAL or if the output file should be written into a different directory, then the file is to be specified by adding its
path as:

$$
\begin{aligned}
& \text { \# Name of output file. } \\
& \text { path/name3 }
\end{aligned}
$$

Again the tag ".res" resp. ".erg" will be added. In particular, for an output file in the current working directory use:

$$
\begin{aligned}
& \text { \# Name of output file. } \\
& \text {./name3 }
\end{aligned}
$$

The computation proceeds over several levels, where the mesh size is halved at each new level. The maximal number of levels is indicated at the end of "name2.dat" e.g. by:
\# Number of levels.
3
However, if efficiencies are computed for more than one angle of incidence or for several wave lengths (or if a single value of angle/wave length is given by incremental or vector mode, i.e. beginning with the letter I or V), then the computation is performed for the highest level, only.

The ideal choice for the level would be the minimal positive integer such that the solution falls under a certain error bound. We have implemented the following choice. If "name2.dat" contains

```
# Number of levels.
e \(\varepsilon\)
```

with the lower case letter "e" and with ε a number greater than zero, then the code computes the efficiency for the levels $1,2, \ldots$ (but no more than 15) until the maximum of the differences of efficiencies corresponding to two consecutive levels is less than ε. Thus, assuming a monotonic convergence, the smallest level for the given error bound ε is the smaller one of the last two consecutive levels. The efficiencies will be presented on the screen and in the output files for this level. (In other words, a computation for a level higher by one than that of the output is necessary for this variant.) If a computation over several angles, wave lengths or polarizations is required, then the "optimal" level will be determined for the first angle, for the first wave length resp. for the Tm polarization, only. All other calculations are performed with this level. Clearly, there is no warranty that the efficiencies really deviate by a number less than ε from the true values.

5.3 Check before computation, more infos, and plots?

Instead, if openGL is available and if you wish to check your input data, then use the command:

FEM_CHECK name2
All the input information without output data will appear on the screen and in the result file. Moreover, there will appear a picture of the grating geometry with indicated refractive indices on the screen. The picture looks like that on the right-hand side in Figure 5. If

Figure 23: Real part of transverse component of magnetic field. Output of FEM_PLOT via openGL in CLASSICAL.
indicated in the data file "name.dat", then an eps.file of the cross-section is produced.
Instead, if you use the command
FEM_FULLINFO name2
then the same is done as in point 5.2. Additionally, there appears more information (including the full input data and the convergence history, cf. the enclosed file in point 12.5 on the screen and in the result file.

Instead, if openGL or GNUPLOT is available and if you use the command

FEM_PLOT name2

then you have the same results as in point 5.2. Additionally, you will see pictures of the real part, the imaginary part (cf. Figure 23 for an openGL picture and Figure 24 for a GNUPLOT picture), and the square modulus of the solution (z-component of electric field for Te polarization, z-component of magnetic field for Tm polarization). Note that the square modulus is proportional to the energy intensity distribution of the wave. Moreover, similar pictures for the fields above and below the coated grating area will be plot. Program stops at each picture.

To control the graphical facilities of GLTOOLS in FEM_PLOT, use:
Backspace: Enter user control mode.
tab: toggle state change mode.
Return: Quit user control mode.
Space: Mode control.

+ : Increase mouse sensitivity.
,\therefore decrease control parameter.

Figure 24: Imaginary part of transverse component of magnetic field. Output of executable GFEM_PLOT in CLASSICAL via GNUPLOT.
-: Decrease mouse sensitivity.
\therefore increase control parameter.
i : Zoom out.
i: Zoom in.
?: This help.
B: Toggle background color (black/white).
d: Dump actual picture to ppm file (look for ${ }_{-}{ }^{*}$.ppm).
F: Toggle rendering volume frame (bounding box) drawing.
I: Change number of isolines.
.: increase control parameter by a factor.
O: Toggle Ortho.
D: Print actual picture using ppm dump.
R: Reset to internal default.
S: Save actual state (look for .*-rndstate).
V: Start/Stop video recording.
a: Switch to GUI.
c: Toggle remembered lists.
g: Toggle Gouraud/flat shading.
h: This help.
i: Toggle isoline mode.
,: decrease control parameter by a factor.
l: Toggle level surface mode.
m : Toggle model display when moving.
p: Dump actual picture to eps file (look for ${ }^{*}$ - .eps).
q: Mode control (Quit).
r: Restore last saved state.
v : Toggle vscale for plane sections.
w : toggle wireframe mode.
x: Show x orthogonal plane section.
y: Show y orthogonal plane section.
z: Show z orthogonal plane section.
prev: toggle state change mode.
next: toggle state change mode.
left: move left.
up: move up.
right: move right.
down: move down.
Backspace: Enter user control mode.
To continue the computation of the main program press Bar/Space.
After the installation with the package GNUPLOT, the pictures are created interactively with the program on the main terminal window. To continue the computation of the main program, click the main terminal window and press Enter/Return.

Further, if you use the command
GFEM_MATLAB name2
then you have the same computational results as in point 5.2. Additionally, you will obtain data files prepared for a Matlab call. More precisely, using GFEM_MATLAB requires a data file "name2.dat" for a calculation over a single wavelength, a single angle of incidence, and a single level of discretization. Note that if the last should be larger than one, then a single level computation can be enforced by defining the angle of incidence with an incremental input (e.g., the input "I 454620 " for the angle results in a single computation with an angle of 45°). Depending on the input polarization state, the program produces the files:
"fct_RP_TE.m": real part of z-component of electric field vector for Te polarization
"fct_IP_TE.m": imaginary part of z-component of electric field vector for TE polarization
"fct_IN_TE.m": intensity of electric field vector for TE polarization
"fct_RP_TM.m": real part of z-component of magnetic field vector for Tm polarization
"fct_IP_TM.m": imaginary part of z-component of magnetic field vector for Tm polarization
"fct_IN_TM.m": intensity of electric field vector for TM polarization
Here the intensity I is defined as $I:=\Re \mathrm{e} n \cdot|E|^{2}$, where n is the refractive index and where

O Point/Degree of freedom

Figure 25: Trial basis function over a single grid triangle.
E is the electric field vector. If the package Matlab is installed at your computer, you can call these files from Matlab to see the plots.

Finally, if you use the command
GFEM_MOVIE name2
then the input file "name2.dat" is required to contain a single wave length and a single state of polarization, only. The program produces a Matlab file "fct_TE.m" for Te polarization and "fct_TM.m" for Tm polarization. If this is called from Matlab a movie of the time dependent third component of the electric field for TE polarization and of the magnetic field for Tm is shown. Moreover, a movie file "fct_TE.avi" resp. "fct_TM.avi" is created

6 Computation of Efficiencies Using GFEM in CLASSICAL

The same computation from the last section can be performed by generalized Fem (cf. the result file enclosed in point 12.6). The latter is nothing else than the variational approach of the conventional FEM combined with a new trial space for the approximation of the unknown solution. The trial space is defined over the triangular Fem partition and the trial functions are piecewise approximate solutions of the Helmholtz equation. More precisely, for integers $n_{\text {DOF }}$ and $n_{\text {LFEM }}$ with $0<n_{\text {DOF }}$, with $1<n_{\text {LFEM }}$, and with $\left[n_{\text {LFEM }}+1\right]$ a multiple of $\left[n_{\text {DOF }}+1\right]$, the degrees of freedom of the trial space are the function values at the corner points of the triangulations and at the $n_{\text {DOF }}$ points of a uniform partition of each triangle side. The restrictions of the trial functions to the triangle sides are polynomial interpolants of the degrees of freedom. The restrictions of the trial functions to the triangles are the finite element solutions of the Dirichlet problem for the Helmholtz equation over a uniform triangulation of the partition triangle into $\left[n_{\text {LFEM }}+1\right] \times\left[n_{\text {LFEM }}+1\right]$ equal subtriangles (cf. the
trial functions over the grid triangle indicated in Figure 25 with $n_{\text {DOF }}=3$ and $n_{\text {LFEM }}=7$). Hence, GFEM treats the same problems as FEM but is more convenient to treat higher wave numbers and faster for simple geometries. In order to accelerate the computation, one can use a FEM grid which is a uniform refinement of a coarse grid with each coarse triangle split into $\left[n_{\text {UPA }} \times n_{\text {UPA }}\right.$] congruent subtriangles. In this case, the trial space over the congruent grid triangles (approximate Dirichlet solutions) have to be computed only ones and can be reused several times.

To use generalized FEm for FEM, the executables FEM, FEM_CHECK, FEM_FULLINFO, and FEM_PLOT are to be replaced by the codes GFEM, GFEM_CHECK, GFEM_FULLINFO, and GFEM_PLOT, respectively. These executable use the same input file "name2.dat" but require the additional input file "generalized.Dat" (cf. the enclosed file in 12.3). Normally the latter is to be located in the current working directory. If there is no such file in the current working directory and if the output is written into a directory indicated by a certain path, then the code looks for the "generalized.Dat" file also in the directory determined by this path. The file "generalized.Dat" fixes the parameters:

$n_{\text {DOF }}$

Additional degrees of freedom on each triangle side. Indeed, the trial functions on each subdivision triangle are approximate solutions of the Dirichlet problem for the Helmholtz equation s.t. their restriction to the triangle sides coincides with the Lagrange interpolation polynomials on the triangle side. Here interpolation is taken over a uniform grid with $\left[n_{\text {DOF }}+2\right]$ interpolation knots including the two end-points.

$n_{\text {LFEM }}$

Approximate solution determined by Fem over subdivision triangle, where an additional uniform FEM partition on each grid triangle is chosen such that the stepsize is side length divided by $\left[n_{\text {LFEM }}+1\right]$.
$n_{\text {UPA }}$
This is for additional uniform partition of all primary grid triangles into $n_{\text {UPA }} \times n_{\text {UPA }}$ equal subdomains, i.e. the original side of the grid triangle is split into $n_{\text {UPA }}$ sides of uniform partition subtriangles. After this uniform refinement the degrees of freedom and the trial space of approximate Helmholtz solutions are defined using $n_{\text {DOF }}$ and $n_{\text {LFEM }}$.
Change these parameters according to your diffraction problem, computer memory capacity, and computing time requirements. How should they be chosen?

Suppose that $n_{\text {GP }}$ is the number of grid points. Roughly speaking: For the Fem, the computation time as well as the necessary storage capacity is proportional to $\left[n_{\mathrm{GP}}\right]^{2}$. The time for GFEM is proportional to

$$
\begin{equation*}
\frac{\left[n_{\mathrm{GP}}\right]^{2} \times\left[n_{\mathrm{LFEM}}+1\right]^{2}}{\left[n_{\mathrm{UPA}}\right]^{2}}+\left[n_{\mathrm{GP}}\right]^{2} \times\left[n_{\mathrm{DOF}}+1\right]^{2} \tag{6.1}
\end{equation*}
$$

and the storage to $\left[n_{\mathrm{GP}}\right]^{2} \times\left[n_{\mathrm{DOF}}+1\right]^{2}$. Hence, a doubling of $\left[n_{\text {LFEM }}+1\right]$ leads to about the same computing time as halving the mesh size of the grid. Taking into account (6.1), we recommend to choose $n_{\text {UPA }}$ as high as possible since the accuracy is almost independent of $n_{\text {UPA }}$ but the computing time reduces significantly. The only exceptional case, when a larger $n_{\text {UPA }}$ is not efficient, occurs if the geometry forces the triangulation to have a few
large triangles and a huge number of small triangles (e.g. geometries with thin layers). In this case, the next level uniform partition increases the number of grid points and the computation time significantly, whereas a standard triangulation with halved mesh size leads to a small increase of grid points and to about the same numerical error.

If $n_{\text {DOF }}=0$ and $n_{\text {LFEM }}=1$, then the conventional FEM is computed. With $n_{\text {DOF }}=$ 0 , a higher $n_{\text {LFEM }}$ is not recommended. For $n_{\text {DOF }}>1$ and not so restrictive accuracy requirements, $n_{\text {LFEM }}=2 n_{\text {DOF }}+1$ is a good choice. For $n_{\text {DOF }}>1$ and challenging accuracy requirements, a larger $n_{\text {LFEM }}$ is useful. E.g. if $n_{\text {DOF }}=3$, then $n_{\text {LFEM }}=31$ is a good choice. For $n_{\text {DOF }}=7$, one should take, e.g., $n_{\text {LFEM }}=127$ and, for $n_{\text {DOF }}=15$, the value $n_{\text {LFEM }}=511$. However, large $n_{\text {LFEM }}$ will lead to long computation times at least if $n_{\text {UPA }}$ is not large. In case of large wave numbers, long computation times cannot be avoided. More hints on how to chose the right $n_{\text {DOF }}$ and $n_{\text {LFEM }}$ will be given in the numerical tests in Section 9 .

If there is a system of many layers above or below the grating structure, the computation of the non-local boundary condition may become slow. On the other hand, a computation based on piecewise linear approximation like for the FEM matrix might be unnecessary. Note that each boundary segment is split into $n_{\text {LFEM }}+1$ equal parts, and the polynomial basis function is approximated by a piecewise linear interpolation over this uniform grid. In order to reduce computation time, the user can choose a smaller $n_{\text {LFEM }}$ for the discretization of the boundary condition. To this end he has to set the environment variable BND_n_LFEM to the desired value BND_ $n_{\text {LFEM }}$. This value should be such that BND_ $n_{\text {LFEM }}+1$ is a multiple of the number $n_{\text {DOF }}+1$ and that $n_{\text {DOF }} \leq$ BND_ $n_{\text {LFEM }} \leq n_{\text {LFEM }}$.

For the computation of the approximate trial functions of the generalized finite element method, a finite element system of dimension $\left(n_{\text {LFEM }}-1\right) * n_{\text {LFEM }} / 2$ is to be solved. If the user sets the environment variable CHOOSE_PMETHOD to yes, then the solution of this sparse finite element system is reduced to the solution of an $\left(n_{\text {DOF }}-1\right) * n_{\text {DOF }} / 2$ dimensional finite element system, where the trial functions are the piecewise linear interpolations of the bubble functions for the p-version of the finite element method. The polynomial degree is $p=n_{\text {DOF }}+1$. Thus the generalized finite element method turns into a p-method with elimination of internal degrees of freedom and with finite element matrix approximated by piecewise linear interpolation.

7 Computation of Efficiencies Using FEM/GFEM in CONICAL

The computation in the case of conical diffraction is completely the same as for the classical computation (cf. the result file enclosed in point 12.7). The same names of executables can be used as in Section 2. The only differences are:

- All computations are to be done in CONICAL instead of CLASSICAL.
- Of course, the now used input file "name2.dat" (cf. the enclosed data file in 12.4) is longer than that of the classical case. To create such a file copy the example file "example.dat" in CONICAL not that in CLASSICAL.
- The input file for the generalized method "generalized.Dat" is the same but has a

Figure 26: Efficiencies depending on wavelength. Output of PLOT_PS.
new name. Now it is called "conical.Dat".

8 Plot a Graph with the Efficiencies

If a result file "name3.res" is produced containing the values for several wave lengths or incident angles, then one can have a look at the two-dimensional graph of the efficiencies depending on the wave length or incident angle. Make sure to be in the subdirectory RESULTS, where the result file, e.g. "name3.res" exists. Then enter the command:

```
PLOT_DISPLAY name3 *1,*2,*3,*4
```

Here ${ }^{*} 1,{ }^{*} 2,{ }^{*} 3$, and ${ }^{*} 3$ stand for the efficiency/energy to be plot. E.g. setting ${ }^{*} 1$ equal to R-1 means efficiency of reflected mode of order -1 , setting *2 equal to $\mathrm{T}+0$ means efficiency of transmitted mode of order 0 , setting ${ }^{*} 3$ equal to RE means total reflected energy, and setting *4 equal to TE means total transmitted energy. The number of efficiency/energy can vary between one and nine. Now a graph with the efficiencies/energies pops up on the screen (cf. Figure 26). To interrupt the presentation of the picture, press Enter/Return.

Alternatively, one can enter the command:

$$
\text { PLOT_PS name } 3 * 1,{ }^{*} 2,{ }^{*} 3,{ }^{*} 4
$$

Everything is like in the previous case. However, instead of showing the graph on the screen, a ps file (cf. Figure 26) is produced. The name of the ps file will be printed on the screen.

In the case of classical diffraction and for result files with varying wave lengths or/and varying angles of incidence, one can enter the command:

$$
\text { PLOT_MATLAB name } 3 * 1
$$

Everything is like in the previous case. However, instead of creating a two-dimensional graph, a Matlab file is produced. This file with the tag ".m" can be called from Matlab and shows a graph or an isoline picture of the efficiency, phase shift, resp. energy depending on the wave length and the angles of incidence. The name of the Matlab file will be printed on the screen. Similarly, in the case of classical diffraction and for result files with varying wave lengths or/and varying angles of incidence, one can enter the command:
PLOT_GNUPLOT name3 *1

Everything is like in the previous case. However, instead of creating the Matlab file a gnuplot ps file is produced. The name of the ps file will be printed on the screen.

9 Parameter Test for GFEM

Here we present the results of test computations to give an orientation for the choice of the parameters $n_{\text {DOF }}$ and $n_{\text {LFEM }}$. Recall that $n_{\text {GP }}$ is the number of grid points. For simplicity, we present results with $n_{\text {UPA }}=1$, only. We consider a trapezoidal grating with basis angle of 60° and with one material which covers 60% of the period. The height of the trapezoid is 0.3 times length of period and the refractive index is 2.0 . Moreover, we assume an additional layer which covers the whole period and which has a refractive index of 1.3 and a height of 0.05 times period. The substrate has a refractive index of 1.5 and the superstrate is air. The grating is illuminated in a classical Te scenario by light of wave length 635 nm under an incidence angle of 65°. The length of one period is $1 \mu \mathrm{~m}, 2 \mu \mathrm{~m}, 4 \mu \mathrm{~m}, 8 \mu \mathrm{~m}$, and $16 \mu \mathrm{~m}$. In other words, we have chosen the geometry generated by the code words

$$
\begin{aligned}
& \text { \# Grating data: } \\
& \text { trapezoid } 60 a 1 b c
\end{aligned}
$$

where a is 0.6 times the length of the period, b is 0.3 times period, and c is 0.05 times period.

Now the accuracy and the best choice of parameters depend on the maximal relative wave number which is period times refractive index over wave length. We have checked the accuracy in percent. For instance, one percent accuracy means that: The absolute error of the percentage of energy reflected by the grating is less than 1% (the value itself is less than 100%). The absolute error of the percentage of light transmitted into the minus first order is less than 1% (the efficiency itself is less than 100%). The absolute error of real or imaginary part of the Rayleigh coefficient of the minus first reflected mode is less than 0.01 (the modulus of the coefficient itself is less than one).

The corresponding relative mesh siz $⿷^{16} h_{r}$ and the corresponding number of refinement levels (starting from 1 for the coarsest) necessary to achieve an accuracy up to $1 \%, 0.1 \%$, and 0.01%, respectively, are presented in the Tables 1.3. Here we define the relative mesh

[^11]size h_{r} of the grid by ${ }^{17}$
$$
h_{r}=\frac{2 \pi}{d} \frac{h}{n_{\mathrm{DOF}}+1}
$$
with h the absolute mesh size of the triangulation and with d the length of the period. By the symbol k_{r} in the tables we denote the maximal relative wave number (length of period d times refractive index divided by wave length). The numerical methods are either FEM or $\operatorname{GFEM}\left(n_{\text {DOF }}, n_{\text {LFEM }}\right)$, i.e. the GFEM with the parameters $n_{\text {DOF }}, n_{\text {LFEM }}$, and $n_{\text {UPA }}=1$. Stars indicate that the accuracy is not reached due to the restricted main memory of the computer. The number of grid points n_{GP} is 67 for the first level, 75 for the second, 169 for the third, 600 for the fourth, 2430 for the fifth, 8858 for the sixth, 39698 for the seventh, 159140 for the eighth, and 637914 for the ninth (cf. the computation time in (6.1)).

It is impossible to derive a general recommendation from the numbers in the Tables 1.3. We have indicated the necessary relative mesh size for the fastest ${ }^{18}$ method with parameter $n_{\text {UPA }}=1$ by bold letters. However, the methods with doubled $\left[n_{\text {DOF }}+1\right]$ and $\left[n_{\text {LFEM }}+1\right]$ and doubled mesh size (one lower refinement level) require almost the same computation time and lead to the same accuracy. If $\left[n_{\text {LFEM }}+1\right]$ is large and the grid is of a higher refinement level, then the computing time can be reduced by first generating a preliminary grid with the doubled maximal mesh size and second applying an additional uniform refinement step of each triangle into four equal subtriangles. Recall that the trial functions for congruent triangles need to be computed only once. In other words, reducing the level by one and changing $n_{\text {UPA }}$ from 1 to 2 , turns GFEM into a competitive method even if $\left[n_{\text {LFEM }}+1\right]$ is large. Similarly, the level can be reduced by 2 or 3 , and $n_{\text {UPA }}$ can be set to 4 or 8 . So GFEM with larger $n_{\text {DOF }}$ and $n_{\text {LFEM }}$ outperforms the GFEM indicated by bold letters.

For Tm polarization and the same grating and light scenario, we get similar results. E.g., in the case of $k_{r}=12.60$ (i.e. $d=4$) and $\operatorname{GFEm}(3,31)$, we get an error of $1 \%, 0.1 \%$, and 0.01% choosing the refinement levels 4,6 , and 6 , respectively. For $k_{r}=25.20$ (i.e. $d=8$) and $\operatorname{GFEm}(7,127)$, we get an error of $1 \%, 0.1 \%$, and 0.01% choosing the refinement levels 4,4 , and 5 , respectively.

[^12]| METHOD | $k_{r}=3.15$
 $(\mathrm{~d}=1)$ | $k_{r}=6.30$
 $(\mathrm{~d}=2)$ | $k_{r}=12.60$
 $(\mathrm{~d}=4)$ | $k_{r}=25.20$
 $(\mathrm{~d}=8)$ | $k_{r}=50.39$
 $(\mathrm{~d}=16)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| FEM | $0.401(4)$ | $0.089(6)$ | $0.024(8)$ | $\star \star \star$ | $\star \star \star$ |
| $\operatorname{GFEM}(1,3)$ | $0.401(3)$ | $0.201(4)$ | $0.044(6)$ | $0.012(8)$ | $\star \star \star$ |
| $\operatorname{GFEM}(1,7)$ | $0.401(3)$ | $0.201(4)$ | $0.044(6)$ | $0.023(7)$ | $\star \star \star$ |
| $\operatorname{GFEM}(1,15)$ | $0.401(3)$ | $0.201(4)$ | $0.044(6)$ | $0.023(7)$ | $0.012(8)$ |
| $\operatorname{GFEM}(3,7)$ | $0.524(1)$ | $0.201(3)$ | $0.044(5)$ | $0.012(7)$ | $\star \star \star$ |
| $\operatorname{GFEM}(3,15)$ | $0.524(1)$ | $0.324(2)$ | $0.100(4)$ | $0.022(6)$ | $0.012(7)$ |
| $\operatorname{GFEM}(3,31)$ | $0.524(1)$ | $0.324(2)$ | $0.100(4)$ | $0.044(5)$ | $0.012(7)$ |
| $\operatorname{GFEM}(3,63)$ | $0.524(1)$ | $0.324(2)$ | $0.100(4)$ | $0.044(5)$ | $0.044(5)$ |
| $\operatorname{GFEM}(7,15)$ | $0.262(1)$ | $0.262(1)$ | $0.050(4)$ | $0.011(6)$ | $\star \star \star$ |
| $\operatorname{GFEM}(7,63)$ | $0.262(1)$ | $0.262(1)$ | $0.100(3)$ | $0.050(4)$ | $0.022(5)$ |
| $\operatorname{GFEM}(7,127)$ | $0.262(1)$ | $0.262(1)$ | $0.100(3)$ | $0.050(4)$ | $0.022(5)$ |
| $\operatorname{GFEM}(7,255)$ | | $0.262(1)$ | $0.100(3)$ | $0.100(3)$ | $0.022(5)$ |
| $\operatorname{GFEM}(15,31)$ | | $0.131(1)$ | $0.131(1)$ | $0.011(5)$ | $\star \star \star$ |
| $\operatorname{GFEM}(15,127)$ | | $0.131(1)$ | $0.131(1)$ | $0.050(3)$ | $0.011(5)$ |
| $\operatorname{GFEM}(15,255)$ | | | $0.131(1)$ | $0.050(3)$ | $0.025(4)$ |
| $\operatorname{GFEM}(15,511)$ | | | | $0.081(2)$ | $0.025(4)$ |

Table 1: Relative mesh size h_{r} (refinement levels) necessary to reach 1% accuracy.

METHOD	$k_{r}=3.15$ $(\mathrm{~d}=1)$	$k_{r}=6.30$ $(\mathrm{~d}=2)$	$k_{r}=12.60$ $(\mathrm{~d}=4)$	$k_{r}=25.20$ $(\mathrm{~d}=8)$	$k_{r}=50.39$ $(\mathrm{~d}=16)$
FEM	$0.047(7)$	$0.024(8)$	$\star \star \star$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(1,3)$	$0.088(5)$	$0.044(6)$	$0.012(8)$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(1,7)$	$0.201(4)$	$0.088(5)$	$0.023(7)$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(1,15)$	$0.201(4)$	$0.088(5)$	$0.023(7)$	$0.012(8)$	$\star \star \star$
$\operatorname{GFEM}(3,7)$	$0.100(4)$	$0.044(5)$	$0.012(7)$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(3,15)$	$0.201(3)$	$0.100(4)$	$0.022(6)$	$0.012(7)$	$\star \star \star$
$\operatorname{GFEM}(3,31)$	$0.524(1)$	$0.201(3)$	$0.044(5)$	$0.022(6)$	$\star \star \star$
$\operatorname{GFEM}(3,63)$	$0.524(1)$	$0.201(3)$	$0.044(5)$	$0.022(6)$	$0.012(7)$
$\operatorname{GFEM}(7,15)$	$0.100(3)$	$0.100(3)$	$0.011(6)$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(7,63)$	$0.100(3)$	$0.262(1)$	$0.050(4)$	$0.011(6)$	$\star \star \star$
$\operatorname{GFEM}(7,127)$	$0.262(1)$	$0.262(1)$	$0.100(3)$	$0.050(4)$	$0.011(6)$
$\operatorname{GFEM}(7,255)$		$0.262(1)$	$0.100(3)$	$0.050(4)$	$0.022(5)$
$\operatorname{GFEM}(15,31)$		$0.050(3)$	$0.011(5)$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(15,127)$		$0.131(1)$	$0.050(3)$	$0.025(4)$	$\star \star \star$
$\operatorname{GFEM}(15,255)$			$0.081(2)$	$0.050(3)$	$0.011(5)$
$\operatorname{GFEM}(15,511)$				$0.050(3)$	$0.025(4)$

Table 2: Relative mesh size h_{r} (refinement levels) necessary to reach 0.1% accuracy.

METHOD	$k_{r}=3.15$ $(\mathrm{~d}=1)$	$k_{r}=6.30$ $(\mathrm{~d}=2)$	$k_{r}=12.60$ $(\mathrm{~d}=4)$	$k_{r}=25.20$ $(\mathrm{~d}=8)$	$k_{r}=50.39$ $(\mathrm{~d}=16)$
FEM	$0.013(9)$	$0.013(9)$	$\star \star \star$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(1,3)$	$0.023(7)$	$0.023(7)$	$\star \star \star$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(1,7)$	$0.044(6)$	$0.044(6)$	$\star \star \star$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(1,15)$	$0.088(5)$	$0.044(6)$	$0.012(8)$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(3,7)$	$0.022(6)$	$0.022(6)$	$\star \star \star$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(3,15)$	$0.044(5)$	$0.044(5)$	$\star \star \star$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEm}(3,31)$	$0.100(4)$	$0.100(4)$	$0.012(7)$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(3,63)$	$0.201(3)$	$0.100(4)$	$0.022(6)$	$0.012(7)$	$\star \star \star$
$\operatorname{GFEM}(7,15)$	$0.022(5)$	$0.022(5)$	$\star \star \star$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEm}(7,63)$	$0.100(3)$	$0.100(3)$	$0.011(6)$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(7,127)$	$0.262(1)$	$0.162(2)$	$0.022(5)$	$0.011(6)$	$\star \star \star$
$\operatorname{GFEM}(7,255)$			$0.050(4)$	$0.022(5)$	$0.011(6)$
$\operatorname{GFEM}(15,31)$		$0.025(4)$	$\star \star \star$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(15,127)$		$0.081(2)$	$0.011(5)$	$\star \star \star$	$\star \star \star$
$\operatorname{GFEM}(15,255)$			$0.025(4)$	$0.011(5)$	$\star \star \star$
$\operatorname{GFEM}(15,511)$				$0.025(4)$	$0.011(5)$

Table 3: Relative mesh size h_{r} (refinement levels) necessary to reach 0.01% accuracy.

10 Optimization Tools

10.1 Optimizing using OPTIMIZE in OPTIM

10.1.1 The optimization problem

Optimizing an optical grating means the following. First the user has to fix:

- the period of the grating
- the refractive indices of the cover and substrate material
- one or more wave lengths of light $\lambda_{j}, j=1, \ldots j_{\lambda}$
- one or more angles of incidence $\theta_{k}, k=1, \ldots, k_{\theta}$ and $\phi_{l}, l=1, \ldots, l_{\phi}$
- one or two types of polarization $t_{m} \in\{\mathrm{Te}, \mathrm{Tm}\}, m=1, \ldots, m_{t} \leq 2$

Beside all these, he has to fix a class of gratings (cf. the subsequent Section 10.2). Such a class is a certain grating geometry made of several materials. The gratings of the class can be described by a small number of real parameters $r_{i}, i=1, \ldots, N$, which are either geometrical parameters like lengths, widths and heights or the real and/or imaginary parts of the refractive indices. Together with the class of gratings, the user fixes the number of parameters. He restricts the admissibility (feasibility) domain of real parameters by adding upper bounds u_{i} and lower bounds l_{i}. To each set of parameters $r:=\left\{r_{i}\right\}$ with $l_{i} \leq r_{i} \leq u_{i}, i=1, \ldots, N$ there exists a unique grating. Searching for an optimal grating is equivalent to finding the optimal set of parameters r. The optimality of a grating resp. set of parameters, however, is measured by an objective functional $f(r)$ which is an arithmetic expression of the following data of the grating determined by the parameter set r :

- efficiencies $e_{n}^{ \pm}$
- phase shift: ${ }^{19} p_{n}^{ \pm}$(in degrees)
- reflected energy $e^{+}:=\sum_{n} e_{n}^{+}$(in per cent)
- transmitted energy $e^{-}:=\sum_{n} e_{n}^{-}$
- total energy $e:=e^{+}+e^{-}$

Here n runs through the indices of reflected resp. transmitted plane wave modes. Note that all these efficiencies, phase shifts, and energies depend of course on $\lambda_{j}, \theta_{k}, \phi_{l}$, and t_{m}. Moreover, for the conical diffraction, there exist two different efficiencies ($e_{n}^{1, \pm}$ and $e^{2, \pm}$) and phase shifts ($p_{n}^{1, \pm}$ and $p^{2, \pm}$) depending on the polarization splitting (cf. Section 2.3). The optimization problem

$$
\begin{align*}
& \quad f(r) \quad \longrightarrow \inf \\
& r \in \text { class : } \tag{10.1}\\
& l_{i} \leq r_{i} \leq u_{i}
\end{align*}
$$

[^13]consists in finding a parameter set $r_{\text {opt }}$ for which the value $f\left(r_{o p t}\right)$ is less or equal to $f(r)$ for all r in the set of the admissible parameter sets of the class.

The arithmetic expression for $f(r)$ looks a little bit complicated and is defined as

$$
\begin{align*}
f(r):= & \sum_{j=1}^{j_{\lambda}} \sum_{k=1}^{k_{\theta}} \sum_{l=1}^{l_{\phi}} \sum_{m=1}^{m_{t}} S_{j, k, l, m}, \tag{10.2}\\
S_{j, k, l, m}:= & \bar{w}^{+} e^{+}+\bar{w}^{-} e^{-}+\bar{w} e+\sum_{n} \bar{w}_{n}^{+} e_{n}^{+}+\sum_{n} \bar{w}_{n}^{-} e_{n}^{-}+\sum_{n} \bar{w}_{n}^{1,+} e_{n}^{1,+}+ \\
& \sum_{n} \bar{w}_{n}^{1,-} e_{n}^{1,-}+\sum_{n} \bar{w}_{n}^{2,+} e_{n}^{2,+}+\sum_{n} \bar{w}_{n}^{2,-} e_{n}^{2,-}+\sum_{n} w_{n}^{+}\left[e_{n}^{+}-c_{n}^{+}\right]^{2}+ \\
& \sum_{n} w_{n}^{1,+}\left[e_{n}^{1,+}-c_{n}^{1,+}\right]^{2}+\sum_{n} w_{n}^{2,+}\left[e_{n}^{2,+}-c_{n}^{2,+}\right]^{2}+\sum_{n} w_{n}^{-}\left[e_{n}^{-}-c_{n}^{-}\right]^{2}+ \\
& \sum_{n} w_{n}^{1,-}\left[e_{n}^{1,-}-c_{n}^{1,-}\right]^{2}+\sum_{n} w_{n}^{2,-}\left[e_{n}^{2,-}-c_{n}^{2,-}\right]^{2}+w^{+}\left[e^{+}-c^{+}\right]^{2}+ \\
& w^{-}\left[e^{-}-c^{-}\right]^{2}+w[e-c]^{2}+ \\
& \sum_{n} \tilde{w}_{n}^{1,+}\left[p_{n}^{1,+}-\tilde{c}_{n}^{1,+}\right]_{*}^{2}+\sum_{n} \tilde{w}_{n}^{2,+}\left[p_{n}^{2,+}-\tilde{c}_{n}^{2,+}\right]_{*}^{2}+ \\
& \sum_{n} \tilde{w}_{n}^{1,-}\left[p_{n}^{1,-}-\tilde{c}_{n}^{1,-}\right]_{*}^{2}+\sum_{n} \tilde{w}_{n}^{2,-}\left[p_{n}^{2,-}-\tilde{c}_{n}^{2,-}\right]_{*}^{2}, \\
{\left[p_{n}^{ \pm}-\tilde{c}_{n}^{ \pm}\right]_{*}^{2}:=} & {\left[\sin \left(\frac{p_{n}^{ \pm}-\tilde{c}_{n}^{ \pm}}{2}\right)\right]^{2}, }
\end{align*}
$$

where the $\bar{w}^{ \pm}, \bar{w}, \bar{w}_{n}^{ \pm}, \bar{w}_{n}^{l, \pm}, w_{n}^{ \pm} \geq 0, w_{n}^{l, \pm} \geq 0, w^{ \pm} \geq 0, w \geq 0 \tilde{w}_{n}^{ \pm}, \tilde{w}_{n}^{l, \pm}, c_{n}^{ \pm}, c_{n}^{l, \pm}, c^{ \pm}, c$, $\tilde{c}_{n}^{ \pm}$, and $\tilde{c}_{n}^{l, \pm}$ are constants fixed by the user. Moreover, these constants can be chosen in dependence on $\lambda_{j}, \theta_{k}, \phi_{l}$, and t_{m}. Note that the phase shift is an angle between -180° and 180°. Since the angles -180° and 180° correspond to the same phase shift, we have replaced the quadratic term $\left[p_{n}^{+}-\tilde{c}_{n}^{+}\right]^{2}$ by its periodic variant $\left[p_{n}^{+}-\tilde{c}_{n}^{+}\right]_{*}^{2}$. Choosing $\tilde{w}_{n}^{ \pm}>0$, i.e. including phase shift terms, can be dangerous. Namely, if the corresponding efficiency is zero, then the phase shift is not defined. Even for small efficiencies, a very fine Fem grid is needed to obtain acceptable approximate values for the phase shifts.

For example, if the user wants to design a beam splitter into four transmitted directions, then he would choose, e.g., the objective functional

$$
\begin{equation*}
f(r)=\left[e_{-1}^{-}-25\right]^{2}+\left[e_{0}^{-}-25\right]^{2}+\left[e_{1}^{-}-25\right]^{2}+\left[e_{2}^{-}-25\right]^{2} \tag{10.3}
\end{equation*}
$$

Choosing the functional $f(r)=e^{+}$, would result in some kind of anti-reflection grating. If the user is concerned with the synthesis problem (inverse problem), then the efficiencies are determined by measurements and the grating realizing these values is sought. Knowing that the sought grating is in a certain class of gratings described by the parameter sets r, the inverse problem is equivalent to the minimization of $f(r)=\sum_{n, \pm}\left[e_{n}^{ \pm}-c_{n}^{ \pm}\right]^{2}$ with $c_{n}^{ \pm}$ chosen as the corresponding measured efficiencies.

If the type of polarization and the coordinate system for the incoming wave vector is "TE/TM", then the phase shifts are computed first for the TE polarization and then for
the Tm case. We denote this dependence by adding a (Te) and (Тм), respectively. Instead of the terms

$$
\begin{align*}
& \sum_{n} \tilde{w}_{n}^{1,+}\left[p_{n}^{1,+}-\tilde{c}_{n}^{1,+}\right]_{*}^{2}+\sum_{n} \tilde{w}_{n}^{2,+}\left[p_{n}^{2,+}-\tilde{c}_{n}^{2,+}\right]_{*}^{2}+ \tag{10.4}\\
& \sum_{n} \tilde{w}_{n}^{1,-}\left[p_{n}^{1,-}-\tilde{c}_{n}^{1,-}\right]_{*}^{2}+\sum_{n} \tilde{w}_{n}^{2,-}\left[p_{n}^{2,-}-\tilde{c}_{n}^{2,-}\right]_{*}^{2}
\end{align*}
$$

in (10.2) one might wish to include

$$
\begin{align*}
& \sum_{n} \tilde{w}_{n}^{1,+}\left[p_{n}^{1,+}(\mathrm{TE})-p_{n}^{1,+}(\mathrm{TM})-\tilde{c}_{n}^{1,+}\right]_{*}^{2}+\sum_{n} \tilde{w}_{n}^{2,+}\left[p_{n}^{2,+}(\mathrm{TE})-p_{n}^{2,+}(\mathrm{TM})-\tilde{c}_{n}^{2,+}\right]_{*}^{2}+ \tag{10.5}\\
& \sum_{n} \tilde{w}_{n}^{1,-}\left[p_{n}^{1,-}(\mathrm{TE})-p_{n}^{1,-}(\mathrm{TM})-\tilde{c}_{n}^{1,-}\right]_{*}^{2}+\sum_{n} \tilde{w}_{n}^{2,-}\left[p_{n}^{2,-}(\mathrm{TE})-p_{n}^{2,-}(\mathrm{TM})-\tilde{c}_{n}^{2,-}\right]_{*}^{2}
\end{align*}
$$

To indicate that terms of this type are to be included instead of the corresponding terms depending on one polarization only, one easily adds a "TE/TM" before the input of the number of terms (cf. Section 10.1.3).

Similarly, if the type of polarization is "TE/TM", if the illumination is classical (angle of incidence $\phi=0$), and if the output data is presented in the "TE/TM" form (cf. Section 2.3), then the objective functional might contain terms with the phase difference between the classical Te and Tm case. In other words, one might need terms like

$$
\begin{equation*}
\sum_{n} \tilde{w}_{n}^{1,+}\left[p_{n}^{1,+}(\mathrm{TE})-p_{n}^{2,+}(\mathrm{TM})-\tilde{c}_{n}^{1,+}\right]_{*}^{2}+\sum_{n} \tilde{w}_{n}^{1,--}\left[p_{n}^{1,-}(\mathrm{TE})-p_{n}^{2,-}(\mathrm{TM})-\tilde{c}_{n}^{1,--}\right]_{*}^{2} \tag{10.6}
\end{equation*}
$$

Such terms are indicated by adding a "CL:TE/TM" before the input of the number of terms (cf. Section 10.1.3).

10.1.2 Optimization via OPTIMIZE

In order to solve the above optimization problem, the user changes to the subdirectory OPTIM. Here he finds the executable OPTIMIZE, the input file "conical.Dat" with the control parameters of the generalized FEM (cf. the description of the similar file "generalized.Dat" in Section 6), as well as the example input file "example.dat" (cf. the enclosed data file in Section 12.8). At first, the user creates his own input file, e.g. "name.dat", containing all the data of the grating geometry, of the illumination conditions, the initial values of the parameters ${ }^{20}$ to be optimized, the data of the objective function, and that of the method

[^14]of optimization. The best way to do this is to copy "example.dat" to "name.dat" and to change the data to meet the requirements of the user. Numerous comments contained in this file will make it easy to get the right input (for some more details cf. the subsequent Section 10.1.3). Then the user enters the command

OPTIMIZE name
and the optimization starts. All methods of optimization are iterative. The number of the actual iteration step and the value of the objective function at the actual iterative solution are printed on the screen. If the last iteration step is finished, there appears the minimal value of the objective functional and the corresponding set of optimal parameters on the screen. Finally, in the directory RESULTS a file "name2.res" (cf. the enclosed result file in Section 12.9) is created which contains the input data of the optimization problem, some data of the iteration process, and the optimal solution. The name "name2" is to be fixed by the user in the input file "name.dat".

Clearly, the optimization methods for (10.1) are based on the same finite element discretization which is implemented for the simulation of diffraction (cf. Sections 2 and 5-7). Even the gradients of the objective functions can be computed using the same finite element matrices. If the efficiencies and phase shifts are determined with a discretization error $\varepsilon_{d i s}$, then the error of the objective functional evaluation is about $\varepsilon_{d i s}$ and the error of the numerical approximation to the minimal value $f\left(r_{o p t}\right)$ is expected to be about $\varepsilon_{d i s}$. Unfortunately, the numerical approximation of the optimal solution $r_{\text {opt }}$ is expected to have an error about $\sqrt{\varepsilon_{d i s}}$, only.

Alternatively to the simple call of OPTIMIZE, the user may enter one of the following commands: If OPTIMIZE is called with the flag -f , then the optimization is performed like in the case without flag, but further data on the several iteration steps will be printed on the screen. With the flag -s, the optimization is performed like in the case without flag and, afterwards, a plot of the resulting optimal grating is shown on the screen. The call of OPTIMIZE with one of the flags -i, -g , and -p does not invoke any optimization method. Such a call is designed to prepare the optimization. The flag -i results in an input check which includes a plot of the initial grating (like those in Figures 29 and 31) and the computation of the corresponding value of the objective functional. A call with -g checks the local error of the gradient computation. An approximation for the absolute and relative error of the gradient at the initial solution is determined. Since the true value of the gradient is unknown, the true gradient is replaced by the approximate gradient computed on a refined FEM mesh.

If OPTIMIZE is called with the flag $-f$, then the value of the objective function and the parameters of the actual iterate are shown on the screen. After a few iteration steps the differences in the objective function and the parameters of consecutive iterates might be very small such that the user wants to stop the iteration and to switch to the next higher level determined by the incremental input for the level. This can be accomplished with the kill command. The user opens another window and enters
ps -al \| grep optim
in order to find out the process number PID of the process optimize, optimize $_$, resp. optimize_l. Then he enters

Figure 27: Matlab plot of an objective functional and its gradient field.
kill -10 PID
with PID replaced by the PID number of the process. The flag -10 of the kill command raises the signal SIGUSR1 (cf. e.g. the manual page signal(7) of the linux system). If the optimization catches this signal, then the iteration is interrupted. However, the computation continues. If required by the input file, an iteration on a higher level starts. If not, then the last iterative solution will be presented as the final solution.

For the gradient based numerical optimization schemes (cf. Sections 10.3.2 10.3.4), the successful computation of the gradient is essential. Therefore, a visualization should help to control the gradient approximation. In case of inaccurate gradients, the discretization level must be refined. The call of OPTIMIZE together with the flag -p results in a Matlab code file "MLplot.m" for a plot of the objective function and the gradient field over a twodimensional parameter set (cf. Figure 27). The code can be started calling "MLplot" from Matlab. In the case of higher dimensional optimization problems, the user can choose any pair of two parameters and fix the others in the input file "name.dat" by setting upper and lower bounds to equal values. This way any two-dimensional section of the graph of the objective function and the gradient field can be displayed.

10.1.3 The input file for the optimization

An input file "name.dat" (cf. the enclosed data file in Section 12.8) in the subdirectory OPTIM is needed. To get this, change the directory to OPTIM, copy one of the existing files
with tag ".dat", e.g. the file "example.dat" and call it "name.dat".
cd DIPOG-2.1/CLASSICAL
cp example.dat name2.dat
Change "name.dat" in the editor according to your requirements. You will find the necessary information as comments in the file "name.dat". Indeed, each line beginning with "\#" is a comment. Comment lines can be added and deleted without any trouble.

The first input of "name.dat" is the name "name2" of the result file "name2.res" without the tag ".res" which will be written into the subdirectory RESULTS. This is done by the lines:

```
# Name of output file.
    name3
```

These lines are followed by several inputs concerning the grating data which are similar to those in the input files for the conical diffraction (cf. the file of Section 12.3 and compare Section (6). Of course, the geometry description is different since now the geometry of the grating is to be optimized. The geometry is described e.g. by the lines:
\# Number nd_geom_param of real parameters:
6
\# Lower bounds dl_geom_param:
-0.5
-0.5
1.
0.
1.5
0.
\# Upper bounds du_geom_param:
0.5
0.5
1.
0.
1.5
0.
\# Number ni_geom_param of integer parameters:
3
\# Integer parameters i_geom_param:
1
2
2
\# Number ns_geom_param of name parameters:
0
\# Parameter names s_geom_param:
\#
\# Parameters d_geom_param of initial grating:
0.07

0 .
Thus the parameter set of the grating geometry contains nd_geom_param=6 real parameters, ni_geom_param $=3$ integers, and ns_geom_param $=0$ names (character strings). The integer and name parameters are given in the lines following their number. The first integer parameter i_geom_param[1] is the index of the grating class. The meaning of all the other parameters depends on the class and will be explained in Section 10.2. In general, the real parameters d_geom_param[i] are the parameters r_{i} subject to the optimization. The upper and lower bounds u_{i} and l_{i} are the numbers du_geom_param[i] and dl_geom_param[i], respectively. Clearly, the choice du_geom_param $[\mathrm{i}]=\mathrm{dl}$ _geom_param $[\mathrm{i}]$ would fix the parameter and only those d_geom_param[i] with du_geom_param[i] greater than the value dl_geom_param[i] are optimized. Note that the geometry description includes geometry parameters like heights, widths, and lengths as well as material parameters like the refractive indices.

In the following input lines of "name.dat" the level of discretization is given. Level equal to l means that the Fem grid for the computation of the objective function and its gradient is created with a maximal stepsize of $h_{0} 2^{-l}$, where h_{0} is the coarsest stepsize. For example, the level is set to 3 by

\# Number of levels:
 3

If the computation of the objective functional is time consuming, then it might be better to perform a few iteration on a coarser Fem level first, and to utilize the coarse level optimal solution as the initial solution on the fine level. Therefore, an incremental input is possible. For instance,
\# Number of levels:

I 152

indicates that the level takes all values $1+j * 2$ with $j=0, \ldots$ such that $1+j * 2 \leq 5$. Hence, using the initial values, the optimization starts with an iteration on level 1. The optimal solution of level 1 is passed to the initial solution of the level 3 iteration. After the level 3 iteration is finished, the level 3 solution will be the initial solution of level 5 . Hopefully, this is a better initial solution than that given by the user in "name.dat", and, after a smaller number of iterations, the optimal solution of level 5 is reached.

After the input of the level, the parameters $\bar{w}^{ \pm}, \bar{w}, \bar{w}_{n}^{ \pm}, \bar{w}_{n}^{l, \pm}, w_{n}^{ \pm}, w_{n}^{l, \pm}, w^{ \pm}, w \tilde{w}_{n}^{ \pm}, \tilde{w}_{n}^{l, \pm}$, $c_{n}^{ \pm}, c_{n}^{l, \pm}, c^{ \pm}, c, \tilde{c}_{n}^{ \pm}$, and $\tilde{c}_{n}^{l, \pm}$ of the objective functional f in 10.2 are given. For instance, the lines

```
#QUADRATIC TERMS, TRANSMITTED EFFICIENCY
# n_qua_tr:
    2
# w_qua_tr:
```

2.
3.

\# o_qua_tr:
-1
0
\# c_qua_tr:
10.
20.
indicate that the number of quadratic efficiency terms with non-zero weight factor is two, i.e. there are exactly two terms in the sum $\sum_{n} w_{n}^{-}\left[e_{n}^{-}-c_{n}^{-}\right]^{2}$ of 10.2$)$. The corresponding orders n of the transmitted plane wave mode are -1 and 0 , the weight factors $w_{-1}^{-}=2$ and $w_{0}^{-}=3$, and the prescribed efficiency values $c_{-1}^{-}=10$ and $c_{0}^{-}=20$. In other words, the term $\sum_{n} w_{n}^{-}\left[e_{n}^{-}-c_{n}^{-}\right]^{2}$ in 10.2 turns into $2\left[e_{-1}^{-}-10\right]^{2}+3\left[e_{0}^{-}-20\right]^{2}$. The lines

\#QUADRATIC TERMS, FIRST (TE or S) TRANSMITTED EFFICIENCY

\# n_qua_1_tr:
1
\# w_qua_1_tr:
2.
\# o_qua_1_tr:
-1
\# c_qua_1_tr:
10.
indicate that the number of first typ ϵ^{21} quadratic efficiency terms with non-zero weight factor is one, and the sum $\sum_{n} w_{n}^{1,-}\left[e_{n}^{1,-}-c_{n}^{1,-}\right]^{2}$ turns into $2\left[e_{-1}^{1,-}-10\right]^{2}$. Moreover, the values $c_{n}^{ \pm}, c_{n}^{l, \pm}, \tilde{c}_{n}^{ \pm}, \tilde{c}_{n}^{l, \pm}, c$, and $c^{ \pm}$may depend on the wave lengths λ_{j}, on the angles of incidence θ_{k} and ϕ_{l}, and on the polarization type t_{m}. If e.g. the wave length runs through the values $\lambda_{j}, j=1,2,3=j_{\lambda}$, then the $j_{\lambda} \times$ n_qua_tr $=6$ different values can be fixed, e.g., by

```
#QUADRATIC TERMS, TRANSMITTED EFFICIENCY
# n_qua_tr:
    2
# w_qua_tr:
    WAL
    2.
    3.
    2.
    3.
    2.
    3.
# o_qua_tr:
```

[^15]\# c_qua_tr:
WAL
10.
15.
20.
25.
30.
35.

In this case, the expression $\sum_{j} \sum_{n} w_{f, n}^{-}\left[e_{n}^{-}\left(\lambda_{j}\right)-c_{n}^{-}\left(\lambda_{j}\right)\right]^{2}$ turns into:

$$
\begin{aligned}
& 2\left[e_{-1}^{-}\left(\lambda_{1}\right)-10\right]^{2}+3\left[e_{0}^{-}\left(\lambda_{1}\right)-15\right]^{2}+2\left[e_{-1}^{-}\left(\lambda_{2}\right)-20\right]^{2}+3\left[e_{0}^{-}\left(\lambda_{2}\right)-25\right]^{2}+ \\
& 2\left[e_{-1}^{-}\left(\lambda_{3}\right)-30\right]^{2}+3\left[e_{0}^{-}\left(\lambda_{3}\right)-35\right]^{2}
\end{aligned}
$$

Note that in our example, though only the values c_{n}^{-}depend on the wave length, the input of the corresponding weight numbers is done in the same mode. In general, the weights $w_{\ldots} \ldots$ and the corresponding prescribed values $c_{\ldots .}$ must always be given in the same mode. In other words, if one of the two is constant and the other depends on an entity, then the constant values must be repeated to get the same input form.

Replacing, WAL by ATH, APH or POL and the following $j_{\lambda} \times$ n_qua_tr values for c_{n}^{-} and w_{n}^{-}by $k_{\theta} \times$ n_qua_tr, $l_{\phi} \times$ n_qua_tr, and $m_{t} \times$ n_qua_tr values, respectively, the user can define the values c_{n}^{-}and w_{n}^{-}depending on the angles θ and ϕ, and on the polarization type, respectively. If the user replaces WAL by $\mathrm{W}+\mathrm{T}, \mathrm{W}+\mathrm{P}, \mathrm{T}+\mathrm{P}, \mathrm{WAL}+\mathrm{POL}, \mathrm{ATH}+\mathrm{POL}$, and $\mathrm{APH}+\mathrm{POL}$ and the following $j_{\lambda} \times$ n_qua_tr values by $j_{\lambda} \times k_{\theta} \times$ n_qua_tr, $j_{\lambda} \times l_{\phi} \times$ n_qua_tr, $k_{\theta} \times l_{\phi} \times$ n_qua_tr, $j_{\lambda} \times m_{t} \times$ n_qua_tr, $k_{\theta} \times m_{t} \times$ n_qua_tr, and $l_{\phi} \times m_{t} \times$ n_qua_tr values, respectively, then the user can fix the dependence on wave length plus θ, on wave length plus ϕ, on θ plus ϕ, on wave length plus polarization type, on θ plus polarization type, and on ϕ plus polarization type, respectively. Choosing WTP, W+T+POL, W+P+POL, and $\mathrm{T}+\mathrm{P}+\mathrm{POL}$ for WAL as well as $j_{\lambda} \times k_{\theta} \times l_{\phi} \times$ n_qua_tr, $j_{\lambda} \times k_{\theta} \times m_{t} \times$ n_qua_tr, $j_{\lambda} \times l_{\phi} \times m_{t} \times$ n_qua_tr, and $k_{\theta} \times l_{\phi} \times m_{t} \times$ n_qua_tr, values, respectively, the dependence on wave length plus θ plus ϕ, on wave length plus θ plus polarization type, on wave length plus ϕ plus polarization type, and on θ plus ϕ plus polarization type, respectively, is managed. Replacing WAL by WTP + POL and adding $j_{\lambda} \times k_{\theta} \times l_{\phi} \times m_{t} \times$ n_qua_tr input numbers, the dependence on wave length plus θ plus ϕ plus polarization type is obtained ${ }^{22}$.

As mentioned in Section 10.1.1, adding a "TE/TM" before the input of n_phs_j_re resp. n_phs_ j _tr the terms (10.4) can be replaced by (10.5). E.g., for the second type reflected phase shifts the corresponding input can look like:

> \# n_phs_2_re:
> TE/TM

[^16]In the case of the terms (10.5) an input of the weights w_phs_ j re resp. w_phs_ j _tr and of the prescribed values c_phs_j_re resp. c_phs_j_tr beginning with a sequence containing POL is not possible since the phase shifts for different polarization are included into one term, only. Finally, suppose that input and output are of type "TE/TM" and that the angle of incidence ϕ is zero (cf. Section 2.3). Then, adding a "CL:TE/TM" before the input of n_phs_1_re resp. n_phs_1_tr, the terms (10.4) are replaced by 10.6). This looks like

```
# n_phs_1_tr:
    CL:TE/TM
    2
```

In general, the objective functional may depend on 999 different values of efficiencies/phase shifts/energies. If more than 999 efficiencies/phase shifts/energies are needed the environment variable NMB_OF_DATA must be set to a number larger than the number of required efficiencies/phase shifts/energies.

Finally, the file "name.dat" has to fix the scheme of numerical optimization together with its control parameters. Generally, this looks like

```
# Maximal number of iterations:
    10000
# Indicator for optimization method:
    1
# ni_opt:
    1
# i_opt:
    3
# nd_opt:
    5
# d_opt:
    1 .
    0.001
    1e-3
    1e-2
    1e-2
# Scaling parameters d_geom_scal:
    1.
    1.
    1.
```

Here the indicator 1 is the index of the numerical method. The number and the meaning of the other parameters depend on the indicator value. They will be explained in Section 10.3. In the example from above the numerical method of index 1 requires one integer parameter i_opt[1] and five real control parameters d_opt[1], d_opt[2], d_opt[3], d_opt[4], and d_opt[5]. Beside the control parameters, the successful run of the local optimization routines depends on the scaling of the parameters d_geom_param $[j]$ by the scaling factors d_geom_scal $[j], j=1, \ldots$,nd_geom_param (cf. Section 10.3.1).

If an optimization over more than one level is performed, then the maximal number of iterations can be chosen in dependence on the level. For instance, if the input of the level is the incremental "I 152 ", then there are three different levels 1,3 , and 5 . The input

```
# Maximal number of iterations:
    LEV
    10
    20
    10000
```

would restrict the number of level 1 iteration to 10 , that of level 3 to 20 , and that of level 5 to 10000 .

10.1.4 The locality of the solution. A warning

The parameter set $r_{\text {opt }}=\left\{r_{i}: i=1, \ldots, N\right\}$ for which $f\left(r_{o p t}\right) \leq f(r)$ for all r in the fixed class of admissible parameters is called the global optimal solution. Since the objective functional is continuous and since the class of parameters is compact, the existence of $r_{\text {opt }}$ is guaranteed. However, the optimal solution is, in the general case, not unique. Moreover, the topography of the graph of the objective function is often quite complex. Usually, there exist a lot of local minima. Note that a set of parameters $r_{l o c}$ is called local minimum if, for all r close to $r_{l o c}$, the value $f\left(r_{l o c}\right)$ is less or equal to $f(r)$. Sometimes, there exists even a submanifold in the class of admissible parameter sets consisting of local minima.

Unfortunately, the final result of the numerical optimization schemes is often a local minimum instead of global optimum. Indeed, the gradient based methods (cf. Sections 10.3 .210 .3 .4 and 10.3 .6 are so called local methods which are designed to determine a local minimum. To find a global minimum, the user should start the local methods from several sets if initial parameters and to take the local optimal solution with the minimal value of the objective functional as a global solution. Of course, there is no warranty that the true global minimum has been found. On the other hand, frequently, the local minimizer corresponds to a value of the objective function quite close to the minimum. Such a local minimum may be just as good as the global optimal solution.

Clearly, one can utilize optimization methods designed to find global minimizers. Usually, these global optimizers are much slower than local methods. Other global optimizers use more information on the optimization problem which are not natural in our applications. The only global algorithm in the package DIPOG-2.1 is the simulated annealing (cf. Section 10.3.5) which is a stochastic method. In other words, if the parameters are chosen adequately, then the solution of simulating annealing is a global solution with probability one. Choosing the right parameters, however, is not easy. Either the number of necessary iterations might be large and the computing time might be not acceptable or the algorithm might stuck in a local minimizer. So there is no warranty even with the global simulated annealing.

Finally, let us mention that the user is free to combine global and local methods. First he should apply a certain number of simulated annealing steps. Using the final solution of simulated annealing as the initial solution, he should apply a local method to end up with an improved final solution.

10.1.5 Maximum likelihood estimator

Suppose only efficiency data is measured and suppose that the measured values are sample values of random variables. More precisely, suppose that the measured $c_{n}^{i, \pm}$ is normally distributed with expectation $e_{n}^{i, \pm}\left(r_{\text {opt }}\right)$ and variance

$$
\left[\sigma_{n}^{i, \pm}\right]^{2}=a^{2}\left[e_{n}^{i, \pm}\left(r_{o p t}\right)\right]^{2}+b^{2},
$$

where b is the back ground noise level and where a is a yet unknown constant factor. If the measurements are independent, then the joint distribution of the measurement data takes the form

$$
\varrho\left(\left\{c_{n}^{i, \pm}\right\}\right)=\varrho\left(a, r ;\left\{c_{n}^{i, \pm}\right\}\right)=\prod_{i, \pm, n} \frac{1}{\sqrt{2 \pi} \sqrt{a^{2}\left[e_{n}^{i, \pm}\left(r_{o p t}\right)\right]^{2}+b^{2}}} e^{-\frac{\left(c_{n}^{i, \pm}-e_{n}^{i, \pm}\left(r_{o p t}\right)\right)^{2}}{2\left[a^{2}\left[e_{n}^{i, \pm}\left(r_{o p t}\right)\right]^{2}+b^{2}\right]}}
$$

Hence, given a fixed measurement data $\left\{c_{n}^{i, \pm}\right\}$, the maximum likelihood estimator determines those model parameters r and a for which the density $\varrho\left(a, r ;\left\{c_{n}^{i, \pm}\right\}\right)$ is maximal. In other words, the maximum likelihood approach determines r and a minimizing the functional

$$
f(r, a):=\sum_{i, \pm, n}\left\{\log \left(a^{2}\left[e_{n}^{i, \pm}(r)\right]^{2}+b^{2}\right)+\frac{\left(c_{n}^{i, \pm}-e_{n}^{i, \pm}(r)\right)^{2}}{a^{2}\left[e_{n}^{i, \pm}(r)\right]^{2}+b^{2}}\right\}
$$

over the domain defined by $0 \leq a$ and $l_{i} \leq r_{i} \leq u_{i}$.
The optimization can be switched to this maximum likelihood method by changing the input data file "name.dat" as follows. Firstly, all weights for energies and all numbers for the involved linear efficiency resp. quadratic phase-shift terms must be set to zero. Secondly, the weight inputs must be like

```
# QUADRATIC TERMS, FIRST (TE or S) REFLECTED EFFICIENCY
    Max_Like a b
    0.
    1 .
```

Here the symbol a stands for the initial guess of the variance factor a and b for the fixed back ground noise level b. The "weight" numbers following after the first line must be listed like the weights of quadratic efficiency terms. Their values, however, must be zero or one. A one indicates that the term with the corresponding efficiency is included into the summation for the objective functional f and a zero that it is not.

10.2 Classes of gratings which can be optimized

10.2.1 General parameters

For the description of the geometry nd_geom_param real, ni_geom_param integer, and ns_geom_param name parameters (character string with less than 250 characters) are needed.

These are stored in the vectors:

```
d_geom_param[j], j=1,\ldots.,nd_geom_param
i_geom_param[j],j=1,\ldots, ni_geom_param
s_geom_param[j], j=1,\ldots, ns_geom_param
```

The integer and name parameters are fixed by the user. The vector of real parameters will be optimized. Therefore, initial values of these d_geom_param $[j], j=1, \ldots$, nd_geom_param are to be fixed by the user. Moreover, the real parameters are restricted to intervals. The upper bounds du_geom_param $[j]$ and lower bounds dl_geom_param $[j]$ of the intervals are given by the user. The user can even fix a real parameter to a constant value setting the corresponding upper bound equal to the lower.

Some of the real parameters are the real or imaginary part of a refractive index (cf. the following subsections of Section 10.2). Suppose now that this should be fixed to a constant value, i.e. the real parameter is not included into the set of optimization parameters. Similarly as for the simulation by DIPOG-2.1 (cf. Section 4), such parameters can be chosen from predefined lists. For instance, if the refractive index in the simulation would be determined by the name "AlAs", then the parameter input d_geom_param $[j]$ of the real part of the refractive index can now be given as the string "Re AlAs". Clearly, the parameter input d_geom_param $[k]$ of the corresponding imaginary part of the refractive index is to be given as "Im AlAs". In any case, if a real resp. imaginary part of a refractive index is determined by such a string input, then the corresponding imaginary resp. real part must be defined the same way. Moreover, the corresponding bounds dl_geom_param[j], du_geom_param $[j]$, dl_geom_param $[k]$, and du_geom_param $[k]$ must be determined with the same input strings. Note that, for more than one wavelengths involved in the computation of the objective functional, DIPOG- 2.1 cannot optimize the refractive indices depending on the wavelengths. Therefore, for multiple wavelengths, all real parameters must be fixed to a "constant" value independent of the optimization process but, of course, depending on the wavelength. In other words, for multiple wavelengths, the input by strings is mandatory.

In some applications with a large number of geometrical parameters, only a small number of parameters can be chosen freely and the other depend on these free parameter through explicit formulas. If the j th real parameter d_geom_param $[j]$ is a function of the parameters d_geom_param $\left[k_{l}\right], l=1, \ldots, L$, then the input of the bounds dl_geom_param $[j]$ and du_geom_param $[j]$ and the initial value d_geom_param $[j]$ is to be replaced by adding the dependency function. More precisely, instead of the numbers for du_geom_param $[j]$ and d_geom_param $[j]$ the word "Dep" indicates that the corresponding parameter depends on other parameters. The number for dl_geom_param $[j]$ must be replaced by the string "Dep:" followed by the dependency function. This function is to be written as a c-code, where the argument d_geom_param $\left[k_{l}\right]$ is denoted by " $\mathrm{p} k_{l}$ ". For instance, the dependency

$$
\text { d_geom_param }[3]=\frac{\text { d_geom_param }[7] \cdot \text { d_geom_param }[8]}{\text { d_geom_param }[2]}
$$

together with the values d_geom_param[1]=0.5 bounded to the prescribed interval $[0.1,0.9]$ and d_geom_param $[2]=0.3$ from the interval $[0.2,0.4]$ is indicated by the input lines
\# Lower bounds dl_geom_param:
0.1

```
    0.2
    Dep: p7*p8/p2
# Upper bounds du_geom_param:
    0.9
    0 . 4
    Dep
# Number ni_geom_param of integer parameters:
# Integer parameters i_geom_param:
    ...
# Number ns_geom_param of name parameters:
    0
# Parameter names s_geom_param:
########################################
# Parameters d_geom_param of initial grating:
    0.5
0.3
Dep
```

To avoid contradictions, the arguments d_geom_param $\left[k_{l}\right]$ of a dependency function must be free parameters.

If possible one should try to present rational dependency in the standard form
Dep: $f_{1}+\left(f_{2}\right) /\left(f_{3}\right)$
where each f_{i} stands for an expression including the variables pj , constants, and the operations "+", "-", and "*" but no blanks and no brackets. The code realizes that the dependency is rational and generates code for the derivatives. If the dependency is not rational or not in the standard form, then the derivatives are approximated by difference formulas.

The number of integer parameters is larger or equal to two. The first i_geom_param[1] is an index between one and six indicating that the grating belongs to one of the six grating classes.

- i_geom_param[1]=1: Profile grating determined by a polygonal profile function
- i_geom_param $[1]=2$: Profile grating determined by general polygonal profile curve I
- i_geom_param $[1]=3$: Profile grating determined by general polygonal profile curve II
- i_geom_param $[1]=4$: Stack of trapezoids
- i_geom_param $[1]=5$: General grating with polygonal interface to be optimized
- i_geom_param $[1]=6$: Bridge composed of trapezoids under light in the EUV range

The second number i_geom_param[2] is the number of different materials contained in the grating including the cover and substrate material.

In general, the code will generate geometry input files of the form described in Section 3. The upper bound for the mesh size is fixed by the input lines

\# Upper bound for mesh size: 0.5

contained in the generated input files. However, this automatically chosen value 0.5 can be changed by the user setting the environment variable BND_MESH_SIZE to the desired value before calling the optimization routines.

10.2.2 Profile grating determined by a polygonal profile function

The first class (i_geom_param[1]=1) is a profile grating without coatings defined by a profile function which is the cross section of the interface between cover and substrate material. Thus the number of materials is i_geom_param $[2]=2$. The profile is supposed to be the graph of a piecewise linear function. The class has no name parameters (ns_geom_param=0) and ni_geom_param $=3$ integer parameters. The integer value i_geom_param[3] is the number N of knots of the profile curve in the interior of the period, i.e. with x-coordinate strictly between zero and period d. Hence, the grating profile is the polygonal curve connecting the points

$$
(0,0),\left(h, y_{1}\right),\left(2 h, y_{2}\right), \ldots,\left(\mathrm{N} h, y_{\mathrm{N}}\right),(d, 0)
$$

where $h=d /(\mathrm{N}+1)$. The number of real input parameters nd_geom_param is equal to i_geom_param $[3]+4$, and the first i_geom_param[3] parameters define the profile curve by $y_{j}=$ d_geom_param $[j], j=1, \ldots$, i_geom_param[3]. The last four parameters describe the materials. More precisely, the refractive indices of the cover and substrate materials are:

$$
\begin{aligned}
& \text { d_geom_param }[\mathrm{k}+1]+\mathrm{i}^{*} \text { d_geom_param }[k+2] \text {, } \\
& \text { d_geom_param }[\mathrm{k}+3]+\mathrm{i}^{*} \text { d_geom_param }[k+4] \text {, }
\end{aligned}
$$

where $k=$ i_geom_param[3]. Clearly, the real parts of these indices must be positive and the imaginary parts non-negative. The imaginary part of the cover material must vanish. Moreover, the refractive indices must be fixed, i.e.

$$
\begin{aligned}
& \text { du_geom_param }[k]=\text { dl_geom_param }[k] \text {, } \\
& \quad k=\text { i_geom_param }[3]+1, \ldots \text {,i_geom_param }[3]+4 .
\end{aligned}
$$

10.2.3 Profile grating determined by general polygonal profile curve I

The second class (i_geom_param[1]=2) is a profile grating without coatings defined by a profile curve which is the cross section of the interface between cover and substrate material. Thus the number of materials is i_geom_param[2]=2. The profile is supposed to be a polygonal curve. The class has no name parameters (ns_geom_param=0) and ni_geom_param=3 integer parameters. The value i_geom_param[3] is the number N of knots of the profile curve in the interior of the period, i.e. with x-coordinate strictly between zero and period d. In other words, the grating profile is the polygonal curve connecting the points

$$
(0,0),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{\mathrm{N}}\right),(d, 0)
$$

with arbitrary real values x_{j} and y_{j} such that $0<x_{j}<d$ and such that the nonadjacent polygonal sides do not intersect each other (no self-intersection). The number of real parameters is nd_geom_param=2i_geom_param[3]+4 and the first 2i_geom_param[3]
parameters define the profile curve by $x_{j}=$ d_geom_param $[2 j-1], \quad y_{j}=$ d_geom_param $[2 j]$, $j=1, \ldots$, i_geom_param[3]. The last four parameters describe the materials. More precisely, the refractive indices of the cover and substrate materials are:

$$
\begin{aligned}
& \text { d_geom_param }[\mathrm{k}+1]+\mathrm{i}^{*} \mathrm{~d} \text { _geom_param }[k+2] \text {, } \\
& \text { d_geom_param }[\mathrm{k}+3]+\mathrm{i}^{*} \mathrm{~d} \text { _geom_param }[k+4] \text {, }
\end{aligned}
$$

where $k=2$ i_geom_param[3]. Clearly, the real parts of these indices must be positive and the imaginary parts non-negative. The imaginary part of the cover material must vanish. Moreover, the refractive indices must be fixed, i.e.

$$
\begin{aligned}
& \text { du_geom_param }[k]=\text { dl_geom_param }[k], \\
& \quad k=2 \text { i_geom_param }[3]+1, \ldots, 2 \mathrm{i} \text { _geom_param }[3]+4 .
\end{aligned}
$$

Given an arbitrary parameter set, the self-intersection of the polygonal curve is checked in the program. For simplicity, however, the corresponding restriction functionals are not included into the choice of search directions for the optimization algorithms (cf. Section 10.3). Hence, using this class and local optimization methods, only local minima away from the boundary of the domain of admissibility can be detected. The next class provides a proper treatment of the restriction functionals corresponding to self-intersection.

10.2.4 Profile grating determined by general polygonal profile curve II

The third class (i_geom_param $[1]=3$) is a profile grating without coatings defined by a profile curve which is the cross section of the interface between cover and substrate material. Thus the number of materials is i_geom_param[2]=2. The profile is supposed to be a polygonal curve. The class has no name parameters (ns_geom_param=0) and ni_geom_param=3 integer parameters. The value i_geom_param[3] is the number N of knots of the profile curve in the interior of the period, i.e. with x-coordinate strictly between zero and period d. In other words, the grating profile is the polygonal curve connecting the points

$$
(0,0),\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{\mathrm{N}}\right),(d, 0)
$$

with arbitrary real values x_{j} and y_{j} such that $0<x_{j}<d$ and such that some additional restrictions are satisfied. These additional restrictions guarantee that non-adjacent polygonal sides do not intersect each other. The number of real parameters nd_geom_param is equal to 2i_geom_param[3]+5 and the first 2i_geom_param[3] parameters define the profile curve by $x_{j}=$ d_geom_param[2j-1], $y_{j}=$ d_geom_param[2j], $j=1, \ldots$, ,i_geom_param[3]. The next four parameters describe the materials. More precisely, the refractive indices of the cover and substrate materials are:

$$
\begin{aligned}
& \text { d_geom_param }[\mathrm{k}+1]+\mathrm{i}^{*} \text { d_geom_param }[k+2], \\
& \text { d_geom_param }[\mathrm{k}+3]+\mathrm{i}^{*} \mathrm{~d} \text { _geom_param }[k+4],
\end{aligned}
$$

where $k=2$ i_geom_param[3]. Clearly, the real parts of these indices must be positive and the imaginary parts non-negative. The imaginary part of the cover material must vanish. The last parameter d_geom_param $[k]$ with the index $k=2$ i_geom_param[3]+5 is a threshold parameter for the additional restrictions. This threshold and the refractive indices must be fixed, i.e.

$$
k=2 \text { i_geom_param }[3]+1, \ldots, 2 \text { i_geom_param }[3]+5 .
$$

In order to introduce the additional restrictions, the corner points are denoted by $P_{0}:=(0,0), P_{j}:=\left(x_{j}, y_{j}\right), j=1, \ldots, \mathrm{~N}$, and $P_{\mathrm{N}+1}:=(d, 0)$. Excluding self-intersection means to guarantee:

- distance between neighbour corner points is positive
- each corner point is outside of an ellipsoidal neighbourhood of each polygonal side not containing the corner
- no intersection of non-adjacent sides of polygonal curve

Using the threshold parameter $\varepsilon:=$ d_geom_param $[k]$, the above restrictions can be reformulated as:

$$
\begin{align*}
&\left|P_{i}-P_{i+1}\right| \geq \varepsilon d, i=0, \ldots, \mathrm{~N} \tag{10.7}\\
&\left|P_{j}-P_{m}\right|+\left|P_{j}-P_{m-1}\right|-\left|P_{m}-P_{m-1}\right| \geq \varepsilon\left|P_{m}-P_{m-1}\right|, m=1, \ldots, \mathrm{~N}+1 \\
& \overline{P_{m-1} P_{m}} \cap \overline{P_{i-1} P_{i}}=\emptyset, m, i=1, \ldots, \mathrm{~N}+1,|m-i|>1 .
\end{align*}
$$

Note that the first two types of restrictions are included in the choice of the new search direction for the conjugate gradient algorithm (cf. Section 10.3.2). The last is automatically fulfilled for a new iterative solution if this is close to the last iterate.

10.2.5 Stack of trapezoids

The fourth class (i_geom_param[1]=4) is a flat grating with a stack of trapezoids put on the flat interface (cf. Figure 28 and the example in Figure 29). The trapezoids are located with their parallel sides in the direction of the x-axis, and one trapezoid is placed over the other such that the upper resp. lower sides of the two adjacent trapezoids coincide. All these trapezoids do not exceed the period $\{(x, y): 0 \leq x \leq d\}$. If necessary, additional coating layers beneath the grating structure are allowed. ${ }^{23}$

The class has no name parameters (ns_geom_param=0) and ni_geom_param=2 integer parameters. The value i_geom_param[2] is the number of different materials which is equal to the number N of trapezoids plus two (two for substrate and cover material). The number of real parameters nd_geom_param is equal to $5 \cdot$ i_geom_param[2]- $4=5 N+6$. These parameters include five reals for each trapezoid, two reals for the location of the stack of trapezoids, and four reals for the refractive indices of the substrate and cover material. In particular (cf. Figure 28), if k is a positive integer less or equal to N, then the parameter d_geom_param $[5 \mathrm{k}-4]=h_{k}>0$ is the height of the k th trapezoid measured in $\mu \mathrm{m}$. The parameter d_geom_param $[5 \mathrm{k}-3]=b_{k} / d \in(0,1]$ is the ratio of the x coordinate of the right upper corner of the k th trapezoid over the period d of the grating. The real d_geom_param $[5 \mathrm{k}-2]=$

[^17]

Figure 28: Stack of trapezoids.
$a_{k} / b_{k} \in[0,1)$ is the ratio of the x coordinate of the left upper corner of the k th trapezoid over the x coordinate of the right upper corner. The last parameters of the k th trapezoid form the refractive index n_{k} of the material, i.e. the refractive index is

$$
n_{k}=\text { d_geom_param }[5 \mathrm{k}-1]+\mathrm{i}^{*} \text { d_geom_param }[5 \mathrm{k}] .
$$

The next parameter d_geom_param[5N+1] is the ratio $b_{0} / d \in(0,1]$ of the x coordinate of the right lower corner of the first trapezoid over the period d of the grating. The next real parameter d_geom_param $[5 \mathrm{~N}+2]=a_{0} / b_{0} \in[0,1)$ is the ratio of the x coordinate of the left lower corner of the first trapezoid over the x coordinate of the right lower corner. Finally, the refractive indices of the cover and substrate material are given as

$$
\begin{aligned}
& n_{c o}=\text { d_geom_param }[5 \mathrm{~N}+3]+\mathrm{i}^{*} \text { d_geom_param }[5 \mathrm{~N}+4], \\
& n_{s u}=\text { d_geom_param }[5 \mathrm{~N}+5]+\mathrm{i}^{*} \text { d_geom_param }[5 \mathrm{~N}+6] .
\end{aligned}
$$

Setting upper bound equal to lower bound, the user must fix these two refractive indices, i.e., the equality

$$
\text { du_geom_param }[j]=\text { dl_geom_param }[j]
$$

must be satisfied for $j=5 N+3, \ldots, 5 N+6$. Clearly, the real parts of all refractive indices must be positive and the imaginary parts non-negative. The imaginary part of the cover material must vanish.

Note that the presented choice of real parameters has been adapted to the optimization problem in order to avoid additional restrictions. Let us call it the internal type of parameters. More convenient is, probably, the following variant of external real parameters using the angles and side lengths of the trapezoids. The program recognizes that the parameter set is of this second type if there is an angle greater than one degree on a place where the input value of the internal variable must be a ratio less than one. If the input is of the external type, then the data is transformed into the internal parameter type. The optimization is performed, and the final result is transformed back to the external type.

Let us define the external type of parameter input. For a positive $k \leq N$, the parameter d_geom_param $[5 \mathrm{k}-4]=h_{k}>0$ is as before the height of the k th trapezoid measured in $\mu \mathrm{m}$. The parameter d_geom_param $[5 \mathrm{k}-3]=b_{k}-a_{k}$ is the length of the upper side of the k th trapezoid measured in $\mu \mathrm{m}$. The real d_geom_param[5k-2] is the interior angle α_{k} (in degrees) at the right lower corner of the k th trapezoid. The last parameters of the k th trapezoid form the refractive index n_{k} of the material, i.e. the refractive index is

$$
n_{k}=\text { d_geom_param }[5 \mathrm{k}-1]+\mathrm{i}^{*} \text { d_geom_param }[5 \mathrm{k}] .
$$

The next parameter d_geom_param $[5 \mathrm{~N}+1]=a_{0}$ is the x coordinate (in $\mu \mathrm{m}$) of the left lower corner of the first trapezoid. The next real parameter d_geom_param $[5 \mathrm{~N}+2]=b_{0}$ is the x coordinate (in $\mu \mathrm{m}$) of the right lower corner of the first trapezoid. Finally, the refractive indices of the cover and substrate material are given as in the internal parameter setting.

In the case of a switch from external to internal parameters, the input of the upper and lower bounds for the angles and upper side lengths of the trapezoids and for the x coordinates of the lower corner points of the stack are ignored. Instead, the upper and lower bounds for the internal parameters d_geom_param[l] with $l=5 k-3, l=5$ i_geom_param[2]9 are set to 0.9 and 0.1 , respectively. Similarly, the upper and lower bounds for the internal parameters d_geom_param[l] with $l=5 k-2$ and with $l=5$ i_geom_param[2]-8 are set to 0.9 and 0. , respectively.

10.2.6 Optimization of a polygonal interface inside a general grating

The fifth class (i_geom_param $[1]=5$) is designed to optimize a small detail inside a fixed complex grating geometry. The basis is a general grating defined by an input file "nameG.inp". This is to be extended by introducing a new polygonal interface curve dividing one of the material areas of the given grating into two (cf. Figure 31 where the blue rectangle on the left is split into a blue and yellow part on the right by a polygonal consisting of three segments). The task of optimization is to find the optimal interface among all the polygonal interface curves with fixed end-points dividing the fixed area.

The divided area A is supposed to be convex. Moreover, A must not reach to the upper and lower boundary lines of the grating cross section. The new interface connects two prescribed boundary points P_{1} and P_{2} of the convex area A which must be in the list of grid points in "nameG.inp". Moreover, the new polygonal interface is sought in form of a graph of a piecewise linear function defined over a uniform partition of the straight-line segment $\left[P_{1}, P_{2}\right]$. In other words, there is a positive integer N such that the new interface is the polygonal curve connecting the end-points P_{1} and P_{2} through the corner points Q_{1}, Q_{2}, \ldots, Q_{N} located in the interior of the convex area A. The orthogonal projections of these

Figure 29: Example grid for stack of trapezoids.
Q_{k} onto the the straight-line segment $\left[P_{1}, P_{2}\right]$ are supposed to form a uniform partition of [P_{1}, P_{2}]. Hence, if ν is the unit normal perpendicular to $\left[P_{2}-P_{1}\right]$ and pointing to the left of $\left[P_{1}, P_{2}\right]$, then the interior corners are given as (cf. Figure 30)

$$
\begin{equation*}
Q_{k}:=P_{1}+\frac{k}{N+1}\left[P_{2}-P_{1}\right]+h_{k} \nu, k=1, \ldots, N \tag{10.8}
\end{equation*}
$$

where h_{k} denotes the hight of Q_{k} over [P_{1}, P_{2}].
The refractive indices of the grating materials (except those of the substrate and cover material) are included into the set of optimization operators. A special case of this class (switched on by choosing i_geom_param $[3]=0$) is the optimization of only the refractive indices without any geometry parameter, namely the optimization of the refractive indices in the fixed grating geometry "nameG.inp".

The number ns_geom_param of name parameters is one and s_geom_param[1] contains the name "nameG" of the file "nameG.inp" without tag ".inp". Recall that this is the

Figure 30: Location of interface in yellow area A.
geometry input file of the grating which is to be extended (cf. Section 3.2 and the example in Section 12.1).

The fifth class requires the following ni_geom_param=6 integer parameters:
i_geom_param[1]=index 5 of the grating class
i_geom_param $[2]=$ number of materials which must be one plus the number of different materials indicated in "nameG.inp" if i_geom_param[3]>0 and which is exactly the number of different materials indicated in "nameG.inp" if i_geom_param[3]=0
i_geom_param $[3]=$ number N of interior corners in the polygonal interface, non-negative integer
i_geom_param[4]=index of end-point P1 as a grid point in "nameG.inp" resp. dummy if i_geom_param $[3]=0$
i_geom_param[5]=index of end-point P2 as a grid point in "nameG.inp" resp. dummy if i_geom_param[3]=0
i_geom_param $[6]=$ index of convex domain A which is divided by the new polygonal interface as a subdomain in "nameG.inp" resp. dummy if i_geom_param[3]=0
After dividing the convex domain A by the new interface, the first subdomain on the right of
the polygonal interface running from P1 to P2 inherits the material index i_geom_param[6], and the index of the second subdomain is set to i_geom_param[2]-1. Before the subdivision, i_geom_param[2]-1 was the material index of the domain adjacent to the lower boundary line of the grating. Now the index of the domain adjacent to the lower boundary line is changed to i_geom_param $\left[2\left[{ }^{24}\right.\right.$.

The number nd_geom_param of real input parameters is equal to 2i_geom_param[2]+ i_geom_param[3]+1. The first 2i_geom_param[2] of these real valued parameters define the refractive indices n_{k} of the grating materials occupying the domains with the indices $k=1, \ldots$, i_geom_param[2] by

$$
n_{k}=\text { d_geom_param }[2 \mathrm{k}-1]+\mathrm{i}^{*} \mathrm{~d} \text { _geom_param }[2 \mathrm{k}] \text {. }
$$

Clearly, the real parts of all refractive indices must be positive and the imaginary parts non-negative. The imaginary part of the cover material must vanish. The parameter d_geom_param $[\mathrm{k}]$ with $\mathrm{k}=2 \mathrm{i}$ _geom_param $[2]+j, j=1, \ldots, \mathrm{i}$ _geom_param $[3]$ is just the height $h_{j}>0$ (cf. Equation (10.8)) in $\mu \mathrm{m}$ of the interior corner point Q_{j} over the line through P_{1} and P_{2}. Finally, the last of the real input parameters d_geom_param $[\mathrm{k}]$ with the index $\mathrm{k}=2 \mathrm{i}$ _geom_param[2]+i_geom_param[3]+1 is the threshold ε for the distance of the interior interface corner points to the boundary of the convex domain A (cf. Figure 30 and the subsequent Equation (10.9)). The distance is measured in $\mu \mathrm{m}$ in the direction of the normal ν to $[\mathrm{P} 1, \mathrm{P} 2]$. Of course, if i_geom_param $[3]=0$, then the last real parameter is a dummy.

Setting upper bound equal to lower bound, the user must fix the refractive indices of the substrate and cover material and the last threshold parameter, i.e., the equality

$$
\begin{gathered}
\text { du_geom_param }[j]=\text { dl_geom_param }[j], \\
\quad j=1,2,2 \mathrm{i} \text { _geom_param[2]-1,2i_geom_param }[2], \\
\\
\text { i_geom_param }[2]+\text { i_geom_param }[3]+1 .
\end{gathered}
$$

must be satisfied. For $j=$ 2i_geom_param[2]+k with $1 \leq k \leq$ i_geom_param[3], the user defined upper and lower bounds du_geom_param $[j]$ and dl_geom_param $[j]$ will be corrected in order to guarantee that the corresponding interior corner points Q_{k} remain inside the convex domain A. More precisely, if the numbers $d l_{1}=d l$ geom_param $[j]$ and $d u_{1}=$ du_geom_param $[j]$ are the old user defined values, then the new internally corrected values $d l_{2}=$ dl_geom_param $[j]$ and $d u_{2}=$ du_geom_param $[j]$ are given by (cf. Figure 30)

$$
\begin{align*}
d u_{2} & :=\min \left\{d u_{1}, d u_{0}\right\}, d u_{0}:=\sup \left\{h>0: P_{1}+\frac{k}{N+1}\left[P_{2}-P_{1}\right]+h \nu \in A\right\}-\varepsilon \\
d l_{2} & :=\max \left\{d l_{1}, d l_{0}\right\}, \quad d l_{0}:=\inf \left\{h<0: P_{1}+\frac{k}{N+1}\left[P_{2}-P_{1}\right]+h \nu \in A\right\}+\varepsilon \\
\varepsilon & :=\text { d_geom_param[2i_geom_param[2]+i_geom_param[3]+1].} \tag{10.9}
\end{align*}
$$

Figure 31: General grating without and with additional interface.

10.2.7 Bridge composed of trapezoids under light in the EUV range

The sixth class (i_geom_param[1]=6) is a flat grating with a bridge in form of a stack of trapezoids put on the flat interface (cf. Figure 32). The trapezoids are located with their parallel sides in the direction of the x-axis, and one trapezoid is placed over the other such that the upper resp. lower sides of the two adjacent trapezoids coincide. All these trapezoids do not exceed the period $\{(x, y): 0 \leq x \leq d\}$. If necessary, additional coating layers beneath the grating structure are allowed. Beside the bridge an extra layer can be added.

The class has no name parameters (ns_geom_param=0) and ni_geom_param=5 integer parameters. The value i_geom_param[2] is the number of different materials which is equal to the number N of trapezoids plus two (two for substrate and cover material) and, eventually, plus one if an extra side layer is added. The number i_geom_param[3] is the number N of trapezoids. The fourth integer parameter i_geom_param[4] is reserved for the number M of lower layers, the refractive indices or widths of which are included into the set of optimization parameters. Finally, i_geom_param[5] is the index of the trapezoid in the bridge intersected by the upper boundary line of the extra layer beside the bridge. If there is no extra layer beside the bridge, then i_geom_param[5]=1 and the height of the layer (cf. the subsequent parameter d_geom_param[nd_geom_param-9]) is zero.

The number of real parameters nd_geom_param is equal to $5 N+3 M+12$. These parameters include five reals for each trapezoid, two reals for the location of the stack of trapezoids, three reals for each layer beneath the bridge, and four reals for the refractive indices of the substrate and cover material. In particular (cf. Figure 32), if k is a positive integer less or equal to N, then the parameter d_geom_param $[5 \mathrm{k}-4]=h_{k}>0$ is the height of

[^18]

Figure 32: Bridge composed of trapezoids under light in the EUV range .
the k th trapezoid measured in $\mu \mathrm{m}$. The parameter d_geom_param[5k-3]=$b_{k} / d \in(0,1]$ is the ratio of the x coordinate of the right upper corner of the k th trapezoid over the period d of the grating. The real d_geom_param $[5 \mathrm{k}-2]=a_{k} / b_{k} \in[0,1)$ is the ratio of the x coordinate of the left upper corner of the k th trapezoid over the x coordinate of the right upper corner. The last parameters of the k th trapezoid form the refractive index n_{k} of the material, i.e. the refractive index is

$$
n_{k}=\text { d_geom_param[5k-1]+ i*d_geom_param[5k]. }
$$

The next parameter d_geom_param[5N+1] is the ratio $b_{0} / d \in(0,1]$ of the x coordinate of the right lower corner of the first trapezoid over the period d of the grating. The next real parameter d_geom_param $[5 \mathrm{~N}+2]=a_{0} / b_{0} \in[0,1)$ is the ratio of the x coordinate of the left lower corner of the first trapezoid over the x coordinate of the right lower corner. If $M>0$, then there follow three reals for each lower layer included into the optimization part. In particular, if k is a positive integer less or equal to M, then the parameter $h_{l, k}=$ d_geom_param $\left[5^{*} \mathrm{~N}+3+3 \mathrm{k}\right]$ is the height of the k th layer in $\mu \mathrm{m}$. The refractive index of the corresponding material is

$$
n_{l, k}=\text { d_geom_param[5k-1]+ i*d_geom_param[5k]. }
$$

The real parameter of index [nd_geom_param-9] is the relative height of the upper boundary line of the extra layer beside the bridge inside the trapezoid of index i_geom_param[5], i.e.,
it defines the height h_{0} of the extra layer beside the bridge by the formula

$$
\begin{aligned}
h_{0} & =\sum_{k=1}^{\text {i_geom_param }[5]-1} h_{k}+h_{\text {rel }}, \\
h_{\text {rel }} & \left.=h_{\text {i_geom_param }[5]} \cdot \text { d_geom_param[nd_geom_param }-9\right] .
\end{aligned}
$$

The refractive index of the corresponding layer material is

$$
n_{0}=\text { d_geom_param[nd_geom_param-8]+ i*d_geom_param[nd_geom_param-7]. }
$$

The refractive indices of the cover and substrate material are given as
$n_{c o}=$ d_geom_param[nd_geom_param-6]+i*d_geom_param[nd_geom_param-5],
$n_{s u}=$ d_geom_param[nd_geom_param-4]+i*d_geom_param[nd_geom_param-3].
The last three real parameters restrict the sidewall angles α_{k} and β_{k} for $k=1, \ldots, N-1$ (cf. Figure 32). For these angles, the real numbers

$$
\begin{aligned}
& \left.\varphi_{\min }:=\text { d_geom_param[nd_geom_param }-2\right], \\
& \left.\varphi_{\max }:=\text { d_geom_param[nd_geom_param }-1\right]
\end{aligned}
$$

are the lower and upper bound, respectively. However, instead of requiring the strict fulfillment of $\varphi_{\min } \leq \alpha_{k} \leq \varphi_{\max }$ and $\varphi_{\min } \leq \beta_{k} \leq \varphi_{\max }, k=1, \ldots, N-1$, we shall enforce the bounds only weakly by adding the penalty term

$$
\begin{align*}
& \varphi_{f a c} \cdot \sum_{k=1}^{N-1}\left\{\max \left\{0, \alpha_{k}-\varphi_{\max }\right\}^{2}+\max \left\{0, \varphi_{\min }-\alpha_{k}\right\}^{2}+\right. \\
&\left.\max \left\{0, \beta_{k}-\varphi_{\max }\right\}^{2}+\max \left\{0, \varphi_{\min }-\beta_{k}\right\}^{2}\right\} \tag{10.10}
\end{align*}
$$

to the objective functional (10.2). The calibration factor $\varphi_{f a c}$ is the last real parameter d_geom_param[nd_geom_param] and controls the strength of the required boundedness condition.

Setting upper bound equal to lower bound, the user must fix the refractive indices of the substrate and the cover material, i.e., the equality du_geom_param $[j]=$ dl_geom_param $[j]$ must be satisfied for all indices $j=$ nd_geom_param-6, .. ,nd_geom_param-3. Clearly, the real parts of all refractive indices must be positive and the imaginary parts non-negative. The imaginary part of the cover material must vanish. Like the refractive indices of substrate and cover material the last three parameters must be fixed setting upper bound equal to lower bound.

If the user wants to restrict the optimization to gratings with sidewall angles $\alpha_{k} \leq 90^{\circ}$ and $\beta_{k} \leq 90^{\circ}$ (cf. Figure 32), then he must set the environment variable EUV_SWA_90 to "yes". In order to obtain box constraints, this choice requires a change in the meaning of the parameters d_geom_param $[i]$ for $i=5(j-1)+2$ and $i=5(j-1)+3$ with $j=1,2, \ldots, N$. More precisely,

$$
\begin{aligned}
& \text { d_geom_param }[5(j-1)+2]:=\frac{b_{j}}{b_{j-1}} \\
& \text { d_geom_param }[5(j-1)+3]:=\frac{a_{j}-a_{j-1}}{b_{j}-a_{j-1}}, \quad j=1, \ldots, N=\text { i_geom_param }[3],
\end{aligned}
$$

where the numbers a_{j} and b_{j} are defined in Figure 32, Clearly, $0<\alpha_{k} \leq 90^{\circ}$ and $0<\beta_{k} \leq$ 90° imply the estimate $0<$ d_geom_param $[i] \leq 1$ for $i=5(j-1)+2$ and $i=5(j-1)+3$ with $j=1,2, \ldots, N$. Therefore, the corresponding lower and upper bounds must satisfy the relation $0 \leq$ dl_geom_param $[i] \leq$ du_geom_param $[i] \leq 1$.

Finally, note that the automatic generation of an additional strip for the Fem domain is switched off (compare Section 3.2) if the classical case of Te polarization is considered (i.e. type of polarization is "TE", angle of incidence ϕ is zero, and output data is presented in the "TE/TM" form of Section 2.3) and if the x-coordinates of the lower corner points of the stack of trapezoids are fixed to period times rational number:

$$
\begin{aligned}
& \text { du_geom_param }[5 \cdot N+1]=\text { dl_geom_param }[5 \cdot N+1], \\
& \text { du_geom_param }[5 \cdot N+2]=\text { dl_geom_param }[5 \cdot N+2], \\
& \text { du_geom_param }[5 \cdot N+1]=\frac{k_{1}}{l_{1}}, \quad k_{1}, l_{1} \in \mathbb{N}, l_{1}<1000 \\
& \text { du_geom_param }[5 \cdot N+2] \cdot \text { du_geom_param }[5 \cdot N+1]= \frac{k_{2}}{l_{2}}, \\
& k_{2}, l_{2} \in \mathbb{N}, l_{2}<1000 .
\end{aligned}
$$

In the case that the generation of an additional strip is switched off, the material of this strip, i.e., the material of the substrate resp. of the adjacent lower layer must not be counted in the number of materials given in parameter i_geom_param[2]. In order to avoid any restriction to rational values, the automatic generation of an additional strip can be enabled by setting the environmental variable ADD_STRIPS to yes.

10.3 Numerical methods of optimization

10.3.1 General parameters of optimization algorithm

All the optimization algorithms implemented for DIPOG-2.1 are iterative. So the first control parameter is in common. Its the number niter_max >0 of maximal iterations. The level dependent input is described at the end of Section 10.1.3. If the iteration does not stop earlier, then the number of iterations is exactly equal to this number. A reason to stop earlier is, e.g., that an approximative local solution with a sufficient accuracy has been found before. Another reason could be that the gradient computation is inaccurate and the objective functional does not drop in the direction of the negative gradient.

The next parameter ind_opt is the indicator of the numerical method of optimization and must be a number between 1 and 5 . In particular, the choice of ind_opt switches to

- ind_opt=1: Conjugate gradient method with projection
- ind_opt=2: Interior point method
- ind_opt=3: Method of augmented Lagrangian
- ind_opt=4: Simulated annealing
- ind_opt=5: Newton type method
- ind_opt=6: Levenberg-Marquardt method

The first three and the last method are gradient based local optimizers. All of these four can deal with the box constraints imposed by the upper and lower bounds of the real parameters.

However, to additional constraints like that for the polygonal profile gratings (cf. Equation (10.7) in Section 10.2.4), only the implementation of the conjugate gradient method has been adapted. Moreover, the method of augmented Lagrangian requires the computation of the objective functional $f(r)$ at parameter sets r outside the class of admissible solutions. Since this is meaningful only for the gratings with profiles defined by the graph of a linear function, the method of augmented Lagrangian applies only to this grating class. The fourth method is a stochastic global optimizer.

Depending on the value of ind_opt, the general optimization procedure requires further ni_opt integer parameters and nd_opt real valued parameters. The input is as indicated in Section 10.1.3. Finally, the performance of the optimization depends on the last input numbers, the scaling factors.

Indeed, without proper scaling the iteration might stop at a parameter set far from a local minimum. For instance, suppose the partial derivative $\partial f / \partial r_{1}$ is much larger than the other partial derivatives $\partial f / \partial r_{j}$ with $j=2, \ldots, N$. Then the iterative solution moves in the negative gradient direction, which is more or less the direction of the first component r_{1}, and the value $\partial f / \partial r_{1}$ reduces until it is in the order of the discretization error of the gradient computation. This, however, means that the "gradient" at the actual iterative solution has a first component $\partial f / \partial r_{1}$ dominated by the discretization error. Moreover, this first component dominates the other components $\partial f / \partial r_{j}$ due to the bad scaling. Moving into such a "gradient" direction will sooner or later end up in a direction of no descent, and the iteration stops. Though the components $\partial f / \partial r_{j}$ with $j=2, \ldots, N$ are quite accurate, they are not used for a correction of the iterative solution towards the local minimum.

To improve the scaling, the parameters r_{j} from $\left[l_{j}, u_{j}\right]$ are internally replaced by the scaled parameters $r_{j}^{\prime}:=s_{j} r_{j}$ from $\left[s_{j} l_{j}, s_{j} u_{j}\right]$. The partial derivative $\partial f / \partial r_{j}$ turns into $\partial f / \partial r_{j}^{\prime}=1 / s_{j} \partial f / \partial r_{j}$. Choosing the right scaling factors s_{j}, the partial derivatives $\partial f / \partial r_{j}^{\prime}$ can be made to be almost of the same size, and the iteration converges well. The gradients printed after calling OPTIMIZE with flag -f may be helpful to find the scalar factors s_{j}. For the notation from Section 10.1.2, recall that the variables r_{j} are those parameters d_geom_param $[j]$ which are not fixed by setting dl_geom_param $[j]=$ du_geom_param $[j]$. The corresponding scaling factors s_{j} are the values d_geom_scal $[j]$. In the case of fixed real parameters d_geom_param $[j]$ with dl_geom_param $[j]=$ du_geom_param $[j]$, the scaling factor d_geom_scal $[j]$ must be set to one.

10.3.2 Conjugate gradient method with projection

Suppose the optimization problem is to find a local minimum, i.e., to find an admissible vector $r_{\text {opt }}$ in \mathbb{R}^{N} such that $f\left(r_{\text {opt }}\right) \leq f(r)$ holds at least for any admissible $r \in \mathbb{R}^{N}$ close to $r_{\text {opt }}$. Here a vector $r \in \mathbb{R}^{N}$ is called admissible if the coordinates r_{i} of r satisfy $l_{i} \leq r_{i} \leq u_{i}$ and if the constraint condition ${ }^{25} g_{m}(r) \leq 0$ are fulfilled for any $m=1, \ldots, M$. The functionals f and g_{m} are supposed to be continuously differentiable and, possibly, nonlinear. The conjugate gradient methods consists of the following Steps (1)-(3):

[^19](1) Initialization: Take the initial solution r_{0} from the input file provided by the user. Compute $f\left(r_{0}\right)$ and the gradient $\nabla f\left(r_{0}\right)$ of f at r_{0}. In case that r_{0} is an interior point of the set of admissible vectors, then choose the search direction $s d_{0}:=-\nabla f\left(r_{0}\right)$. If either a component $\left[r_{0}\right]_{i}$ of r_{0} is equal to the bound u_{i} resp. l_{i} or if $g_{m}\left(r_{0}\right)=0$ holds for some m, then set $s d_{0}$ equal to the projection of $-\nabla f\left(r_{0}\right)$ to the tangent cone of directions pointing from r_{0} toward admissible points. Note that, if the difference of the component $\left[r_{0}\right]_{i}$ to the bounds u_{i} resp. l_{i} is less than the small prescribed threshold $\varepsilon_{a c c}$, then we set $\left[r_{0}\right]_{i}$ equal to u_{i} resp. l_{i}, and the search direction is chosen as for the boundary point ${ }^{26}$. In any case we write $s d_{0}:=P\left[-\nabla f\left(r_{0}\right)\right]$. Set the iteration index j to 0 .
(2) Iteration step: If the number of iterations j is larger than the prescribed number niter_max, then stop the iteration and go to the next Step (3). Else compute the norm of the reduced gradient $\left\|P\left[-\nabla f\left(r_{j}\right)\right]\right\|$. If this is less than the prescribed gradient threshold $\varepsilon_{\text {gra }}$, then stop the iteration and go to the next Step (3). Also if the reduced gradient is almost unchanged in the last $n_{\text {norm }}$ (prescribed integer) iterations, stop the iteration and go to the next Step (3). Almost unchanged means
$$
\frac{\left\|P\left[-\nabla f\left(r_{j}\right)\right]-P\left[-\nabla f\left(r_{j-l}\right)\right]\right\|}{\left\|P\left[-\nabla f\left(r_{j}\right)\right]\right\|} \leq \varepsilon_{n o r m}, \quad l=1, \ldots, n_{\text {norm }}
$$
with a prescribed small number $\varepsilon_{\text {norm }}$. If the stopping conditions fail, then perform a line search (2.1)-(2.2):
(2.1) Initialize $\alpha=\alpha_{\text {max }}$.
(2.2) Set $r_{j+1}=r_{j}+\alpha s d_{j}$. If the difference between r_{j+1} and r_{j} is less than the machine accuracy, stop and jump to Step (3). Else compute $f\left(r_{j+1}\right)$ and $\nabla f\left(r_{j+1}\right)$. If r_{j+1} is admissible and if the Armijo criterion
\[

$$
\begin{equation*}
f\left(r_{j+1}\right)-f\left(r_{j}\right) \leq c_{1} \alpha\left\langle\nabla f\left(r_{j}\right), s d_{j}\right\rangle \tag{10.11}
\end{equation*}
$$

\]

is fulfilled, then stop and leave the line search. Else compute a smaller α by halving the actual value or by a clever approximate minimization of the univariate function $\tilde{\alpha} \mapsto f\left(r_{j}+\tilde{\alpha} s d_{j}\right)$. Repeat Step (2.2).

Determine a new search direction by the following non-linear conjugate gradient formula

$$
\begin{align*}
s d_{j+1} & :=-P\left[\nabla f\left(r_{j+1}\right)+\beta s d_{j}\right] \tag{10.12}\\
\beta & :=\max \left\{0, \frac{\left\langle\nabla f\left(r_{j+1}\right), \nabla f\left(r_{j+1}\right)-\nabla f\left(r_{j}\right)\right\rangle}{\left\langle\nabla f\left(r_{j}\right), \nabla f\left(r_{j}\right)\right\rangle}\right\} .
\end{align*}
$$

Set $j=j+1$ and repeat Step (2).

[^20](3) Final output: Accept and print r_{j} as the local solution. Print the corresponding values of $f\left(r_{j}\right)$ and $\left\|P\left[\nabla f\left(r_{j}\right)\right]\right\|$.

The conjugate gradient method (ind_opt=1) requires one integer input value (ni_opt=1). This i_opt[1] is the threshold integer $n_{\text {norm }}>1$ (choose, e.g., i_opt[1]=3). Whenever the gradient of the iterative solution remains unchanged over $n_{\text {norm }}$ iterations, then the iteration is stopped (cf. Step (2)). The number of real parameters is nd_opt=5. These parameters are:

- d_opt[1]: Maximal stepsize factor $\alpha_{\max }>0$ in line search (cf. Step (2.1) and choose, e.g., $\alpha_{\max }=1$)
- d_opt[2]: Constant $c_{1}, 0<c_{1}<1$ in Armijo stopping criterion (10.11) for line search (e.g. $c_{1}=0.001$)
- d_opt[3]: Threshold $\varepsilon_{a c c}>0$, iterate is shifted to the boundary if the distance to the boundary is less than $\varepsilon_{\text {acc }}$ (cf. the projection P in Step (1) and choose $\varepsilon_{\text {acc }}$ about the expected accuracy of the final solution)
- d_opt[4]: Threshold $\varepsilon_{g r a}>0$, stop if gradient is less than $\varepsilon_{g r a}$ (should be about approximation error of gradient or less)
- d_opt[5]: Threshold $\varepsilon_{\text {norm }}>0$, stop if relative change of the norm of the gradient is less than $\varepsilon_{\text {norm }}$ for the last $n_{\text {norm }}$ steps (cf. Step (2) and choose, e.g., $\varepsilon_{\text {norm }}=0.01$)

The parameters i_opt[1] and d_opt $[i], i=1,2,3,5$ should be chosen as recommended. For the error d_opt $[4] \sim \varepsilon_{\text {gra }}$ of the gradient computation, a first estimate can be obtained using the command OPTIMIZE -g name.dat. On the other hand, the user can choose niter_max larger than necessary and the positive parameter d_opt[4] smaller than recommended. In the worst case, a large number of unnecessary iteration steps with very small changes in the iterative solutions are performed at the end of the optimization procedure. Even these redundant iteration steps can be interrupted. Indeed, the user can invoke the optimization by the command OPTIMIZE -g name.dat. In this case the actual iterative solutions are printed on the screen, and, adding the kill -10 PID with PID the number of the subprocess (cf. the interruption of OPTIMIZE -f name.dat in Sect. 10.1.2), the user can stop the iteration whenever he observes that the iterative solutions do not improve.

10.3.3 Interior point method

Suppose the optimization problem is to find a local minimum, i.e., to find an admissible vector $r_{\text {opt }}$ in \mathbb{R}^{N} such that $f\left(r_{\text {opt }}\right) \leq f(r)$ holds at least for any admissible $r \in \mathbb{R}^{N}$ close to $r_{\text {opt }}$. Here a vector $r \in \mathbb{R}^{N}$ is called admissible if the coordinates r_{i} of r satisfy $l_{i} \leq r_{i} \leq u_{i}$. The functional f is continuously differentiable and, possibly, non-linear.

To prepare the interior point method, some definitions are needed. The slack variables $s l$ and $s u$ as well the dual slack variables $d l$ and $d u$ are given by

$$
\begin{align*}
s l & :=\left(s l_{i}\right)_{i=1}^{N}, \quad s l_{i}:=r_{i}-l_{i} \geq 0, d l:=\left(d l_{i}\right)_{i=1}^{N}, d l_{i} \geq 0 \tag{10.13}\\
s u & :=\left(s u_{i}\right)_{i=1}^{N}, s u_{i}:=u_{i}-r_{i} \geq 0, d u:=\left(d u_{i}\right)_{i=1}^{N}, d u_{i} \geq 0 \tag{10.14}
\end{align*}
$$

Introducing the operator $F_{\varrho}:(r, s l, s u, d l, d u) \mapsto F_{\varrho}(r, s l, s u, d l, d u) \in \mathbb{R}^{5 N}$ by

$$
F_{\varrho}(r, s l, s u, d l, d u):=\left(\begin{array}{c}
d u-d l+\nabla f(r) \\
r-l-s l \\
u-r-s u \\
\left(s l_{i} d l_{i}-\varrho 1\right)_{i=1}^{N} \\
\left(s u_{i} d u_{i}-\varrho 1\right)_{i=1}^{N}
\end{array}\right) \text {, }
$$

the necessary Karush-Kuhn-Tucker condition of a locally optimal solution imply that there exist dual slack variables $d l$ and $d u$ such that

$$
F_{0}(r, s l, s u, d l, d u)=0, s l \geq 0, s u \geq 0, d l \geq 0, d u \geq 0
$$

Finally, the interior point method defines iterative solutions ${ }^{27} r_{j}$ as the approximate solution of the equations $F_{\varrho_{j}}\left(r_{j}, s l_{j}, s u_{j}, d l_{j}, d u_{j}\right)=0$, where $\varrho_{j}=\varrho_{0} q^{j}$ with $0<q<1$ tends exponentially to zero and where the approximate solution $\left(r_{j}, s l_{j}, s u_{j}, d l_{j}, d u_{j}\right)$ is obtained by one step of Newton's method choosing $\left(r_{j-1}, s l_{j-1}, s u_{j-1}, d l_{j-1}, d u_{j-1}\right)$ as initial solution.

More precisely, the interior point method consists of the following Steps (1)-(3):
(1) Initialization: Set the index j of the iteration to zero, choose r_{0} from the initial values given by the user in the input file, and suppose the strict fulfillment of the restrictions $l_{i}<\left[r_{0}\right]_{i}<u_{i}, i=1, \ldots, N$. Define $s l_{0}$ and $s u_{0}$ using the Equations (10.13) and (10.14). Read the initial value ϱ_{0} from the input of the user and introduce the dual slack variables $d l_{0}$ and $d u_{0}$ by $\left[d l_{0}\right]_{i}:=\varrho_{0} /\left[s l_{0}\right]_{i}$ and $\left[d u_{0}\right]_{i}:=\varrho_{0} /\left[s u_{0}\right]_{i}$. Increase j by setting $j=1$.
(2) Iteration step: If the number of iterations j is larger than the prescribed number niter_max, then stop the iteration and go to the next Step (3). Else compute $f\left(r_{j}\right)$ and the gradient $\nabla f\left(r_{j}\right)$. Determine the reduced gradient $\mathcal{P}\left(\nabla f\left(r_{j}\right)\right)$ by setting to zero all those components of $\nabla f\left(r_{j}\right)$ for which $\left[r_{j}\right]_{i}<l_{i}+\varepsilon_{a c c}$ and $\left[\nabla f\left(r_{j}\right)\right]_{i}>0$ and for which $\left[r_{j}\right]_{i}>u_{i}-\varepsilon_{a c c}$ and $\left[\nabla f\left(r_{j}\right)\right]_{i}<0$. Here $\varepsilon_{a c c}$ is a small prescribed threshold. If $\left\|\mathcal{P}\left(\nabla f\left(r_{j}\right)\right)\right\|$ is less than the prescribed small constant $\varepsilon_{\text {gra }}$, then stop the iteration and go to the next Step (3). Also if the reduced gradient is almost unchanged in the last $n_{\text {norm }}$ (prescribed integer) iterations, then stop the iteration and go to the next Step (3). Almost unchanged means

$$
\begin{equation*}
\frac{\left\|\mathcal{P}\left(\nabla f\left(r_{j}\right)\right)-\mathcal{P}\left(\nabla f\left(r_{j-l}\right)\right)\right\|}{\left\|\mathcal{P}\left(\nabla f\left(r_{j}\right)\right)\right\|} \leq \varepsilon_{\text {norm }}, \quad l=1, \ldots, n_{\text {norm }} \tag{10.15}
\end{equation*}
$$

with a prescribed small number $\varepsilon_{\text {norm }}$. Now suppose none of the stopping conditions is satisfied. For prescribed $\varrho_{0}>0$ and q with $0<q<1$, introduce the parameter $\varrho_{j}=\varrho_{0} q^{j}$. Compute the search direction of the step ($s d r_{j}, s d s l_{j}, s d s u_{j}, s d d l_{j}, s d d u_{j}$) by solving $F_{\varrho_{j}}\left(s d r_{j}, s d s l_{j}, s d s u_{j}, s d d l_{j}, s d d u_{j}\right)=0$ approximately by the Newton step

$$
\begin{aligned}
& \left(s d r_{j}, s d s l_{j}, s d s u_{j}, s d d l_{j}, s d d u_{j}\right)= \\
& -\left[\nabla F_{\varrho_{j}}\left(r_{j}, s l_{j}, s u_{j}, d l_{j}, d u_{j}\right)\right]^{-1} F_{\varrho_{j}}\left(r_{j}, s l_{j}, s u_{j}, d l_{j}, d u_{j}\right) .
\end{aligned}
$$

[^21]Note that the computation of $\nabla F_{\varrho_{j}}$ requires the computation of the Hessian $\nabla^{2} f\left(r_{j}\right)$. This is approximated using the Broyden-Fletcher-Goldfarb-Shanno update which is based on first order derivatives, only. Now, knowing the search direction, perform the line search (2.1)-(2.2):
(2.1) Initialize $\alpha=\alpha_{\text {max }}$. Eventually, reduce α such that $s l_{j}+\alpha s d s l_{j}>0, s u_{j}+$ $\alpha s d s u_{j}>0, d l_{j}+\alpha s d d l_{j}>0$, and $d u_{j}+\alpha s d d u_{j}>0$ hold.
(2.2) Set $r_{j+1}=r_{j}+\alpha s d r_{j}, s l_{j+1}=s l_{j}+\alpha s d s l_{j}, s u_{j+1}=s u_{j}+\alpha s d s u_{j}, d l_{j+1}=d l_{j}+$ $\alpha s d d l_{j}$, and $d u_{j+1}=d u_{j}+\alpha s d d u_{j}$. If the difference $\left\|r_{j+1}-r_{j}\right\|$ is less than the prescribed small positive $\varepsilon_{s t e}$, stop and jump to Step (3). Else compute $f\left(r_{j+1}\right)$, $F_{\varrho_{j+1}}\left(r_{j+1}, s l_{j+1}, s u_{j+1}, d l_{j+1}, d u_{j+1}\right)$ and $\nabla f\left(r_{j+1}\right)$. If the Armijo criterion

$$
\begin{equation*}
f\left(r_{j+1}\right)-f\left(r_{j}\right) \leq c_{1} \alpha\left\langle\nabla f\left(r_{j}\right), s d r_{j}\right\rangle \tag{10.16}
\end{equation*}
$$

is fulfilled, then stop and leave the line search. Else compute a smaller α by halving its value or by a clever approximate minimization of the univariate function $\tilde{\alpha} \mapsto f\left(r_{j}+\tilde{\alpha} s d r_{j}\right)$. Repeat Step (2.2).

Finally set $j=j+1$ and repeat the Step (2).
(3) Final output: Accept and print r_{j} as the local solution. Print the corresponding values of $f\left(r_{j}\right)$ and $\left\|\mathcal{P}\left[\nabla f\left(r_{j}\right)\right]\right\|$.

The interior point method (ind_opt=2) requires one integer input value (ni_opt=1). This i_opt[1] is the threshold integer $n_{\text {norm }}>1$ (choose, e.g., i_opt[1]=3). Whenever the gradient of the iterative solution remains unchanged over $n_{\text {norm }}$ iterations, then the iteration is stopped (cf. Equation (10.15). The number of real parameters is nd_opt=8. These parameters are:

- d_opt[1]: Initial value $\varrho_{0}>0$ for parameter of operator F_{ϱ} (cf. Step (2) and choose, e.g., $\varrho_{0}=0.1$)
- d_opt[2]: Reduction factor $q, 0<q<1$ to reduce parameter ϱ_{j} of operator F_{ϱ} (cf. Step (2) and choose, e.g., $q=0.5$)
- d_opt[3]: Constant $c_{1}, 0<c_{1}<1$ in Armijo stopping criterion (10.16) for line search (choose, e.g., $c_{1}=0.001$)
- d_opt[4]: Maximal stepsize factor $\alpha_{\max }\left(0<\alpha_{\max }<1\right)$ in line search (cf. Step (2.1) and choose, e.g., $\left.\alpha_{\max }=0.9\right)$
- d_opt[5]: Threshold $\varepsilon_{a c c}>0$, iterate is treated as a boundary point if its distance to the boundary is less than $\varepsilon_{a c c}$ (cf. Step (2) and choose its value about the expected accuracy of the final solution)
- d_opt[6]: Threshold $\varepsilon_{s t e} \geq 0$, stop if the change in the iterative solution is less than $\varepsilon_{\text {ste }}$ (cf. Step (2.2) and choose, e.g., $\varepsilon_{\text {ste }}=0.1 \varepsilon_{\text {acc }}$)
- d_opt[7]: Threshold $\varepsilon_{g r a} \geq 0$, stop if gradient is less than $\varepsilon_{\text {gra }}$ (cf. Step (2) and choose its value about the discretization error of gradient calculation or less)
- d_opt[8]: Threshold $\varepsilon_{\text {norm }}>0$, stop if relative change of the norm of the gradient is less than $\varepsilon_{\text {norm }}$ for the last $n_{\text {norm }}$ steps (cf. Equation (10.15) and choose, e.g., $\varepsilon_{\text {norm }}=0.01$)

The parameters i_opt[1] and d_opt $[i], i=1,2,3,4,5,8$ should be chosen as recommended. For the error d_opt[7] $\sim \varepsilon_{g r a}$ of the gradient computation, a first estimate can be obtained using the command OPTIMIZE -g name.dat. On the other hand, the user can choose niter_max larger than necessary and the positive parameters d_opt $[i], i=6,7$ smaller than recommended. In the worst case, a large number of unnecessary iteration steps with very small changes in the iterative solutions are performed at the end of the optimization procedure. Even these redundant iteration steps can be interrupted. Indeed, the user can invoke the optimization by the command OPTIMIZE -g name.dat. In this case the actual iterative solutions are printed on the screen, and, adding the kill -10 PID with PID the number of the the subprocess (cf. the interruption of OPTIMIZE -f name.dat in Sect. 10.1.2), the user can stop the iteration whenever he observes that the iterative solutions do not improve.

10.3.4 Method of augmented Lagrangian

Suppose the optimization problem is to find a local minimum, i.e., to find an admissible vector $r_{\text {opt }}$ in \mathbb{R}^{N} such that $f\left(r_{\text {opt }}\right) \leq f(r)$ holds at least for any admissible $r \in \mathbb{R}^{N}$ close to $r_{\text {opt }}$. Here a vector $r \in \mathbb{R}^{N}$ is called admissible if the coordinates r_{i} of r satisfy $l_{i} \leq r_{i} \leq u_{i}$. The functional f is continuously differentiable and, possibly, non-linear. Moreover, $f(r)$ is supposed to be defined for all $r \in \mathbb{R}^{N}$.

To prepare the method of augmented Lagrangian, some definitions are needed. The Lagrangian multipliers are denoted by $m l \in \mathbb{R}^{N}$ and $m u \in \mathbb{R}^{N}$, and the augmented Lagrangian is defined by

$$
\begin{align*}
\mathcal{L}_{\varrho}(r, m l, m u):=c_{c a l} f(r) & +\frac{1}{2 \varrho} \sum_{i=1}^{N}\left[\max \left\{0, m u_{i}+\varrho\left(r_{i}-u_{i}\right)\right\}^{2}-m u_{i}^{2}\right] \\
& +\frac{1}{2 \varrho} \sum_{i=1}^{N}\left[\max \left\{0, m l_{i}+\varrho\left(l_{i}-r_{i}\right)\right\}^{2}-m l_{i}^{2}\right] \tag{10.17}
\end{align*}
$$

Here ϱ stands for a prescribed positive real parameter and $c_{\text {cal }}$ is a fixed calibration factor. Using this notation, the method of augmented Lagrangian consists of the following Steps (1)-(3):
(1) Initialization: Set the index j of the iteration to zero and choose r_{0} from the initial values given by the user in the input file. Choose the initial multipliers $m u_{0}=0$ and $m l_{0}=0$. Increase j by one.
(2) Step of iteration: If the number of iterations j is larger than the prescribed number niter_max, then stop the iteration and go to the next Step (3). Else determine the next iterate r_{j+1} as the optimal vector in \mathbb{R}^{N} for which the Lagrangian $r \mapsto \mathcal{L}\left(r, m l_{j}, m u_{j}\right)$ attains its minimum:

This optimization problem without any restriction is solved by the non-linear conjugate gradient method (inner iteration) and by choosing r_{j} as the initial solution. In particular, in each inner iteration a new search direction is sought (cf. 10.12) and replace the projection P by the identity), and a line search is
performed in this direction (cf. Steps (2.1)-(2.2) in Section 10.3.2). For the line search, a fixed parameter $\alpha_{\max }$ for the maximal stepsize factor and a constant c_{1} for the Armijo criterion are needed. Moreover, the maximal number of inner conjugate gradient iteration is bounded by the prescribed number liter_max. The inner iteration stops even earlier if the norm of the gradient of the Lagrangian is less than the prescribed threshold $\varepsilon_{g r a}$ times $c_{c a l}$ or if the stepsize in the line search is less than $\varepsilon_{\text {acc }}$.

After the conjugate gradient iteration is finished, define new multipliers $m l_{j+1}=$ $\left(\left[m l_{j+1}\right]_{i}\right)_{i=1}^{N}$ and $m u_{j+1}=\left(\left[m u_{j+1}\right]_{i}\right)_{i=1}^{N}$ by

$$
\begin{aligned}
{\left[m l_{j+1}\right]_{i} } & :=\max \left\{0,\left[m l_{j}\right]_{i}+\varrho\left(l_{i}-\left[r_{j+1}\right]_{i}\right)\right\} \\
{\left[m u_{j+1}\right]_{i} } & :=\max \left\{0,\left[m u_{j}\right]_{i}+\varrho\left(\left[r_{j+1}\right]_{i}-u_{i}\right)\right\}
\end{aligned}
$$

If the norm difference $\left\|m l_{j+1}-m l_{j}\right\|+\left\|m u_{j+1}-m u_{j}\right\|$ of old and new multipliers is less than the prescribed positive threshold $\varepsilon_{m u l}$ and if $\left\|\nabla_{r} \mathcal{L}\left(r_{j+1}, m l_{j+1}, m u_{j+1}\right)\right\|$ is less than the prescribed gradient threshold $\varepsilon_{\text {gra }}$, then stop and go to Step (3). Also if the gradient is almost unchanged in the last $n_{\text {norm }}$ (prescribed integer) iterations, then stop the iteration and go to the next Step (3). Almost unchanged means that

$$
\begin{equation*}
\frac{\left\|\nabla_{r} \mathcal{L}\left(r_{j+1}, m l_{j+1}, m u_{j+1}\right)-\nabla_{r} \mathcal{L}\left(r_{j+1-l}, m l_{j+1-l}, m u_{j+1-l}\right)\right\|}{\left\|\nabla_{r} \mathcal{L}\left(r_{j+1}, m l_{j+1}, m u_{j+1}\right)\right\|} \leq \varepsilon_{\text {norm }} \tag{10.18}
\end{equation*}
$$

holds for $l=1, \ldots, n_{\text {norm }}$ with a prescribed small number $\varepsilon_{\text {norm }}$. If all the stopping criteria fail, then increase j by one and repeat Step (2).
(3) Final output: Accept and print r_{j} as the local solution. Determine the reduced gradient $\mathcal{P}\left(\nabla f\left(r_{j}\right)\right)$ by setting to zero all those components of $\nabla f\left(r_{j}\right)$ for which $\left[r_{j}\right]_{i}<l_{i}+\varepsilon_{a c c}$ and $\left[\nabla f\left(r_{j}\right)\right]_{i}>0$ and for which $\left[r_{j}\right]_{i}>u_{i}-\varepsilon_{a c c}$ and $\left[\nabla f\left(r_{j}\right)\right]_{i}<0$. Print the corresponding values of $f\left(r_{j}\right)$ and $\left\|\mathcal{P}\left[\nabla f\left(r_{j}\right)\right]\right\|$.

The method of augmented Lagrangian (ind_opt=3) requires ni_opt=2 integer input values. The first integer parameter i_opt[1] is the maximal number liter_max >0 of conjugate gradient steps in the inner iteration of Step (2). The second i_opt[2] is the threshold integer $n_{\text {norm }}>0$ (choose, e.g., i_opt[1]=3). Whenever the gradient of the iterative solution remains unchanged over $n_{\text {norm }}$ iterations, then the iteration is stopped (cf. Step (2)). The number of real parameters is nd_opt $=8$. These parameters are:

- d_opt[1]: Parameter value $\varrho>0$ in augmented Lagrangian (cf. 10.17) and choose, e.g., $\varrho=0.5$)
- d_opt[2]: Calibration factor $c_{\text {cal }}>0$ of objective functional in modified Lagrangian (cf. 10.17) and choose $c_{\text {cal }}$ such that $c_{\text {cal }}$ times the objective functional is less than one)
- d_opt[3]: Threshold $\varepsilon_{m u l} \geq 10^{-13}$, iteration stops if deviation of iterative multipliers is less than $\varepsilon_{m u l}$ (cf. Step (2) and choose its value
about the maximum of i) the desired accuracy of the constraint conditions and ii) the desired accuracy of the minimum value of the objective functional multiplied by $c_{\text {cal }}$)
- d_opt[4]: Threshold $\varepsilon_{g r a} \geq 10^{-10}$, inner iteration stops if norm of gradient of Lagrangian is less than $\varepsilon_{g r a} \times c_{c a l}$ (should be about discretization error of gradient or less)
- d_opt[5]: Threshold $\varepsilon_{a c c} \geq 10^{-13}$, inner iteration stops if stepsize in line search is less than $\varepsilon_{a c c}$, iterative solution is considered to be at the boundary if its distance to the boundary is less than $\varepsilon_{\text {acc }}$ (cf. Step (3) and choose, e.g., $\varepsilon_{a c c}=10^{-14}$)
- d_opt[6]: Constant $c_{1}, 0<c_{1}<1$ in Armijo stopping criterion for line search in inner conjugate gradient iteration (cf. Step (2) and choose, e.g., $c_{1}=0.001$)
- d_opt[7]: Maximal stepsize factor $\alpha_{\max }>0$ in line search (cf. Step (2) and choose, e.g., $\alpha_{\max }=1$)
- d_opt[8]: Threshold $\varepsilon_{\text {norm }}, 0<\varepsilon_{\text {norm }} \leq 1$, stop if relative change in norm of gradient is less than $\varepsilon_{\text {norm }}$ for the last $n_{\text {norm }}$ steps (cf. Equation (10.18) and choose, e.g., $\varepsilon_{\text {norm }}=0.01$)

The parameters i_opt[2] and d_opt[i], $i=1,2,6,7,8$ should be chosen as recommended. For the error d_opt[4] $\sim \varepsilon_{\text {gra }}$ of the gradient computation, a first estimate can be obtained using the command OPTIMIZE -g name.dat. On the other hand, the user can choose niter_max and i_opt[1] larger than necessary and the positive parameters d_opt $[i], i=3,4,5$ smaller than recommended. In the worst case, a large number of unnecessary iteration steps with very small changes in the iterative solutions are performed. The redundant iteration steps of the outer iteration, however, can be interrupted. Indeed, the user can invoke the optimization by the command OPTIMIZE -g name.dat. In this case the actual iterative solutions are printed on the screen, and, adding the kill -10 PID with PID the number of the the subprocess (cf. the interruption of OPTIMIZE -f name.dat in Sect. 10.1.2), the user can stop the iteration whenever he observes that the iterative solutions do not improve.

10.3.5 Simulated annealing

Suppose the optimization problem is to find a minimum, i.e., to find an admissible vector $r_{\text {opt }}$ in \mathbb{R}^{N} such that $f\left(r_{\text {opt }}\right) \leq f(r)$ holds for any admissible $r \in \mathbb{R}^{N}$. Here a vector $r \in \mathbb{R}^{N}$ is called admissible if the coordinates r_{i} of r satisfy $l_{i} \leq r_{i} \leq u_{i}$ and if the constraint conditions $g_{m}(r) \leq 0$ are fulfilled for any $m=1, \ldots, M$. The functionals f and g_{m} are continuously differentiable and, possibly, non-linear. Simulated annealing consists of the following Steps (1)-(5):
(1) Initialization of restarts: Set the actual number J of restarts to zero. Read the user defined value of the initial temperature $t_{i n i}$, that of the neighbourhood radius $\varrho_{i n i}$, and the user supplied initial solution $r_{i n i} \in \mathbb{R}^{N}$ from the data file. The temperature must be positive. If $t_{i n i}=0$, then an automatic choice of temperature is provided. Set the first iterate r_{0} to $r_{\text {ini }}$ and set the first values of the optimal solution $r_{\text {opt }}$ to $r_{i n i}$.
(2) Initialization of iteration: Set the index j of the iteration step to zero. Set the temperature t to $t_{i n i}$ and the value of the neighbourhood radius ϱ to $\varrho_{i n i}$.
(3) Steps of iteration: If the index j of the iteration is larger than the prescribed maximal number niter_max, then stop the iteration and go to Step (4). Also if $0<\left\|r_{j}-r_{j-1}\right\| \leq \varepsilon_{\text {stop }}$ with a prescribed threshold $\varepsilon_{\text {stop }}$, stop the iteration and go to Step (4). Else get a new admissible iterate r_{j+1} by a random search in the neighbourhood of r_{j} of radius ϱ (interpreted as a transition of the state in a cooling step). If $f\left(r_{j+1}\right) \leq f\left(r_{j}\right)$, then accept r_{j+1} and if $f\left(r_{j+1}\right)>f\left(r_{j}\right)$ holds, then accept r_{j+1} with a probability of $\exp \left(-\left[f\left(r_{j+1}\right)-f\left(r_{j}\right)\right] / t\right)$. In the case that r_{j+1} is not accepted, set $r_{j+1}=r_{j}$. If $f\left(r_{j+1}\right)<f\left(r_{o p t}\right)$, then mark the solution setting $r_{o p t}=$ r_{j+1}. Cool the temperature by multiplying t with the prescribed cooling factor $c_{f a c t}$. Decrease the radius of the neighbourhood ϱ by multiplying ϱ with the prescribed neighbourhood reduction factor $\varrho_{\text {fact }}$. Increase index j by one and repeat Step (3).
(4) Restarts: If J is greater than the prescribed integer $n_{\text {rest }}$, then generate at random a new starting solution r_{0} and go back to Step (2).
(5) Final output: Accept and print $r_{\text {opt }}$ as the final solution. Print the corresponding value $f\left(r_{\text {opt }}\right)$. For comparison, print the last iterative solution r_{j} and the corresponding value $f\left(r_{j}\right)$.

The method of simulated annealing (ind_opt=4) requires one integer input value (ni_opt $=1$). This i_opt[1] is the number of restarts $n_{\text {rest }} \geq 0$. The number of real parameters is nd_opt $=5$. These parameters are:

- d_opt[1]: Initial temperature $t_{\text {ini }}>0$, (chose $t_{i n i}$ equal to the variation of the objective functional or set $t_{i n i}=0$ to invoke an automatic choice of $t_{i n i}$)
- d_opt[2]: Cooling factor $c_{f a c t}, 0.5 \leq c_{f a c t}<1$, in each iteration step the temperature is multiplied by $c_{f a c t}$, a slower logarithmic cooling scheme is applied if $c_{f a c t}=-1$ (choose, e.g., $c_{f a c t}=0.95$)
- d_opt[3]: Stopping threshold $\varepsilon_{\text {stop }}, 0 \leq \varepsilon_{\text {stop }}<1$, algorithm stops if the difference of the values of the objective function at actual and previous step differ by a value greater than zero but less than $\varepsilon_{\text {stop }}$ (choose, e.g., $\left.\varepsilon_{\text {stop }}=0\right)$
- d_opt[4]: Initial value $\varrho_{i n i}>0$ of radius $\varrho=\varrho_{\text {ini }} \min _{i}\left[u_{i}-l_{i}\right]$ of neighbourhood where the random search for a new iterate is performed (choose $\varrho=1$)
- d_opt[5]: Reduction factor $\varrho_{f a c t}, 0<\varrho_{f a c t} \leq 1$ to reduce the radius of neighbourhood in each step multiplying ϱ by $\varrho_{\text {fact }}$ (choose, e.g., $\varrho_{\text {fact }}$ to be the square root of the cooling factor $c_{f a c t}$)
The maximal number of iterations niter_max should be chosen as large as possible. In other words, the computing time the user is willing to spent determines the choice of niter_max. The parameters d_opt $[i], i=1,3,4,5$ should be chosen as recommended. The cooling factor d_opt[2] should be chosen sufficiently large such that a lot of random choices (transitions) are accepted at the beginning of the iterative process. However, d_opt[2] should not be too
large such that, at the end of the iterative process, the random choices for the new iterative solutions are almost always rejected. Of course, this so called "freezing of the state" should happen at the end, only. If the iterative solution remains unchanged for the last half of the cooling steps, then the cooling factor should be increased. Finally, the number of restarts i_opt[1] should be as large as possible. Indeed, normally, the computation of the objective function is time consuming. Consequently, the values of niter_max and d_opt[2] are, usually, smaller than what the theoretical analysis requires. Using these fast cooling schemes, simulated annealing computes rather a locally optimal solution than a global. Therefore, the restarts will increase the probability that the final solution is the global optimum. Again, i_opt[1] is restricted by the admissible computing time.

The program of simulated annealing can be used for a pure random search. In this case, the parameters should be, e.g.:

$$
\begin{aligned}
\text { i_opt }[1] & =0 \\
\text { d_opt }[1] & =10^{20} \\
\text { d_opt }[2] & =0.9999999999999 \\
\text { d_opt }[3] & =0 \\
\text { d_opt }[4] & =2 \\
\text { d_opt }[5] & =1
\end{aligned}
$$

With these parameters, the objective functional is computed at niter_max randomly chosen different parameter sets, and the minimum of these values is determined. Normally, such a random search yields better results than a deterministic search at the points of a regular mesh of the parameter domain.

10.3.6 Newton type method with projection

Suppose the optimization problem is to find a local minimum, i.e., to find an admissible vector $r_{\text {opt }}$ in \mathbb{R}^{N} such that $f\left(r_{o p t}\right) \leq f(r)$ holds at least for any admissible $r \in \mathbb{R}^{N}$ close to $r_{\text {opt }}$. Here a vector $r \in \mathbb{R}^{N}$ is called admissible if the coordinates r_{i} of r satisfy $l_{i} \leq r_{i} \leq u_{i}$. Moreover suppose the functional f is supposed to be composed of quadratic terms, only (cf. (10.2)). In this case f takes the form

$$
f(r)=\|c-\Phi(r)\|^{2}
$$

where Φ maps the admissible parameter sets r into the space \mathbb{R}^{M} with $M \geq N$, where $c \in \mathbb{R}^{M}$, and where $\|\cdot\|$ is the Euclidean norm. Clearly, the components of $\Phi(r)$ are just the scaled efficiencies, energies or phase shift values for the grating determined by the parameter set r, and the c is the vector of the scaled prescribed values in (10.2). The scaling factors are the square roots of the positive weights in (10.2).

Denoting the Fréchet derivative of Φ at r by $\nabla \Phi(r)$, we observe

$$
\begin{aligned}
c=\Phi\left(r_{\text {opt }}\right)=\Phi\left(r+\left[r_{\text {opt }}-r\right]\right) & \sim \Phi(r)+\nabla \Phi(r) \cdot\left[r_{\text {opt }}-r\right] \\
\nabla \Phi(r) \cdot\left[r_{o p t}-r\right] & \sim c-\Phi(r), \\
{\left[r_{o p t}-r\right] } & \sim\left[\nabla \Phi(r)^{*} \nabla \Phi(r)\right]^{-1} \nabla \Phi(r)^{*}[c-\Phi(r)] .
\end{aligned}
$$

This suggests to determine approximate solutions $r_{j}, j=1,2,3, \ldots$ by the following iteration scheme of the Gauß-Newton method. Choose an initial solution r_{0} and, for any given r_{j}, define r_{j+1} by

$$
r_{j+1}:=r_{j}+\Delta r_{j}, \quad \Delta r_{j}:=\left[\nabla \Phi\left(r_{j}\right)^{*} \nabla \Phi\left(r_{j}\right)\right]^{-1} \nabla \Phi\left(r_{j}\right)^{*}\left[c-\Phi\left(r_{j}\right)\right] .
$$

In the Newton type algorithm of DIPOG-2.1 the correction term Δr_{j} is slightly modified in order to guarantee that the new iterate satisfies the constraints $l_{i} \leq r_{i} \leq u_{i}$. More precisely, if the components of the new iterate r_{j+1} do not fall into the the interval $\left[l_{i}, u_{i}\right], i=1, \ldots, N$, the r_{j+1} is determined as the optimal solution of the following quadratic problem with box constraints:

$$
\begin{aligned}
& \left\|\nabla \Phi\left(r_{j}\right) \cdot\left[r_{j+1}-r_{j}\right]-\left[c-\Phi\left(r_{j}\right)\right]\right\|^{2} \longrightarrow \min \\
& r_{j+1}: l_{i} \leq\left[r_{j+1}\right]_{i} \leq u_{i}, i=1, \ldots, N
\end{aligned}
$$

Obviously, this is a modification of the Gauß-Newton method in the spirit of the SQP methods.

The Newton type method (ind_opt=5) requires one integer input value (ni_opt=2). The i_opt[1] is the threshold integer $n_{\text {norm }}>1$ (choose, e.g., i_opt[1]=3). Whenever the gradient of the iterative solution remains unchanged over $n_{\text {norm }}$ iterations, then the iteration is stopped. The number i_opt[2] is maximal number of iteration for which an increase of the objective functional is accepted (choose, e.g., i_opt[2]=5). The number of real parameters is nd_opt=3. These parameters are:

- d_opt[1]: Threshold $\varepsilon_{a c c}>0$, iterate is shifted to the boundary if the distance to the boundary is less than $\varepsilon_{\text {acc }}$ (choose $\varepsilon_{a c c}$ about the expected accuracy of the final solution)
- d_opt[2]: Threshold $\varepsilon_{\text {gra }}>0$, stop if gradient is less than $\varepsilon_{\text {gra }}$ (should be about approximation error of gradient or less)
- d_opt[3]: Threshold $\varepsilon_{\text {norm }}>0$, stop if relative change of the norm of the gradient is less than $\varepsilon_{\text {norm }}$ for the last $n_{\text {norm }}$ steps (choose, e.g., $\varepsilon_{\text {norm }}=0.01$)
The parameters i_opt[1] and d_opt $[i], i=1,3$ should be chosen as recommended. For the error d_opt[2] $\sim \varepsilon_{\text {gra }}$ of the gradient computation, a first estimate can be obtained using the command OPTIMIZE -g name.dat. On the other hand, the user can choose niter_max larger than necessary and the positive parameter d_opt[2] smaller than recommended. In the worst case, a large number of unnecessary iteration steps with very small changes in the iterative solutions are performed at the end of the optimization procedure. Even these redundant iteration steps can be interrupted. Indeed, the user can invoke the optimization by the command OPTIMIZE -f name.dat. In this case the actual iterative solutions are printed on the screen, and, adding the kill -10 PID with PID the number of the subprocess (cf. the interruption of OPTIMIZE -f name.dat in Sect. 10.1.2), the user can stop the iteration whenever he observes that the iterative solutions do not improve.

In some cases this method is the fasted local algorithm of DIPOG-2.1. For about the same number of iteration steps, the number of function and gradient evaluations is less in the Newton type iteration since multiple function evaluations in the line search are avoided.

The price is that, even for accurate gradient computations using high discretization levels, the algorithm may diverge. However, if the initial solution is sufficiently close to a local minimum, then convergence is guaranteed.

10.3.7 Levenberg-Marquardt method

Suppose the objective functional is the least squares sum of deviation terms for efficiencies and phase shifts (cf. (10.2)). Moreover, suppose the optimization problem is to find a local minimum, i.e., to find an admissible vector $r_{\text {opt }}$ in \mathbb{R}^{N} such that $f\left(r_{o p t}\right) \leq f(r)$ holds at least for any admissible $r \in \mathbb{R}^{N}$ close to $r_{\text {opt }}$. Here a vector $r \in \mathbb{R}^{N}$ is called admissible if the coordinates r_{i} of r satisfy the box constraints $l_{i} \leq r_{i} \leq u_{i}$. The objective funvtional f takes the form

$$
f(r)=\|e\|_{2}^{2}, \quad e:=c-\Phi(r),
$$

where Φ maps the admissible parameter sets r into the space \mathbb{R}^{M} with $M \geq N$, where $c \in \mathbb{R}^{M}$, and where $\|\cdot\|_{2}$ is the Euclidean norm. Clearly, the components of $\Phi(r)$ are just the scaled efficiencies or phase shift values for the grating determined by the parameter set r, and the c is the vector of the scaled prescribed values in 10.2). The scaling factors are the square roots of the positive weights in (10.2).

The Levenberg-Marquardt method (ind_opt=6) can easily be applied to find a numerical solution. The method requires no integer input values (ni_opt=0). The number of real parameters is nd_opt $=4$. These parameters are:

- d_opt[1]: Factor $\mu>0$, for initial value of regularization parameter for Gauß-Newton equation
- d_opt[2]: Threshold $\varepsilon_{1}>0$, iteration stops if gradient norm satisfies the estimate $\left\|J^{T} e\right\|_{\infty}<\varepsilon_{1}$ with J the Jacobian of Φ
- d_opt[3]: Threshold $\varepsilon_{2}>0$, iteration stops if correction Δp of iterative solution p satisfies $\|\Delta p\|_{2}^{2}<\varepsilon_{2}\left\|\Delta p^{\prime}\right\|_{2}^{2}$ with Δp^{\prime} the value of the previous step
- d_opt[4]: Threshold $\varepsilon_{3}>0$, iteration stops if least square deviation satisfies $\|e\|_{2}^{2}<\varepsilon_{3}$
To work with default parameters, set d_opt[1]=-1.

10.4 References

For the computation of the gradients of the objective functional, see:

- J. Elschner and G. Schmidt: Diffraction in periodic structures and optimal design of binary gratings I: Direct problems and gradient formulas, Math. Meth. Appl. Sci. 21, pp. 1297-1342 (1998).
- J. Elschner and G. Schmidt: Conical diffraction by periodic structures: Variation of interfaces and gradient formulas, Math. Nachr. 252, pp. 24-42 (2003).
For the numerical optimization methods, see, e.g., the following books and article:
- Ch. Großmann and J. Terno: Numerik der Optimierung, Teubner Studienbücher der

Mathematik, Teubner Stuttgart, 1997. (augmented Lagrangian method)

- F. Jarre and J. Stoer: Optimierung, Springer Verlag New York Berlin Heidelberg, 2004. (interior point method)
- P.J.M. van Laarhoven and E.H.L. Aarts: Simulated annealing: Theory and Applications, D. Reidel Publishing Company, Mathematics and Applications, Member of the Kluwer Academic Publishing Group, Dodrecht Boston Lancaster Tokyo, 1988.
- J. Nocedal and S.J. Wright: Numerical optimization, Springer Verlag New-York Berlin Heidelberg, Springer Series in Operation Research, 2000. (conjugate gradient method)
- E.M.Drège, R.M. Al-Assaad, and D.M. Byrne: Mathematical analysis of inverse scatterometry, Proc.of SPIE 4689, pp. 151-162, 2002. (Newton type method)

11 The graphical user interface program DIPOG-2.1GUI

The graphical user interface program DIPOG-2.1-GUI can be called e.g. from the directory GUI. Using this, all the executables of the directories CLASSICAL, CONICAL, and RESULTS can be invoked. All necessary information is provided by the interface. We emphasize, however, the following.

Via the interface program the user can read a data file "name.dat" (cf. Sects. 5.1 and 7) and change its input data slightly. In any case, a new data file of the same type "name.dat" but with different name will be produced storing the actual input data. Of course, the computational results are written on the screen and into a result file "name.res" (cf. Sect. 5.2).

If the input data is long, then the original programs without graphical user interface are to be preferred since lots of data are easier to handle with data files and editor. Therefore, the input of DIPOG-2.1-GUI is restricted. No more than nine upper and lower additional layers are admitted (cf. Sect. 3.2). The grating part without these layers must not contain more than nine different materials. Finally, the input of the geometry by code words (cf. Sect. 3.5) is confined to one line which excludes lamellar, stack, and box gratings as well as profile gratings with parameters. Recall that the interface program TGUI allows to construct complex geometries and to include them as "name1.inp" files (cf. Sect. 3.2).

12 Enclosed Files

12.1 Geometry input file "example.inp"

```
#-*-makefile-*-
#################################################################
#
# ################# #
# # example.inp # #
# ################# #
# #
# all lines beginning with # are comments #
# #
#################################################################
#
# - geometry input file for periodic grating
# - located in directory ''GEOMETRIES''
# - input file for ''gen_polyx''
#
#################################################################
# Name of the files without extensions ''.inp''.
# Output files will have the same name but with
# tags ''.polyx') and '`.sg').
# Name:
    example
#################################################################
# Comments.
# Input must be ended by a ''0') in an extra line.
# These comments will appear in several output and
# result files.
# Comments:
    This is a fantasy grid
    for the test of gen_polyx!
    O
#################################################################
# Number of materials.
# Must include in its number the two materials of the
# regions immediately above and below the grating structure.
# Number of materials:
    4
#################################################################
# Minimal angle of subdivision triangles:
    20.000000
##################################################################
# Upper bound for mesh size:
    0.500000
#################################################################
# Width of additional strip above and below.
# Automatic choice of small width
```

```
# if this value is 0.
# For no additional strip add ''no''.
# For additional strip below but no
# additional strip above, add ''no_up 0.2''.
# For additional strip above but no
# additional strip below, add ''no_lo 0.2''.
# (If ''no'', ''no_up'' or ''no_lo'' is added,
# then the input for the Number of materials
# must not contain the materials of the
# excluded strips)
# Width:
    0.200000
#################################################################
# Grid points.
# #########################################################
# points of triangulation which is part of the domain
#
#
# -> x-components between 0 and 1
# -> triangles should be disjoint
# -> union of triangles should be a simply connected domain
# -> union of triangles should connect the lines x=0,x=1
# -> union of triangles should be bounded by two vertical
#
#
#
#
#
#
#
#
# Scaled to period 1
# Input ended by ''-1. -1.''.
# Grid points:
    0.000000 0.800000
    0.500000 0.800000
    0.000000 0.400000
    0.250000 0.400000
    1.000000 0.400000
    0.750000 0.200000
    1.000000 0.200000
    0.000000 0.000000
    0.250000-0.200000
    1.000000 -0.200000
    0.000000 -0.600000
    1.000000 -0.800000
    -1. -1.
#################################################################
# Triangles.
# Each given in a separate line by 5 parameters,
# namely by index of first point, by index of
# second point, by index of third point, by index
# of material, and by additional factor for maximal
# mesh size of partition inside the triangle.
```

```
# Input ended by ''-1 -1 -1 -1 -1.''.
# Triangles:
    1 3 4 2 1.000000
    4 6 2 2 1.000000
    675 2 1.000000
    3 8 4 2 1.000000
    8 9 4 2 0.300000
    4962 1.000000
    6 1073 1.000000
    8 11931.000000
    9 126 3 1.000000
    6 12 10 3 1.000000
    -1 -1 -1 -1 -1.
#################################################################
# End
#################################################################
```


12.2 Data file "example.dat" for CLASSICAL

```
#-*-makefile-*-
####################################################################
#
# ################# #
# # example.dat # #
# ################# #
# #
# all lines beginning with # are comments! #
# #
###################################################################
#
# - input file for '(FEM/GFEM')
# - located in directory ''CLASSICAL''
#
###################################################################
# Name of the output file.
# The tag ''.res'' will be added.
# File will be written into directory ''RESULTS''.
# (Alternatively, a path for the location of the file
# can be added before the name. This must contain at
# least one slash '/'. E.g. for a file ''name.res''
# in the current working directory write '، ./name'')
# Name:
    example
###################################################################
# Should there be an additional output file in the old style of
# DIPOG-1.3 (resp. an eps-file for FEM_CHECK).
# Add '، no'' if not needed.
```

```
# Add '، yes'' if needed. The name will be the same as
# the standard output file given above but with the tag
# ''.erg'' instead of ''.res''.
# Add '' phaseshifts'' if no additional output is needed
# but if phase shifts are preferred instead of Rayleigh
# coefficients.
# yes or no or phaseshifts:
    yes
###################################################################
# Number of coatings over the grating (N_co_ov).
# The grating cross section consists of
# a rectangular area parallel to the axes.
# This inhomogeneous part is determined
# by a triangular grid and can have already a few
# layers of coatings involved. Beneath and above
# this rectangular structure, there might be additional
# coated layers of rectangular shape. These kind of
# layers are called coatings over the grating and
# coatings beneath the grating, respectively.
# Alternatively a
# multilayer system input format is possible:
# E.g. the input ''MLS n1 n2*n3 n4'' with n1,n2,n3,n4
# replaced by non-negative integers means
# N_co_ov=n1+n2*n3+n4 layers with n1 layers above,
# n2 groups of n3 layers with same widths and materials
# in the middle, and with 7 layers below.
# Number of coatings:
    2
###################################################################
# Widths of coatings in micro m.
# Needed only if N_co_ov >0.
# Else no number no line.
# For a multilayer system the widths of the
# n3 layers in the groups must be given only once.
# I.e. for a multilayer system n1+n3+n4 input numbers
# are needed.
# Widths:
    0.5
    0.2
###################################################################
# Number of coatings beneath the grating (N_co_be):
    3
###################################################################
# Widths of coatings in micro m.
# Needed only if N_co_be >0.
# Else no number no line.
# Widths:
    0.2
    0.3
    0.2
###################################################################
# Wave length in micro m (lambda).
# Either add a single value e.g. ''.63''.
# Either add more values by e.g.
```

```
# `، V
5
. }6
. }6
. }6
. }6
. }70\mathrm{ ''.
    The last means that computation is to be done for
    the wave lengths from the Vector of length 5:
    '(.63'', '`.64'','`.65'','`.69'', and '`.70''.
    Or add e.g. '، I . 63 . 73 .02''.
    The last means that computation is to be done for
    the wave lengths ''.63+i*.02') with i=0,1,2,... and with
    wave length ''.63+i*.02'' less or equal to '`.73''.
Wave length:
    . }63
###################################################################
# Temperature in degrees Celsius.
# From 0 to 400.
# For room temperature set to 20.
# Will be ignored for explicitly
# given refractive indices.
# Temperature:
    20.
###################################################################
# Optical index (refractive index) of cover material.
# This is c times square root of mu times epsilon.
# This could be complex like ''4.298 +i 0.073') for
# Si with wave length 500nm.
# This could be also given by the name of a material
# like: Air Ag Al Au CsBr Cu InP MgF2 NaCl PMMA PSKL
    SF5 Si TlBr TlCl Cr ZnS Ge Si1.0 - Si2.0
    TiO2r Quarz AddOn ... (cf. Userguide)
    This could be a value interpolated from a user
    defined table, determined by the name of the file
    (file is to be located in the current directory,
    name of file must begin with letter ''u'' and may
    consist of no more than five letters like e.g. user,
    the file consists of lines each with three real
    numbers, first: wave length in micro meter, second:
    the real part of the corresponding optical index,
    third: the imaginary part of the corresponding index).
Optical index:
    1.0 +i . 0
###################################################################
# Optical indices of the materials of the upper coatings.
# Needed only if N_co_ov >0.
# Else no number no line.
# For a multilayer system the indices of the
# n3 layers in the groups must be given only once.
# I.e. for a multilayer system n1+n3+n4 input lines
# are needed.
# Optical indices:
```

```
    1.1 +i . 0
    1.2 +i . 0
###################################################################
# Optical indices of the materials of the lower coatings.
# Needed only if N_co_be >0.
# Else no number no line.
# Optical indices:
    2.3 +i . 0
    2.2 +i . 0
    2.1 +i . 0
###################################################################
# Optical index of substrate material.
    2.0 +i . 0
###################################################################
# Angle of incident wave in degrees (theta).
# Either add a single value e.g. ''45.''.
# Either add more values by e.g.
# `، V
# 5
63.
64.
65.
6 9 .
70. ''.
        The last means that computation is to be done for
        the angles from the Vector of length 5:
        ''63.'',''64.'',''65.'',''69.'', and ''70.''.
        Or add e.g. '، I 45 56 2''.
        The last means that computation is to be done for
        the angles '(45+i*2') with i=0,1,2,... and with
        angle '(45+i*2') less or equal to '' }56\mathrm{ ''.
        Note that either the wave length or the angle of
        incident wave must be single valued.
    Angle of incident wave:
    65
###################################################################
# Type of polarization.
# Either TE, TM or TE/TM.
# Type:
    TM
###################################################################
# Length factor of additional shift of grating geometry.
# This is shift into the x-direction, i.e. the
# direction of the period to the right.
# This is length of shift relative to period, i.e.
# the grating structure given by subsequent input
# will be shifted by factor times the period given
# in subsequent input.
# However, only the Rayleigh numbers and efficiencies
# will be computed according to the shift. The field
# vectors in the plots are drawn without shift, and
# the graphics of the executable with tag ''_CHECK''
# is drawn without shift!
# Must be a real number between 0 and 1.
```

```
# Length:
    0.
###################################################################
# Stretching factor for grating in y-direction.
# Must be a positive real number.
# Length:
    1.
###################################################################
# Length of additional shift of grating geometry in micro m.
# This is shift into the y-direction, i.e. the
# direction perpendicular to the grating surface
# pointing into the cover material.
# Must be a real number.
# Length:
    0.
###################################################################
# Period of grating in micro m:
    1.
###################################################################
# Grating data.
# Either this should be e.g. ''name1'' if ''name1.inp''
# is the input file with the geometry data in sub-
# directory ''GEOMETRIES''.
# (Alternatively, a path for the location of the file
# can be added before the name. This must contain at
# least one slash '/'. E.g. for a file in the current
# working directory write '، ./name1'')
    code word stack and many more lines (cf. Userguide)
    Or this could be
    e.g. '' echellea R 0.3 0.03 0.04''
    -> ECHELLE GRATING TYPE A (right-angled triangle
        with hypotenuse parallel to the direction of the
        periodicity, right interior angle > 45 degrees)
        with depth of 0.3 micro meter and with coated
        layers of height 0.03 micro meter resp. 0.04 micro
        meter over the first resp. second part of the
        grating (measured in direction perpendicular to
        echelle profile, height greater or equal to zero)
    e.g. '، echellea L 0.3 0.03 0.04''
    -> ECHELLE GRATING TYPE A (right-angled triangle
        with hypotenuse parallel to the direction of the
        periodicity, left interior angle > 45 degrees)
        with parameters like above
    e.g. '، echellea A 60 0.03 0.04',
    -> ECHELLE GRATING TYPE A (right-angled triangle
        with hypotenuse parallel to the direction of the
        periodicity) with left interior angle Alpha=60
        degrees (i.e. depth = period times sin(Alpha)
        times cos(Alpha)) and other parameters like above
    e.g. '، echelleb 60.0.05''
    -> ECHELLE GRATING TYPE B (right-angled triangle
        with one of the legs parallel to the direction
        of the periodicity) with angle 60 (angle enclosed
```

by hypotenuse and by the leg parallel to the period) and with a coated layer of height 0.05 micro meter (measured in direction perpendicular to echelle profile, height greater or equal to zero)
e.g. '، echelle L 60. R 30. 0.05 0.1',
-> GENERAL ECHELLE GRATING with left blaze angle 60 degrees, with right blaze angle 30 degrees, with coated layer over left blaze side of height 0.05 micro meter (measured perpendicular to profile, height >= 0) and with coated layer over right blaze side of height 0.1 micro meter (measured perpendicular to profile, height >= 0, must be 0 if previous height is 0). Instead of the two inputs ''L 60.'. and ''R 30.') one can choose also the inputs ''A 90.', for an apex angle of 90 degrees or ' D 0.2'' for a depth of grating $=0.2$ micro meter. Moreover, any combination of two inputs of the types
'‘A 90.'', '‘L 110.'', ''R 90'', and ' D 0.2'' is
accepted. However, the choice ' A 90.'' and ' D 0.2',
might be ambiguous. By definition it fixes an echelle grating with right blaze angle larger than the left. To get the flipped grating with left blaze angle larger than the right, the input should be 'A 90.', and ' $D-0.2$ '.
e.g. '" trapezoid 60. 0.630 .20 .10 .10 .05 ',
-> TRAPEZOIDAL GRATING (trapezoid with the basis parallel to the direction of the periodicity) with angle of 60 degrees (angle enclosed by basis and the sides) with a base of length 0.6 micro meter consisting of 3 material layers of heights $0.2,0.1$, and 0.1 micro meter, respectively, and with a coated layer of height 0.05 micro meter (greater or equal to zero)
e.g. '، mtrapezoid 3
0.0050 .0150 .005
80. 90. 80.
0.01

7
0.050 .0750 .050 .050 .0750 .0750 .05 $\begin{array}{lllllll}0.15 & 0.3 & 0.4 & 0.5 & 0.6 & 0.75 & 0.9\end{array}$,
-> MULTITRAPEZOIDAL GRATING (finite number of symmetric trapezoidal bridges located side by side) each bridge consists of 3 trapezoidal layers, one over each other; hights in micro meter of these layers from above to below are 0.005, 0.015, and 0.005 ; sidewall angles in degrees of these layers from above to below are 80, 90, 80; height in micro meter at which the lateral width of the bridge is given is 0.01 ; number of trapezoidal bridges per period is 7; lateral widths in micro meter of these bridges are $0.05,0.075,0.05,0.05$, $0.075,0.075$, and 0.05 ; x-coordinates in micro meter of the mid-points of the bottom lines of these bridges are

```
\(0.15,0.3,0.4,0.5,0.6,0.75\), and 0.9.
e.g. '، lAmellar 34
0.20 .6
-0.21 .0
\(\begin{array}{lll}0.0 & 0.50 & 0.90\end{array}\)
0.000 .5000 .900,
-> LAMELLAR GRATING (rectangular grating consisting
of several materials placed in rectangular sub-
domains) with 3 columns each divided into 4
rectangular layers, first column with \(x\) coordinate
in \(0<x<0.2\) (given in micro meter), second column with \(0.2<x<0.6\),
third columnn with \(0.6<x<\) period (period given above),
whole grating with y coordinate s.t. \(-0.2<y<1.0\),
first column: first layer with \(-0.2<y<0 .\), second with
\(0 .<y<0.5\), third with \(0.5<y<0.7\) and fourth with \(0.7<y<1\),
second column: first layer with \(-0.2<y<0.0\), second with
\(0.0<y<0.50\), third with \(0.50<y<0.90\) and fourth with \(0.90<y<1 .\),
third column: first layer with \(-0.2<y<0.00\), second with
\(0.00<y<0.500\), third with \(0.500<y<0.900\) and fourth with
\(0.900<y<1\).
e.g. '، lAmellar 11
\(0.20 .8 \quad\),
-> SIMPLE LAYER (special case of lamellar grating) with
layer material s.t. y-coordinate satisfies \(0.2<y<0.8\)
(given in micro meter).
e.g. '، polygon file1''
-> GRATING DETERMINED BY A POLYGONAL LINE defined
by the data in the file with name ' '../GEOMETRIES/file1',
(in ' \(. . / G E O M E T R I E S / f i l e 1\) '': in each line beginning without '\#'
there should be the \(x\) - and \(y\)-coordinate of one
of the consecutive corner points, first point
with \(x\)-coordinate 0 , last point with \(x\)-coordinate
1, same y-coordinate for first and last point,
all x-coordinates between 0 and 1, at least two
different y-coordinates, last line should be
'(End')'
e.g. '‘ polygon2 file1 file2''
-> COATED GRATING DETERMINED BY POLYGONAL LINES,
i.e. grating profile line is defined by the data
in the file with name '‘../GEOMETRIES/file1''
(in '،../GEOMETRIES/file1'):
in each line beginning without '\#' there should
be the \(x\) - and \(y\)-coordinate of one of the
consecutive corner points, first point with
x-coordinate 0, last point with x-coordinate
1, same y-coordinate for first and last point,
all x-coordinates between 0 and 1, at least two
different y-coordinates, last line should be
''End'') and the coated layer is enclosed between
the polygonal line of ' '../GEOMETRIES/file1''
and the polygonal line of the file with name
' '. /GEOMETRIES/file2',
(in ' \(. . / G E O M E T R I E S / f i l e 2\) '):
```

in each line beginning without '\#' there should be the x - and y-coordinate of one of the consecutive corner points, first and last point must be corner of first polygon, second polygon must be on lefthand side of first, one to one correspondence of the corners on the two polygons between first and last point of second polygon, quadrilateral between corresponding segments on the left of first polygon, these quadrilaterals must be disjoint, last line should be '(End')
e.g. '، profile''
-> GRATING DETERMINED BY A SMOOTH PARAMETRIC CURVE, i.e. grating determined by profile line given as $\{(f c t x(t), f c t y(t)): 0<=t<=1\}$, where the functions ''t|->fctx(t)') and ''t|->fcty(t)'' are defined by the ' 'c')-code of the file ' '. /GEOMETRIES/profile.c')
e.g. '، profile_par 23

1
0
1.5
0.2
0.3 , '
-> GRATING DETERMINED BY A SMOOTH PARAMETRIC CURVE, WITH PARAMETERS,
i.e. grating determined by profile line given as $\{(f c t x(t), f c t y(t)): 0<=t<=1\}$, where the functions ''t|->fctx(t)'' and ''t|->fcty(t)'' are defined by the ' 'c',-code of ' '../GEOMETRIES/profile_par.c'); the last code uses 2 integer parameters and 3 real parameters named IPARaM1, IPARaM2, RPARaM1, RPARaM2, RPARaM3;
the integer parameters take the values 1 and 0 following the first line of the calling sequence and the real parameters take the values $1.5,0.2$, and 0.3 following the integer parameter values (Any number of parameters is possible for a corresponding file '‘../GEOMETRIES/profile_par.c', .)
e.g. '، profile 0.125*sin(2.*M_PI*t)''
-> GRATING DETERMINED BY A SIMPLE SMOOTH FUNCTION, i.e. grating determined by sine profile line given as $\{(t, f c t y(t)): 0<=t<=1\}$, where the function ''t|->fcty(t)', is defined by the ' 'c''-code $f \operatorname{cty}(t)=0.125 * \sin \left(2 . * M _P I * t\right)$, (do not use any ''blank''/'space') in the c-code)
e.g. '، profile $0.5+0.5 * \cos \left(M_{-} P I *(1 .-t)\right) 0.25 * \sin \left(M_{-} P I * t\right)$ ', -> GRATING DETERMINED BY A SIMPLE SMOOTH PARAMETRIC CURVE, i.e., grating determined by ellipsoidal profile line given as $\{(f c t x(t), f c t y(t)): 0<=t<=1\}$, where the functions ''t|->fcty(t)'' and ''t|->fcty(t)'' are defined by the ' c ')-codes $\mathrm{fctx}(\mathrm{t})=0.5+0.5 * \cos \left(\mathrm{M}_{-} \mathrm{PI} *(1 .-\mathrm{t})\right)$ and $\mathrm{fcty}(\mathrm{t})=0.25 * \sin \left(\mathrm{M}_{-} \mathrm{PI} * \mathrm{t}\right)$, respectively (do not use any ''blank''/''space'' in the c-codes)
e.g. '" profiles',
-> GRATING DETERMINED BY SMOOTH PARAMETRIC CURVES, i.e. grating determined by profile lines given as $\{(f c t x(j, t), f c t y(j, t)): 0<=t<=1\}, j=1, \ldots, n=n m b _c u r v e s$, where the functions ' 't|->fctx (j,t)', and
''t|->fcty(j,t)', are defined by the ' 'c')-code of the file ' $. . / G E O M E T R I E S / p r o f i l e s . c$ ',
e.g. '، profiles_par 12
3
0.5
$0.50 \quad, \quad$
-> GRATING DETERMINED BY SMOOTH PARAMETRIC CURVES, WITH PARAMETERS,
i.e. grating determined by profile lines given as $\{(\operatorname{fctx}(j, t), f c t y(j, t)): 0<=t<=1\}, j=1, \ldots, n=n m b _c u r v e s$, where the functions ' 't|->fctx (j,t)', and ''t|->fcty (j,t)', are defined by the ' 'c',-code of the file '‘../GEOMETRIES/profiles_par.c''; the last code uses 1 integer parameter and 2
real parameters named IPARaM1, RPARaM1, RPARaM2;
the integer parameter takes the value 3
following the first line of the calling sequence and the real parameters take the values 0.5 and 0.50 following the integer parameter values
(Any number of parameters is possible for a corresponding file '‘../GEOMETRIES/profiles_par.c',.)
e.g. '، pin''
-> PIN GRATING DETERMINED BY PARAMETRIC CURVE,
i.e. over a flat grating with surface $\{(x, 0): 0<=x<=1\}$ a material part is attached which is located between $\{(x, 0): 0<=x<=1\}$ and $\{(f c t x(t), f c t y(t)): 0<=t<=1\}$. Here $\{(f c t x(t), f c t y(t)): 0<=t<=1\}$ is a simple open arc connecting (fctx (0),fcty(0))=(xmin,0) with $(f c t x(1), f c t y(1))=(1-x m i n, 0)$ such that $0<x m i n<0.5$ is a fixed number, such that $0<f c t x(t)<1,0<t<1$, and such that $0<f c t y(t), 0<t<1$. The functions fctx, fcty and the parameter xmin are defined by the code in '‘../GEOMETRIES/pin.c' '.
e.g. '‘ cpin''
-> COATED PIN GRATING DETERMINED BY TWO PARAMETRIC CURVES, i.e. over a flat grating with surface $\{(x, 0): 0<=x<=1\}$ a material part is attached which is located between $\{(x, 0): 0<=x<=1\}$ and $\{(f \operatorname{ctx}(1, t), f c t y(1, t)): 0<=t<=1\}$. Here $\{(f \operatorname{ctx}(1, t), f c t y(1, t)): 0<=t<=1\}$ is a simple open arc connecting $(f c t x(1,0), f c t y(1,0))=(x m i n, 0)$ with $(f \operatorname{ctx}(1,1), f c t y(1,1))=(1-x m i n, 0)$ such that $0<x m i n<0.5$ is a fixed number, such that $0<f \operatorname{ctx}(1, t)<1,0<t<1$, and such that $0<f c t y(1, t), 0<t<1$. Additionaly, a coating layer is attached located between the first curve $\{(\operatorname{fctx}(1, t), f \operatorname{cty}(1, t)): 0<=t<=1\}$ and a second curve $\{(\operatorname{fctx}(2, t), f \operatorname{cty}(2, t)): 0<=t<=1\}$. The last connects the point $(f \operatorname{ctx}(1, \arg 1), f \operatorname{cty}(1, \arg 1))=(\operatorname{fctx}(2,0), f \operatorname{cty}(2,0))$ with $(f \operatorname{ctx}(1, \arg 2), f \operatorname{cty}(1, \arg 2))=(f \operatorname{ctx}(2,1), f \operatorname{cty}(2,1))$. Moreover, $\{(\operatorname{fctx}(2, t), f c t y(2, t)): 0<=t<=1\}$ is a simple open arc above $\{(f \operatorname{ctx}(1, t), f c t y(1, t)): 0<=t<=1\}$ such that
$0<f c t x(2, t)<1,0<t<1$. The functions $f c t x(1,$.$) , fctx (2,.),$ fcty (1,.), and fcty (2,.) and the parameters arg1, arg2, xmin are defined by the code of the file '‘../GEOMETRIES/cpin.c').
e.g. '‘ cpin2'’
-> COATED PIN GRATING DETERMINED BY TWO PARAMETRIC CURVES TYPE 2,
i.e. over a flat grating with surface $\{(x, 0): 0<=x<=1\}$ a material part is attached which is located between $\{(x, 0): 0<=x<=1\}$ and $\{(f \operatorname{ctx}(1, t), f \operatorname{cty}(1, t)): 0<=t<=1\}$. Here $\{(f \operatorname{ctx}(1, t), f \operatorname{cty}(1, t)): 0<=t<=1\}$ is a simple open arc connecting (fctx $(1,0), f c t y(1,0))=(x m i n, 0)$ with $(f c t x(1,1), f c t y(1,1))=(1-x m i n, 0)$ such that $0<x m i n<0.5$ is a fixed number, such that $0<f c t x(1, t)<1,0<t<1$, and such that $0<f c t y(1, t), 0<t<1$. Additionaly, a coating layer is attached located between the first curve $\{(\operatorname{fctx}(1, t), f \operatorname{cty}(1, \mathrm{t})): 0<=\mathrm{t}<=1\}$ and a second curve $\{(\operatorname{fctx}(2, t), \operatorname{fcty}(2, t)): 0<=t<=1\}$. The last connects the point $(x 1,0)=(f \operatorname{ctx}(2,0), f \operatorname{cty}(2,0))$ with $(x 2,0)=$ (fctx $(2,1), f c t y(2,1))$ with $0<x 1<x m i n<1-x m i n<x 2$. Moreover, $\{(f \operatorname{ctx}(2, t), f \operatorname{cty}(2, t)): 0<=t<=1\}$ is a simple open arc above $\{(\operatorname{fctx}(1, t), f c t y(1, t)): 0<=t<=1\}$ such that $0<f c t x(2, t)<1,0<t<1$. The functions $f c t x(1,$.$) , fctx (2,.),$ fcty (1,.), and fcty (2,.) and the parameter xmin are defined by the code of the file '‘../GEOMETRIES/cpin2.c').
e.g. '، stack 3
profile t /\#\#/ 0.2*sin(2.*M_PI*t)
2.
profile 0.2*sin(2.*M_PI*t)
1.
profile t /\#\#/ 0 .
0 . , ,
-> STACK GRATING,
i.e. a stack of 3 profile curves shifted by 2, 1, 0
micro meter in vertical direction. For more details, see
the description in the USERGUIDE.
e.g. '، bOX 0.1
-1. 1.
23
\{ 2.*t \}
\{ -0.6 \}
$\left\{1 .+0.4 * \cos \left(2 . * \mathrm{M}_{-} \mathrm{PI} * \mathrm{t}\right)\right\}$
\{ $\left.0.4 * \sin \left(2 . * M_{-} P I * t\right)\right\}$

1. 0.8
2. 0 .
3. -0.8^{\prime},
-> BOX GRATING,
i.e. a box geometry of size [0., period=2.]x[-1.,1.] given in micro m (period is supposed to be set to 2. in previous input lines) ; number 0.1 behind word BOX is a mesh size factor; [0.,2.]x[-1.,1.] is
divided by 2 curves into 3 different material parts;
curves are given by the c-code in following 2 times
two lines; first code line is x-component of first
```
curve; second code is y-component of first curve; third code is \(x\)-component of second curve; etc.; last three input lines define material points; material with index one is located in part of box separated by above curves and containing (1.,0.8); material with index two is in part of box separated by above curves and containing (1.,0.); etc.; Note that the curves must be simple not self intersecting, contained in the box; allowed intersection points of two different curves are end points only; material areas separated by curves must be such that area with first index contains strip beneath upper boundary side of box and that area with last index contains strip above lower boundary side.
e.g. '، rough_mls name ',
-> MULTILAYER SYSTEM WITH ROUGH INTERFACES,
i.e. nla layers + nmld times nld layers + nlb layers, This system is described by the file ''name'', which
is contained in the directory ' '../GEOMETRIES',
(alternatively, the name must contain the path of the file)
This input file ' \(n a m e\) ', contains the following ordered
data each in a separate line (comment lines begin with '\#'):
- dummy file name
- width of additional layer above and below the structure (must be positive or could be 'no' for no additional layer)
- period of grating 'per'
- number 'nla' of layers above multilayer system
- number 'nlb' of layers below multilayer system
- number 'nmld' of multilayers inbetween
- number 'nld' of layers in each multilayer
- number 'ncorn' of corner points in each polygonal approximation (interfaces=randomly generated polygon)
- number 'nrand' of standard Gaussian distributed random numbers needed to generate interfaces (automatically created if nrand=0, otherwise 'nrand' has to equal ncorn*(nla+nld*nmld+nlb))
- (optional) standard Gaussian distributed random numbers
- 'nla' widths of layers above multilayer system,
- 'nld' widths of layers in each multilayer,
- 'nlb' widths of layers below multilayer system,
- standard deviation 'sigma[i]' of each layer interface, for \(i=0, . . .,(' n l a '+' n l d ' * ' n m l d '+' n l b '-1)\)
- correlation length 'corl[i]' of each layer interface, for \(i=0, . .\). ('nla'+'nld'*'nmld'+'nlb'-1)
Note that the first of the subsequent refractive indices of the grating must be that of the superstrate resp. that of the adjacent upper layer. If the width of the additional layers is positive, then the last of the subsequent refractive indices of the grating must be that of the substrate resp. that of the adjacent lower layer.
e.g. '، rough_mls k name ''
-> MULTILAYER SYSTEM WITH ROUGH INTERFACES k TIMES, just like above. However, k random realizations are computed and the output values are replaced by the mean values over
```


Grating data:

example
\#

Number of different grating materials (N_mat).

This includes the material of substrate and cover material.

For example,

the k computations. Standard deviations are added, too.
if Grating data is '، name1''
-> Number of materials given in file ''name1.inp''
if Grating data is '، echellea ...''
-> N_mat = 3 with coating height >0
N_mat = 2 with coating height =0
if Grating data is '' echelleb ...''
-> N_mat = 3 with coating height >0
N_mat = 2 with coating height =0
if Grating data is '، echelle ...''
-> N_mat = 3 with coating heights >0
N_mat = 2 with coating heights =0
if Grating data is '، trapezoid ...',
-> N_mat = number of material layers +3
for coating height >0
N_mat = number of material layers +2
for coating height =0
if Grating data is '، mtrapezoid ...''
-> N_mat = number of material layers in each bridge +2
if Grating data is '، lAmellar k m
-> N_mat = k times m plus 2
if Grating data is '، polygon file1''
-> N_mat = 2
if Grating data is '، polygon2 file1 file2''
-> N_mat = 3
if Grating data is '" profile''
-> N_mat = 2
if Grating data is '، profile 2 3
-> N_mat = 2
if Grating data is '، profile 0.125*sin(2.*M_PI*t)''
-> N_mat = 2
if Grating data is
'، profile 0.5+0.5*cos(M_PI*(1.-t)) 0.25*sin(M_PI*t)','
-> N_mat = 2
if Grating data is '" profiles''
-> N_mat = n+1 with n=nmb_curves from
the file '`../GEOMETRIES/profiles.c')
if Grating data is '، profiles ...
-> N_mat = n+1 with n=nmb_curves from
the file '،../GEOMETRIES/profiles_par.c''
if Grating data is '' pin ''
-> N_mat = 3
if Grating data is '، cpin ''
-> N_mat = 4
if Grating data is ' c cpin2 ',
-> N_mat = 4

```
```


if Grating data is '" stack k''

-> N_mat = k+1

if Grating data is '" bOX ...',

-> N_mat = number indicated as second

 integer in second lind after
 line with code word bOX
 if Grating data is '" rough_mls ...''
 -> N_mat = nla+nld+nlb+2 if width of additional
 layer above and below is positive
 N_mat = nla+nld+nlb+1 if instead of the value for
 the width of additional layer above and below
 a 'no' is given in the input file
 Number of materials:
4
\#

Optical indices of grating materials.

This is c times square root of mu times epsilon.

If meaningful, then the refractive indices should be ordered

according to the location from above to below.

If an input file ''name1.inp'' is used, then the optical index

of a subdomain with the material index j is just the j-th

optical index following below.

If grating is ''lAmellar ...'', then first material is cover

material, last material is substrate, and all other materials

are ordered from left to right and inside the columns from

below to above.

For technical reasons, the index of the material adjacent to

the upper line of the grating structure must coincide with

that of the material in the adjacent upper coated layer resp.

in the adjacent superstrate. Similarly the index of the

materials adjacent to the lower line of the grating structure

must coincide with that of the material in the adjacent lower

coated layer resp. in the adjacent substrate.

N_mat numbers are needed.

Optical indices:

 1.2 +i . 0
 1.5 +i .0
 1.7 +i . 0
 2.3 +i . 0
    ```
```

\#

Number of levels (Lev).

In each refinement step the step size of the mesh is halved.

Number of refinement steps is Lev.

(Alternatively, one can prescribe an bound for the maximal

error of the efficiencies. E.g. the input ''e 1.'' means

that the level for the computation is the smallest positive

integer such that all efficiencies are computed with an

estimated error less than 1 per cent.)

Number:

 3
 \#

End

\#

```

\subsection*{12.3 Data file "generalized.Dat" for CLASSICAL resp. "conical.Dat" in CONICAL}
```

\#-*-makefile-*-
\#

\#

\# generalized.Dat \#

\#

all lines beginning with \# are comments

\#

- input file for ''GFEM''

- located in directory ''CLASSICAL''

- contains constants for numerical

method in program ''GFEM''

\#

Recommendation for n_DOF and n_LFEM:
a) mild accuracy requirements
and wave numbers not too large:
n_DOF=1,3,7 n_LFEM=2*n_DOF+1
b) challenging accuracy requirements
or large wave numbers:
n_DOF=3 with n_LFEM=31 or
n_DOF=7 with n_LFEM=127 or
n_DOF=15 with n_LFEM=511
Recommendation for n_UPA:
Take the first level l_0 (cf. the last input in
''name.dat'' which is the upper bound for all
levels to be computed, and cf. the levels
indicated in the result files ''name2.res'')
such that the next level results in about four
times the number of grid points. Then, if you
wish to compute on level l_0+l_1, set the

```
```

maximum level of computation (last input in
''name.dat'') to l_0 and choose n_UPA as 2 to
the power l_1.
\#

n_DOF.

Additional degrees of freedom on each triangle side.

Indeed, trial functions on each subdivision triangle

are approximate solutions of pde s.t. restriction to

triangle sides coincides with Lagrange interpolation

polynomials on triangle side (Dirichlet's problem).

Here interpolation is taken over uniform grid with

[n_DOF+2] interpolation knots.

Value should satisfy 0<=n_DOF<100.

value:

 3
 \#

n_LFEM.

Approximate solution determined by FEM over subdivision

triangle, where additional uniform FEM partition on

each small triangle is chosen such that the step size

is side length divided by [n_LFEM+1].

If n_LFEM=1, n_DOF=0: conventional FEM method.

If n_DOF=n_LFEM: conventional FEM method with

elimination of interior nodes of grid

triangle, i.e. real mesh size is mesh

size shown in result file divided by

[n_DOF+1].

If n_DOF<n_LFEM: method resembles p=method or PUM.

Value should satisfy 1<=n_LFEM<2048 and

[n_LFEM+1] must be a multiple of [n_DOF+1].

value:

 63
 \#

n_UPA.

This is for additional uniform partition of all primary

grid triangles into n_UPA*n_UPA equal subdomains,

i.e. original side of grid triangle is split

into n_UPA sides of uniform partition subtriangles.

Value should satisfy 1<=n_UPA<=128.

value:

 1
 \#

that's it

\#

```

\subsection*{12.4 Data file "example.dat" for CONICAL}
```

\#-*-makefile-*-
\#

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

\# example.dat \#

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

all lines beginning with ''\#', are comments!

\#

- input file for ''FEM/GFEM')

- located in directory ''CONICAL''

\#

Name of the output file.

The tag ''.res'' will be added.

The file will be written in the ''RESULTS'' directory.

(Alternatively, a path for the location of the file

can be added before the name. This must contain at

least one slash '/'. E.g. for a file ''name.res''

in the current working directory write '، ./name'')

Name:

 example
 \#

Should there be an additional output file in the old style of

DIPOG-1.3 (resp. an eps-file for FEM_CHECK).

Add '، no'' if not needed.

Add '' yes'' if needed. The name will be the same as

the standard output file given above but with the tag

''.erg') instead of ''.res''.

yes or no:

 yes
 \#

Number of coating layers over the grating (N_co_ov).

The grating cross section consists of a rectangular area

parallel to the axes. This inhomogeneous part is determined

by a triangular grid and can have already a few

layers of coatings involved. Beneath and above

this rectangular structure, there might be additional

coated layers of rectangular shape. These kind of

layers are called coating layers over the grating and

coating layers beneath the grating, respectively.

Alternatively a

multilayer system input format is possible:

E.g. the input ''MLS n1 n2*n3 n4'' with n1,n2,n3,n4

replaced by non-negative integers means

N_co_ov=n1+n2*n3+n4 layers with n1 layers above,

n2 groups of n3 layers with same widths and materials

in the middle, and with 7 layers below.

```
```


Number:

 2
 \#

Widths of coating layers in micro meter.

N_co_ov entries. Needed only if N_co_ov >0.

Else no entry and no line.

For a multilayer system the widths of the

n3 layers in the groups must be given only once.

I.e. for a multilayer system n1+n3+n4 input numbers

are needed.

Widths:

 0.05
 0.03
 \#

Number of coating layers beneath the grating (N_co_be):

 1
 \#

Widths of coating layers in micro meter.

N_co_be entries. Needed only if N_co_be >0.

Else no entry and no line.

Widths:

 0.05
 \#

Wave length in micro meter (lambda).

Either add a single value e.g. '`.63''.

Either add more values by e.g.

`، V

5

. }6

. }6

. }6

. }6

. 70 ,'.

The last means that computation is to be done for

the wave lengths from the Vector of length 5:

'`.63'', '`.64'','`.65'','`.69'', and '`.70''.

Or add e.g.

،' I . 63 .73 .02'',

The last means that computation is to be done for

the wave lengths ''.63+i*.02') with i=0,1,2,... and with

wave length '`.63+i*.02'' less or equal to '`.73''.

Wave length:

 . }63
 \#

Temperature in degrees Celsius from 0 to 400.

20. for room temperature!

Must be set to any fixed number.

Will be ignored if optical indices are given explicitly.

Temperature:

 20.
 \#

Optical index (refractive index) of cover material.

This is c times square root of mu times epsilon.

This could be complex like e.g. ''4.298 +i 0.073'' for

```
```


Si with wave length 500nm.

This could be also given by the name of a material

like: Air Ag Al Au CsBr Cu InP MgF2 NaCl PMMA PSKL

 third: the imaginary part of the corresponding index).
 Optical index:
Air
\#

Optical indices of the materials of the upper coating layers.

This is c times square root of mu times epsilon.

N_co_ov entries. Needed only if N_co_ov >0.

Else no entry and no line.

For a multilayer system the indices of the

n3 layers in the groups must be given only once.

I.e. for a multilayer system n1+n3+n4 input lines

are needed.

Optical indices:

 1.2
 1.3
 \#

Optical indices of the materials of the lower coating layers.

This is c times square root of mu times epsilon.

N_co_be entries. Needed only if N_co_be >0.

Else no entry and no line.

Optical indices:

 1.6
 \#

Optical index of substrate material.

This is c times square root of mu times epsilon.

Optical index:

 1.5 +i 0.
 \#

Type of output results.

Either ''TE/TM'': results in terms of TE and TM part of Wave.

Either '(Jones'): results in terms of Jones vector

representation.

Or ''3.Com'': results in terms of the component in the z

axis, that is in the direction of the grooves.

For more details cf. Section 2.3 in USERGUIDE.ps.

Type:

 3.Com
 \#

Type of polarization and coordinate system for incoming wave vector.

Either ''TE'': means that incident electric field is perpendicular

to wave vector and to normal of grating plane

```
```


Type:

TE/TM
\#

Parameter of polarization.

If type of polarization is '(pol') or ''TP'), then this is

the angle (in degrees) between x axis (axis in plane of

grating grooves which is perpendicular to grooves)

and projection of electric field vector onto x-z plane of

grating grooves.

Needed only if polarization is of type ''pol'' or ''TP''.

Else no entry and no line.

Parameter:

\#

Angle of incident wave in degrees (theta).

If type of polarization is ''pol'',

then the incident light beam takes the direction

(sin theta cos phi, -cos theta cos phi, sin phi)

with the restriction -90 < phi,theta < 90.

If type of polarization is ''TE''/''TM''/'(TP'',

then the incident light beam takes the direction

(sin theta cos phi, -cos theta, sin theta sin phi)

with the restriction 0 < theta < 90.

Either add a single value e.g. ''45.''.

Either add more values by e.g.

`، V

5

63.

64.

65.

69.

 (plane of grating grooves) and
 incoming wave vector is presented in xz system as
 (sin theta cos phi, -cos theta, sin theta sin phi).
 Either '(TM'': means that incident magnetic field is perpendicular
 to wave vector and to normal of grating plane and
 incoming wave vector is presented in xz system as
 (sin theta cos phi, -cos theta, sin theta sin phi).
 Either ''TE/TM'':
means TE and TM, two calculations.
Either ''TP'): means polarized electro-magnetic field and
incoming wave vector is presented in xz system as
(sin theta cos phi, -cos theta, sin theta sin phi).
Or ''pol'': means polarized electro-magnetic field and
incoming wave vector is presented in xy system as
(sin theta cos phi, -cos theta cos phi, sin phi).
70. ''.
The last means that computation is to be done for
the angles from the Vector of length 5:
''63.'',''64.'','`65.'','`69.'', and ''70.''.
Or add e.g.
`، I 45 56 2').
The last means that computation is to be done for
the angles ''45+i*2'' with i=0,1,2,... and with
angle ''45+i*2'' less or equal to ''56').

```
```


Note that either the wave length or the angle of

incident wave theta must be single valued.

Angle:
30.
\#

Angle of incident wave in degrees (phi).

If type of polarization is '(pol',,

then the incident light beam takes the direction

(sin theta cos phi, -cos theta cos phi, sin phi)

with the restriction -90 < phi,theta < 90.

If type of polarization is ''TE''/''TM''/''TP'',

then the incident light beam takes the direction

(sin theta cos phi, -cos theta, sin theta sin phi)

with the restriction 0 < theta < 90.

Either add a single value e.g. ''45.''.

Either add more values by e.g.

`، V

5

63.

64.

65.

69.

70. ''.

the angles from the Vector of length 5:

''63.', ''64.'',''65.'',''69.'', and ''70.''.

Or add e.g.

"، I 45 56 2''.

The last means that computation is to be done for

the angles ''45+i*2') with i=0,1,2,···. and with

angle '(45+i*2') less or equal to ''56').

Note that two of the three, the wave length, the

angle of incident wave theta, and the angle of

incident wave phi, must be single valued.

Angle:

 47.
 \#

Length factor of additional shift of grating geometry.

This is shift into the x-direction, i.e. the

direction of the period to the right.

This is length of shift relative to period, i.e.

the grating structure given by subsequent input

will be shifted by factor times the period given

in subsequent input.

However, only the Rayleigh numbers and efficiencies

will be computed according to the shift. The field

vectors in the plots are drawn without shift, and

the graphics of the executable with tag '`_CHECK''

is drawn without shift!

Must be a real number between 0 and 1.

Length:

 0.
 \#

Stretching factor for grating in y-direction.

```
```


Must be a positive real number.

Length:

 1.
 \#

Length of additional shift of grating geometry in micro m.

This is shift into the y-direction, i.e. the

direction perpendicular to the grating surface

pointing into the cover material.

Must be a real number.

Length:

 0.
 \#

Period of grating in micro meter:

 1.
 \#

Grating data.

Either this should be e.g. ''name1'' if ''name1.inp''

 is the input file with the geometry data in sub-
 directory ''GEOMETRIES''.
 (Alternatively, a path for the location of the file
 can be added before the name. This must contain at
 least one slash '/'. E.g. for a file in the current
 working directory write '، ./name1'')
 Or this could be a stack of profiles given by the
 code word stack and many more lines (cf. Userguide)
 Or this could be
 e.g. '' echellea R 0.3 0.03 0.04''
 -> ECHELLE GRATING TYPE A (right-angled triangle
 with hypotenuse parallel to the direction of the
 periodicity, right interior angle > 45 degrees)
 with depth of 0.3 micro meter and with coated
 layers of height 0.03 micro meter resp. 0.04 micro
 meter over the first resp. second part of the
 grating (measured in direction perpendicular to
 echelle profile, height greater or equal to zero)
 e.g. '، echellea L 0.3 0.03 0.04''
 -> ECHELLE GRATING TYPE A (right-angled triangle
 with hypotenuse parallel to the direction of the
 periodicity, left interior angle > 45 degrees)
 with parameters like above
 e.g. '' echellea A 60 0.03 0.04')
 -> ECHELLE GRATING TYPE A (right-angled triangle
 with hypotenuse parallel to the direction of the
 periodicity) with left interior angle Alpha=60
 degrees (i.e. depth = period times sin(Alpha)
 times cos(Alpha)) and other parameters like above
 e.g. '، echelleb 60. 0.05''
 -> ECHELLE GRATING TYPE B (right-angled triangle
 with one of the legs parallel to the direction
 of the periodicity) with angle 60 (angle enclosed
 by hypotenuse and by the leg parallel to the
 period) and with a coated layer of height 0.05
 micro meter (measured in direction perpendicular
 to echelle profile, height greater or equal to
    ```
zero)
e.g. '، echelle L 60. R 30. 0.05 0.1',
-> GENERAL ECHELLE GRATING with left blaze angle 60 degrees, with right blaze angle 30 degrees, with coated layer over left blaze side of height 0.05 micro meter (measured perpendicular to profile, height >= 0) and with coated layer over right blaze side of height 0.1 micro meter (measured perpendicular to profile, height >= 0, must be 0 if previous height is 0). Instead of the two inputs ''L 60.', and ' \(R\) 30.', one can choose also the inputs '‘A 90.', for an apex angle of 90 degrees or ''D 0.2'' for a depth of grating \(=0.2\) micro meter. Moreover, any combination of two inputs of the types '‘A 90.'', '‘L 110.'', '‘R 90'', and '‘D 0.2'’ is accepted. However, the choice ''A 90.'' and '(D 0.2') might be ambiguous. By definition it fixes an echelle grating with right blaze angle larger than the left. To get the flipped grating with left blaze angle larger than the right, the input should be ''A 90.', and ' ' \(D-0.2\) ').
e.g. '" trapezoid 60. 0.630 .20 .10 .10 .05 ',
-> TRAPEZOIDAL GRATING (trapezoid with the basis parallel to the direction of the periodicity) with angle of 60 degrees (angle enclosed by basis and the sides) with a base of length 0.6 micro meter consisting of 3 material layers of heights \(0.2,0.1\), and 0.1 micro meter, respectively, and with a coated layer of height 0.05 micro meter (greater or equal to zero)
e.g. '، mtrapezoid 3 0.0050 .0150 .005 80. 90. 80 . 0.01 7 \(0.050 .0750 .050 .05 \quad 0.075 \quad 0.075 \quad 0.05\) \(\begin{array}{llllllll}0.15 & 0.3 & 0.4 & 0.5 & 0.6 & 0.75 & 0.9\end{array}\),' -> MULTITRAPEZOIDAL GRATING (finite number of symmetric trapezoidal bridges located side by side) each bridge consists of 3 trapezoidal layers, one over each other; hights in micro meter of these layers from above to below are \(0.005,0.015\), and 0.005 ; sidewall angles in degrees of these layers from above to below are 80, 90, 80; height in micro meter at which the lateral width of the bridge is given is 0.01 ; number of trapezoidal bridges per period is 7; lateral widths in micro meter of these bridges are 0.05, 0.075, 0.05, 0.05, \(0.075,0.075\), and 0.05 ; \(x\)-coordinates in micro meter of the mid-points of the bottom lines of these bridges are \(0.15,0.3,0.4,0.5,0.6,0.75\), and 0.9 .
e.g. '، lAmellar 34
0.20 .6
\(-0.21 .0\)
\[
\begin{array}{lll}
0 . & 0.5 & 0.7 \\
0.0 & 0.50 & 0.90 \\
0.00 & 0.500 & 0.900
\end{array},
\]
-> LAMELLAR GRATING (rectangular grating consisting of several materials placed in rectangular subdomains) with 3 columns each divided into 4 rectangular layers, first column with x coordinate in \(0<x<0.2\) (given in micro meter), second column with \(0.2<x<0.6\), third columnn with \(0.6<x<\) period (period given above), whole grating with y coordinate s.t. \(-0.2<y<1.0\), first column: first layer with \(-0.2<y<0 .\), second with \(0 .<y<0.5\), third with \(0.5<y<0.7\) and fourth with \(0.7<y<1\), second column: first layer with \(-0.2<y<0.0\), second with \(0.0<y<0.50\), third with \(0.50<y<0.90\) and fourth with \(0.90<y<1\). , third column: first layer with \(-0.2<y<0.00\), second with \(0.00<y<0.500\), third with \(0.500<y<0.900\) and fourth with \(0.900<y<1\).
e.g. '" lAmellar 11
0.20 .8
-> SIMPLE LAYER (special case of lamellar grating) with layer material s.t. y-coordinate satisfies \(0.2<y<0.8\) (given in micro meter).
e.g. '، polygon file1''
-> GRATING DETERMINED BY A POLYGONAL LINE defined by the data in the file with name '‘../GEOMETRIES/file1'’ (in '‘../GEOMETRIES/file1'): in each line beginning without '\#' there should be the \(x\) - and \(y\)-coordinate of one of the consecutive corner points, first point with \(x\)-coordinate 0 , last point with x-coordinate 1, same y-coordinate for first and last point, all x-coordinates between 0 and 1, at least two different \(y\)-coordinates, last line should be '(End'')
e.g. '‘ polygon2 file1 file2''
-> COATED GRATING DETERMINED BY POLYGONAL LINES, i.e. grating profile line is defined by the data in the file with name '‘../GEOMETRIES/file1'' (in ' \(. . / G E O M E T R I E S / f i l e 1\) '): in each line beginning without '\#' there should be the \(x^{-}\)and \(y\)-coordinate of one of the consecutive corner points, first point with x-coordinate 0 , last point with x -coordinate 1, same \(y\)-coordinate for first and last point, all x-coordinates between 0 and 1, at least two different y-coordinates, last line should be
'(End')) and the coated layer is enclosed between the polygonal line of ' '../GEOMETRIES/file1'' and the polygonal line of the file with name ' (./GEOMETRIES/file2', (in '،../GEOMETRIES/file2'): in each line beginning without '\#' there should be the \(x\) - and \(y\)-coordinate of one of the consecutive corner points, first and last point must be corner of first polygon, second polygon must be on left-
hand side of first, one to one correspondence of the corners on the two polygons between first and last point of second polygon, quadrilateral between corresponding segments on the left of first polygon, these quadrilaterals must be disjoint, last line should be '(End'')
e.g. '" profile''
-> GRATING DETERMINED BY A SMOOTH PARAMETRIC CURVE, i.e. grating determined by profile line given as \(\{(f c t x(t), f c t y(t)): 0<=t<=1\}\), where the functions ''t|->fctx(t)', and ''t|->fcty(t)', are defined by the ' 'c',-code of the file ' '. /GEOMETRIES/profile.c',
e.g. '، profile_par 23

1
0
1.5
0.2
0.3 ,
-> GRATING DETERMINED BY A SMOOTH PARAMETRIC CURVE, WITH PARAMETERS,
i.e. grating determined by profile line given as
\(\{(f c t x(t), f c t y(t)): 0<=t<=1\}\), where the functions
''t|->fctx(t)', and ' 't|->fcty(t)'" are defined by the ''c')-code of ' '../GEOMETRIES/profile_par.c'); the last code uses 2 integer parameters and 3 real parameters named IPARaM1, IPARaM2, RPARaM1, RPARaM2, RPARaM3;
the integer parameters take the values 1 and 0 following the first line of the calling sequence and the real parameters take the values \(1.5,0.2\), and 0.3 following the integer parameter values (Any number of parameters is possible for a corresponding file ' (./GEOMETRIES/profile_par.c', .)
e.g. '، profile 0.125*sin(2.*M_PI*t)''
-> GRATING DETERMINED BY A SIMPLE SMOOTH FUNCTION, i.e. grating determined by sine profile line given as \(\{(\mathrm{t}, \mathrm{fcty}(\mathrm{t})): 0<=\mathrm{t}<=1\}\), where the function ' 't|->fcty(t)', is defined by the ' 'c','-code \(f \operatorname{cty}(t)=0.125 * \sin \left(2 . * M \_P I * t\right)\). (do not use any ''blank''/''space'' in the c-code)
e.g. ' ' profile \(0.5+0.5 * \cos \left(M_{-} P I *(1 .-t)\right) 0.25 * \sin \left(M \_P I * t\right)\) ',
-> GRATING DETERMINED BY A SIMPLE SMOOTH PARAMETRIC CURVE, i.e., grating determined by ellipsoidal profile line given as \(\{(f \operatorname{ctx}(\mathrm{t}), \mathrm{fcty}(\mathrm{t})): 0<=\mathrm{t}<=1\}\), where the functions ''t|->fcty(t)'' and ''t|->fcty(t)'' are defined by the ' 'c')-codes fctx \((t)=0.5+0.5 * \cos \left(M \_P I *(1 .-t)\right)\) and \(\mathrm{fcty}(\mathrm{t})=0.25 * \sin \left(\mathrm{M}_{2} \mathrm{PI} * \mathrm{t}\right)\), respectively (do not use any ''blank''/''space'' in the c-codes)
e.g. '، profiles''
-> GRATING DETERMINED BY SMOOTH PARAMETRIC CURVES, i.e. grating determined by profile lines given as \(\{(f \operatorname{ctx}(j, t), f c t y(j, t)): 0<=t<=1\}, j=1, \ldots, n=n m b \_c u r v e s\), where the functions ' 't|->fctx ( \(j, t\) )', and
```

 ''t|->fcty(j,t)'' are defined by the ''c''-code
 of the file '`../GEOMETRIES/profiles.c''
 e.g. '، profiles_par 1 2
3
0.5
0.50
-> GRATING DETERMINED BY SMOOTH PARAMETRIC CURVES,
WITH PARAMETERS,
i.e. grating determined by profile lines given as
{(fctx(j,t),fcty(j,t)):0<=t<=1}, j=1,···,n=nmb_curves,
where the functions ''t|->fctx(j,t)'' and
''t|->fcty(j,t)'' are defined by the ''c''-code
of the file '`../GEOMETRIES/profiles_par.c''; the last code uses 1 integer parameter and 2 real parameters named IPARaM1, RPARaM1, RPARaM2; the integer parameter takes the value 3 following the first line of the calling sequence and the real parameters take the values 0.5 and 0.50 following the integer parameter values (Any number of parameters is possible for a corresponding file '`../GEOMETRIES/profiles_par.c''.)
e.g. '، pin''
-> PIN GRATING DETERMINED BY PARAMETRIC CURVE,
i.e. over a flat grating with surface {(x,0):0<=x<=1}
a material part is attached which is located between
{(x,0):0<=x<=1} and {(fctx(t),fcty(t)):0<=t<=1}.
Here {(fctx(t),fcty(t)):0<=t<=1} is a simple open
arc connecting (fctx(0),fcty(0))=(xmin,0) with
(fctx(1),fcty(1))=(1-xmin,0) such that 0<xmin<0.5
is a fixed number, such that 0<fctx(t)<1, 0<t<1, and
such that 0<fcty(t), 0<t<1. The functions fctx, fcty
and the parameter xmin are defined by the code in
'`../GEOMETRIES/pin.c''. e.g. '' cpin'' -> COATED PIN GRATING DETERMINED BY TWO PARAMETRIC CURVES, i.e. over a flat grating with surface {(x,0):0<=x<=1} a material part is attached which is located between {(x,0):0<=x<=1} and {(fctx(1,t),fcty (1,t)):0<=t<=1}. Here {(fctx (1,t),fcty (1,t)):0<=t<=1} is a simple open arc connecting (fctx(1,0),fcty (1,0))=(xmin,0) with (fctx (1,1),fcty (1,1))=(1-xmin,0) such that 0<xmin<0.5 is a fixed number, such that 0<fctx (1,t)<1, 0<t<1, and such that 0<fcty(1,t), 0<t<1. Additionaly, a coating layer is attached located between the first curve {(fctx(1,t),fcty(1,t)):0<=t<=1} and a second curve {(fctx(2,t),fcty (2,t)):0<=t<=1}. The last connects the point (fctx(1,arg1),fcty(1,arg1))=(fctx (2,0),fcty (2,0)) with (fctx(1,arg2),fcty(1,arg2))=(fctx (2,1),fcty (2,1)). Moreover, {(fctx(2,t),fcty(2,t)):0<=t<=1} is a simple open arc above {(fctx (1,t),fcty (1,t)):0<=t<=1} such that 0<fctx(2,t)<1, 0<t<1. The functions fctx(1,.), fctx(2,.), fcty(1,.), and fcty(2,.) and the parameters arg1, arg2, and xmin are defined by the code of the file '`../GEOMETRIES/cpin.c').

```

```


Grating data:

lamellar
\#

Number of different grating materials (N_mat).

This includes the material of substrate and cover material.

For example,

 - period of grating 'per'
 - number 'nla' of layers above multilayer system
 - number 'nlb' of layers below multilayer system
 - number 'nmld' of multilayers inbetween
 - number 'nld' of layers in each multilayer
 - number 'ncorn' of corner points in each polygonal approximation
 (interfaces=randomly generated polygon)
 - number 'nrand' of standard Gaussian distributed random numbers
 needed to generate interfaces
 (automatically created if nrand=0, otherwise 'nrand' has
 to equal ncorn*(nla+nld*nmld+nlb))
 - (optional) standard Gaussian distributed random numbers
 - 'nla' widths of layers above multilayer system,
 - 'nld' widths of layers in each multilayer,
 - 'nlb' widths of layers below multilayer system,
 - standard deviation 'sigma[i]' of each layer interface,
 for i=0,...,('nla'+'nld'*'nmld'+'nlb'-1)
 - correlation length 'corl[i]' of each layer interface,
 for i=0,...,('nla'+'nld'*'nmld'+'nlb'-1)
 Note that the first of the subsequent refractive indices of
 the grating must be that of the superstrate resp. that of
 the adjacent upper layer. If the width of the additional
 layers is positive, then the last of the subsequent refractive
 indices of the grating must be that of the substrate resp. that
 of the adjacent lower layer.
 e.g. '، rough_mls k name ''
 -> MULTILAYER SYSTEM WITH ROUGH INTERFACES k TIMES,
 just like above. However, k random realizations are computed
 and the output values are replaced by the mean values over
 the k computations. Standard deviations are added, too.
 if Grating data is '' name1',
 -> Number of materials given in file ''name1.inp''
 if Grating data is '، echellea ...''
 -> N_mat = 3 with coating height >0
 N_mat = 2 with coating height =0
 if Grating data is '" echelleb ...',
 -> N_mat = 3 with coating height >0
 N_mat = 2 with coating height =0
 if Grating data is '، echelle ...''
 -> N_mat = 3 with coating heights >0
 N_mat = 2 with coating heights =0
 if Grating data is '، trapezoid ...',
 -> N_mat = number of material layers +3
 for coating height >0
 N_mat = number of material layers +2
 for coating height =0
 if Grating data is '" mtrapezoid ...',
 -> N_mat = number of material layers in each bridge +2
    ```
```

 if Grating data is '، lAmellar k m
 ... ,'
 -> N_mat = k times m plus 2
 if Grating data is '، polygon file1''
 -> N_mat = 2
 if Grating data is '، polygon2 file1 file2''
 -> N_mat = 3
 if Grating data is '" profile''
 -> N_mat = 2
 if Grating data is '" profile 2 3
 -> N_mat = 2
 if Grating data is '، profile 0.125*sin(2.*M_PI*t)',
 -> N_mat = 2
 if Grating data is
 '، profile 0.5+0.5*cos(M_PI*(1.-t)) 0.25*sin(M_PI*t)''
 -> N_mat = 2
 if Grating data is '، profiles''
 -> N_mat = n+1 with n=nmb_curves from
 the file ''../GEOMETRIES/profiles.c')
 if Grating data is '، profiles ... ''
 -> N_mat = n+1 with n=nmb_curves from
 the file '،../GEOMETRIES/profiles_par.c')
 if Grating data is '، pin ''
 -> N_mat = 3
 if Grating data is '، cpin ''
 -> N_mat = 4
 if Grating data is '، stack k''
 -> N_mat = k+1
 if Grating data is '، bOX ...''
 -> N_mat = number indicated as second
 integer in second lind after
 line with code word bOX
 if Grating data is '، rough_mls ...''
 -> N_mat = nla+nld+nlb+2 if width of additional
 layer above and below is positive
 N_mat = nla+nld+nlb+1 if instead of the value for
 the width of additional layer above and below
 a 'no' is given in the input file
 Number of materials:
2
\#

Optical indices of grating materials.

This is c times square root of mu times epsilon.

If meaningful, then the refractive indices should be ordered

according to the location from above to below.

If an input file ''name1.inp'' is used, then the optical index

of a subdomain with the material index j is just the j-th

optical index following below.

If grating is ''lAmellar ...'', then first material is cover

material, last material is substrate, and all other materials

are ordered from left to right and inside the columns from

below to above.

For technical reasons, the index of the material adjacent to

```
```


the upper line of the grating structure must coincide with

that of the material in the adjacent upper coated layer resp.

in the adjacent superstrate. Similarly the index of the

materials adjacent to the lower line of the grating structure

must coincide with that of the material in the adjacent lower

coated layer resp. in the adjacent substrate.

N_mat numbers are needed.

Optical indices:

 1.3 +i 0.
 1.6 +i 0.
 \#

Number of levels (Lev).

In each refinement step the step size of the mesh is halved.

Lev refinement steps are performed.

(Alternatively, one can prescribe an bound for the maximal

error of the efficiencies. E.g. the input ''e 1.'' means

that the level for the computation is the smallest positive

integer such that all efficiencies are computed with an

estimated error less than 1 per cent.)

Number:

 1
 \#

End

\#

```

\subsection*{12.5 Output file "example.res" of FEM-FULLINFO in CLASSICAL}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~\)
\(* *\)}} \\
\hline & & \\
\hline ** & D P O G R & ** \\
\hline ** & & ** \\
\hline
\end{tabular}
```

date ='10. Feb 2003, 09:55:17'

```

Program solves Helmholtz equation for optical grating and TE/TM polarization:
```

boundary conditions - periodic with respect to x,
non-local condition on {(x,y),y=y_max}
and {(x,y),y=y_min}

```
```

method - FEM
partitioning - based on Shewchuk's ''Triangle''
matrix assembly - pdelib
solver - pardiso
code generated with: -DCONV

```
INPUT FILE FOR GRATING:
    Name of input file without extension '‘.inp'':
        example
    Comments:
        This is a fantasy grid
        for the test of gen_polyx!
    Number of materials:
        4
    Minimal angle of subdivision triangles:
        20.000000
    Upper bound for mesh size:
        0.500000
    Width of additional strip above and below:
        0.200000
    Grid points:
            1: 0.0000000 .800000
            2: \(0.500000 \quad 0.800000\)
            3: \(0.000000 \quad 0.400000\)
            4: \(0.250000 \quad 0.400000\)
            5: \(1.000000 \quad 0.400000\)
            6: \(0.750000 \quad 0.200000\)
            7: \(1.000000 \quad 0.200000\)
            8: \(0.000000 \quad 0.000000\)
            9: \(0.250000-0.200000\)
            10: \(1.000000-0.200000\)
            11: \(0.000000-0.600000\)
            12: \(1.000000-0.800000\)
    Triangles:
        ( 1, 3, 4), mat \(=2\), fac \(=1.000000\)
        \((4,6,2)\), mat \(=2\), fac \(=1.000000\)
        \((6,7,5)\), mat \(=2\), fac \(=1.000000\)
        ( 3, 8, 4), mat \(=2\), fac \(=1.000000\)
        ( 8, 9, 4), mat \(=2, \mathrm{fac}=0.300000\)
        ( 4, 9, 6), mat \(=2, \mathrm{fac}=1.000000\)
        ( 6, 10, 7), mat= 3, fac= 1.000000
        ( 8, 11, 9), mat= 3, fac= 1.000000
        ( 9, 12, 6), mat \(=3\), fac \(=1.000000\)
        ( \(6,12,10\) ), mat \(=3, \mathrm{fac}=1.000000\)
    INPUT DATA

```

COATED LAYERS
nmb of upper layers: 2
corresponding widths:
(last width = last width of *.dat
file + width in grating geometry)
0.50 micro m
0.40 micro m
nmb of lower layers: 3
corresponding widths:
(first width = first width of *.dat
file + width in grating geometry)
0.40 micro m
0.30 micro m
0.20 micro m

```
REFRACT.INDICES
cover material: \(\quad 1.00+\) i 0.00
layers above grating:
    \(1.10+\) i 0.00
    \(1.20+\) i 0.00
layers below grating:
    \(2.30+\) i 0.00
    \(2.20+\) i 0.00
    \(2.10+\) i 0.00
substrate material: \(\quad 2.00+\) i 0.00
FURTHER DATA
```

temperature: 20.00 degrees Celsius
wave length: 0.635 micro m
angle of inc.theta: 65.00 degrees
polarization type: TM
GRATING
grating period: 1.00 micro m
grating height: 1.60 micro m
fem grid height: 2.00 micro m
nmb of materials: 4
corr.refract.indices:
1.20 + i 0.00
1.50 + i 0.00
1.70 + i 0.00
2.30 + i 0.00
nmb of levels f.comp.: 5

```
    INFO OF SOLUTION (LEVEL=1):

```

degrees of freedom = 813
stepsize of discr. = 0.81789
numb.of nonzero entr.= 5859
rate of nonzero entr.= 0.886426 per cent
memory for pardiso = 536 kB
Reflection efficiencies and coefficients

| $\mathrm{n}=$ | 0 | theta | -65.00 | (| 0.039594 , | 0.181811) | e_{-} | $0=$ | 3.462309 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{n}=$ | -1 | theta | -15.74 | (| -0.008538, | $0.021079)$ | e_{-} | -1 = | 0.117800 |
| $\mathrm{n}=$ | -2 | theta | 21.33 | (| 0.031693 , | $0.008219)$ | e_ | -2 = | 0.236279 |
| $\mathrm{n}=$ | -3 | theta | 87.07 | (| 0.102928 , | -0.466177) | e_{-} | $-3=$ | 2.757185 |
| Ref | ecte | energy | | | 6.573574 | | | | |

Transmission efficiencies and coefficients

```


Transmitted energy: 93.426426

INFO OF SOLUTION (LEVEL=2):
```

degrees of freedom = 3197
stepsize of discr. = 0.34705
numb.of nonzero entr.= 23379
rate of nonzero entr.= 0.228739 per cent
memory for pardiso = 2606 kB

```

Reflection efficiencies and coefficients
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{n}=\) & 0 & theta = & -65.00 & & -0.004059, & 0.131487) & \(e_{-}\) & \(0=\) & 1.730540 \\
\hline \(\mathrm{n}=\) & -1 & theta = & -15.74 & & 0.003041, & -0.001482) & \(e_{-}\) & -1 = & 0.002606 \\
\hline \(\mathrm{n}=\) & -2 & theta = & 21.33 & & -0.009015, & \(0.008718)\) & \(e_{-}\) & -2 = & 0.034668 \\
\hline \(\mathrm{n}=\) & -3 & theta = & 87.07 & & 0.007285, & 0.148711) & \(\mathrm{e}_{-}\) & \(-3=\) & 0.268177 \\
\hline \multicolumn{3}{|l|}{Reflected energy:} & \multicolumn{4}{|c|}{2.035991} & & & \\
\hline \multicolumn{10}{|c|}{Transmission efficiencies and coefficients} \\
\hline \(\mathrm{n}=\) & 0 & theta = & 26.95 & & -0.439727, & 0.251543) & \(\mathrm{e}_{-}\) & \(0=\) & 27.066021 \\
\hline \(\mathrm{n}=\) & 1 & theta = & 50.41 & ( & 0.521995, & -0.681800) & \(e_{-}\) & 1 = & 55.589973 \\
\hline \(\mathrm{n}=\) & -1 & theta = & 7.80 & & 0.061566, & -0.302391) & e_ & \(-1=\) & 11.162601 \\
\hline
\end{tabular}
```

n= -2 theta = -10.48 (-0.021529, -0.115618) e_ -2 = 1.609071
n= -3 theta = -29.96 (-0.071286, -0.050452) e_ -3 = 0.781807
n= -4 theta = -54.77 (-0.002095, 0.160324) e_ -4 = 1.754536

```

Transmitted energy: 97.964009

INFO OF SOLUTION (LEVEL=3):

degrees of freedom \(=12628\)
stepsize of discr. \(=0.19522\)
numb.of nonzero entr.= 92896
rate of nonzero entr. \(=0.058254\) per cent
memory for pardiso \(=12659 \mathrm{kB}\)
Reflection efficiencies and coefficients
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{n}=\) & 0 & theta = & -65.00 & ( & 0.012070, & \(0.139848)\) & \(e_{\text {_ }}\) & \(0=\) & 1.970304 \\
\hline \(\mathrm{n}=\) & -1 & theta & -15.74 & ( & 0.003512 , & \(0.014030)\) & e_ & -1 = & 0.047639 \\
\hline \(\mathrm{n}=\) & -2 & theta = & 21.33 & & -0.002098, & \(0.002527)\) & \(e_{-}\) & \(-2=\) & 0.002377 \\
\hline \(\mathrm{n}=\) & -3 & theta = & 87.07 & ( & -0.079551, & \(0.082779)\) & \(\mathrm{e}_{-}\) & \(-3=\) & 0.159453 \\
\hline \multicolumn{3}{|l|}{Reflected energy:} & \multicolumn{4}{|c|}{2.179773} & & & \\
\hline \multicolumn{10}{|c|}{Transmission efficiencies and coefficients} \\
\hline \(\mathrm{n}=\) & 0 & theta = & 26.95 & & -0.498922, & \(0.127814)\) & \(e_{-}\) & 0 = & 27.975753 \\
\hline \(\mathrm{n}=\) & 1 & theta & 50.41 & ( & 0.613317, & -0.568916) & \(e_{-}\) & 1 = & 52.762242 \\
\hline \(\mathrm{n}=\) & -1 & theta & 7.80 & & 0.134396, & -0.299329) & \(\mathrm{e}_{-}\) & -1 = & 12.619565 \\
\hline \(\mathrm{n}=\) & -2 & theta & -10.48 & & 0.040241, & -0.125325) & \(\mathrm{e}_{-}\) & \(-2=\) & 2.015636 \\
\hline \(\mathrm{n}=\) & -3 & theta = & -29.96 & & 0.038098, & -0.111135) & \(\mathrm{e}_{-}\) & -3 = & 1.414798 \\
\hline \(\mathrm{n}=\) & -4 & theta = & -54.77 & & -0.101705, & -0.069144) & \(e_{-}\) & -4 = & 1.032234 \\
\hline \multicolumn{4}{|l|}{Transmitted energy:} & \multicolumn{3}{|c|}{97.820227} & & & \\
\hline
\end{tabular}
```

INFO OF SOLUTION (LEVEL=4):

```

```

degrees of freedom = 50133
stepsize of discr. = 0.09156
numb.of nonzero entr.= 369931
rate of nonzero entr.= 0.014719 per cent
memory for pardiso = 59346 kB
Reflection efficiencies and coefficients

```

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{n}=\) & -3 & theta \(=\) & 87.07 & ( -0.088879, & \(0.060381)\) & \(e_{-}\) & \(-3=\) & 0.139668 \\
\hline \multicolumn{3}{|l|}{Reflected energy:} & \multicolumn{3}{|c|}{2.274312} & & & \\
\hline \multicolumn{9}{|c|}{Transmission efficiencies and coefficients} \\
\hline \(\mathrm{n}=\) & 0 & theta = & 26.95 & ( -0.502017, & \(0.095119)\) & \(\mathrm{e}_{-}\) & \(0=\) & 27.533702 \\
\hline \(\mathrm{n}=\) & 1 & theta = & 50.41 & ( 0.636562, & -0.542658) & \(\mathrm{e}_{-}\) & 1 = & 52.752053 \\
\hline \(\mathrm{n}=\) & -1 & theta & 7.80 & ( 0.165801, & -0.295567) & \(e_{-}\) & -1 = & 13.462258 \\
\hline \(\mathrm{n}=\) & -2 & theta = & -10.48 & ( 0.064145, & -0.115134) & \(e_{-}\) & \(-2=\) & 2.020839 \\
\hline \(\mathrm{n}=\) & -3 & theta = & -29.96 & ( 0.059586, & -0.088603) & \(\mathrm{e}_{-}\) & -3 = & 1.168650 \\
\hline \(\mathrm{n}=\) & -4 & theta = & -54.77 & ( -0.049270 , & -0.095506) & \(e_{-}\) & \(-4=\) & 0.788186 \\
\hline \multicolumn{4}{|l|}{Transmitted energy:} & \multicolumn{2}{|l|}{97.725688} & & & \\
\hline
\end{tabular}


\footnotetext{

CONVERGENCE PROPERTIES:

}
1.VALUE (ORDER 0)

2.VALUE (ORDER -1)


NO ERROR ANALYSIS FOR ORDER 3
4.VALUE (ORDER -3)
\begin{tabular}{|c|c|c|c|c|}
\hline | h & value & extrap. & error & | conv.ord. \\
\hline 10.818 & 2.7572 & & 2.6240 & \\
\hline | 0.347 & 0.2682 & & 0.1350 & | \\
\hline | 0.195 & 0.1595 & 0.1545 & 0.0263 & 4.52 \\
\hline | 0.092 & 0.1397 & 0.1353 & 0.0065 & 2.46 \\
\hline | 0.045 & 0.1364 & 0.1358 & 0.0032 & | 2.61 \\
\hline
\end{tabular}
5.VALUE (REFLECTED ENERGY)

6.VALUE (ORDER 0)

\begin{tabular}{|c|c|c|c|c|}
\hline 0.818 & 22.1644 & & 5.1965 & \\
\hline 0.347 & 27.0660 & & 0.2949 & \\
\hline 0.195 & 27.9758 & 28.1831 & 0.6148 & 2.43 \\
\hline 0.092 & 27.5337 & 27.6783 & 0.1728 & 1.04 \\
\hline 0.045 & 27.4473 & 27.4263 & 0.0864 & 2.36 \\
\hline
\end{tabular}
7.VALUE (ORDER 1)
\begin{tabular}{|c|c|c|c|c|}
\hline | h & value & extrap. & error & conv.ord. \\
\hline 10.818 & 56.7616 & & 4.0836 & \\
\hline | 0.347 & 55.5900 & & 2.9120 & \\
\hline 10.195 & 52.7622 & 57.5905 & 0.0842 & -1.27 \\
\hline 10.092 & 52.7521 & 52.7520 & 0.0740 & 8.12 \\
\hline 10.045 & 52.7150 & 52.7661 & 0.0370 & -1.86 \\
\hline
\end{tabular}
8.VALUE (ORDER -1)
\begin{tabular}{|c|c|c|c|c|}
\hline | h & value & extrap. & error & conv.ord. \\
\hline 10.818 & 9.2569 & & 4.6309 & \\
\hline 10.347 & 11.1626 & & 2.7252 & \\
\hline 10.195 & 12.6196 & 17.3500 & 1.2682 & 0.39 \\
\hline 10.092 & 13.4623 & 14.6183 & 0.4255 & 0.79 \\
\hline 10.045 & 13.6750 & 13.7469 & 0.2128 & 1.99 \\
\hline
\end{tabular}
9.VALUE (ORDER -2)
\begin{tabular}{|c|c|c|c|c|}
\hline h & value & extrap. & error & conv.ord. \\
\hline 0.818 & 3.8619 & & 1.8298 & \\
\hline 0.347 & 1.6091 & & 0.4230 & \\
\hline 0.195 & 2.0156 & 1.9535 & 0.0164 & 2.47 \\
\hline 0.092 & 2.0208 & 2.0209 & 0.0112 & 6.29 \\
\hline 0.045 & 2.0265 & 1.9495 & 0.0056 & -0.11 \\
\hline
\end{tabular}
10.VALUE (ORDER -3)

11.VALUE (ORDER -4)

12.VALUE (TRANSMITTED ENERGY)
\begin{tabular}{|c|c|c|c|c|}
\hline | h & value & extrap. & error & conv.ord \\
\hline 10.818 & 93.4264 & & 4.2479 & \\
\hline | 0.347 & 97.9640 & & 0.2896 & \\
\hline | 0.195 & 97.8202 & 97.8246 & 0.1459 & 4.98 \\
\hline 10.092 & 97.7257 & 97.5442 & 0.0513 & 0.60 \\
\hline | 0.045 & 97.7000 & 97.6905 & 0.0257 & 1.88 \\
\hline
\end{tabular}

END:
date ='10. Feb 2003, 09:56:18'

Thank you for choosing '(dpogtr''!
Bye, bye!

\subsection*{12.6 Output file "example.res" of GFEM in CLASSICAL}
date \(=\) '10. Feb 2003, 10:13:19'

```


```

INFO OF SOLUTION (LEVEL=1):


Reflection efficiencies and coefficients
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{n}=\) & 0 & th & -65.00 & ( & 0.013025, & \(0.144735)\) & \(\mathrm{e}_{-}\) & 0 = & 2.111777 \\
\hline \(\mathrm{n}=\) & -1 & theta & -15.74 & ( & 0.000363 , & \(0.016237)\) & \(\mathrm{e}_{-}\) & -1 & 0.060075 \\
\hline \(\mathrm{n}=\) & -2 & theta & 21.33 & ( & 0.000035 , & -0.001347) & \(\mathrm{e}_{-}\) & & 0.000400 \\
\hline \(\mathrm{n}=\) & -3 & theta & 87.07 & ( & -0.091483, & \(0.053904)\) & e_ & & 0.136395 \\
\hline
\end{tabular}

Reflected energy: 2.308647

Transmission efficiencies and coefficients
\begin{tabular}{lrrrlrr}
\(\mathrm{n}=\) & 0 & theta \(=\) & 26.95 & \((-0.502786,0.085087)\) & \(\mathrm{e}_{-}\) & \(0=27.424602\) \\
\(\mathrm{n}=\) & 1 & theta \(=\) & 50.41 & \((0.644183,-0.532792)\) & \(\mathrm{e}_{-}\) & \(1=52.687989\) \\
\(\mathrm{n}=\) & -1 & theta \(=\) & 7.80 & \((0.176698,-0.293270)\) & \(\mathrm{e}_{-}\) & -1 \\
\(=\) & 13.741238 \\
\(\mathrm{n}=\) & -2 & theta \(=\) & -10.48 & \((0.071550,-0.111089)\) & \(\mathrm{e}_{-}\) & -2 \\
\(\mathrm{n}=\) & -3 & theta \(=\) & -29.96 & \((0.063904,-0.080675)\) & \(\mathrm{e}_{-}\) & \(-3=\) \\
\(\mathrm{n}=\) & -4 theta \(=\) & -54.77 & \((-0.032720,-0.097400)\) & \(\mathrm{e}_{-}\) & \(-4=\) & 0.7205740 \\
n
\end{tabular}

Transmitted energy: 97.691353

INFO OF SOLUTION (LEVEL=2):

Reflection efficiencies and coefficients
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline n & 0 & theta \(=\) & -65.00 & ( 0.013043, & \(0.144752)\) & \(\mathrm{e}_{-}\) & \(0=\) & 2.112318 \\
\hline n & -1 & theta & -15.74 & ( 0.000365, & 0.016240) & \(\mathrm{e}_{-}\) & -1 & 0.060098 \\
\hline n & -2 & theta & 21.33 & ( 0.000044, & -0.001384) & e_ & & 0.000423 \\
\hline \(\mathrm{n}=\) & -3 & theta & 87.07 & ( -0.091547, & \(0.053854)\) & e & -3 & 0.136472 \\
\hline \multicolumn{3}{|l|}{Reflected energy} & \multicolumn{3}{|c|}{2.309310} & & & \\
\hline \multicolumn{9}{|c|}{Transmission efficiencies and coefficients} \\
\hline \(\mathrm{n}=\) & 0 & theta & 26.95 & ( -0.502838, & \(0.084941)\) & \(e_{-}\) & 0 & 27.427416 \\
\hline \(\mathrm{n}=\) & 1 & theta & 50.41 & ( 0.644282, & -0.532607) & \(\mathrm{e}_{-}\) & 1 = & 52.682703 \\
\hline \(\mathrm{n}=\) & -1 & theta & 7.80 & ( 0.176861, & -0.293228) & \(\mathrm{e}_{-}\) & \(-1=\) & 13.745111 \\
\hline \(\mathrm{n}=\) & -2 & theta & -10.48 & ( 0.071650, & -0.111036) & \(\mathrm{e}_{-}\) & & 2.031559 \\
\hline \(\mathrm{n}=\) & -3 & theta & -29.96 & ( 0.063954, & -0.080553) & e & & 1.084372 \\
\hline \(\mathrm{n}=\) & -4 & theta & -54.77 & -0.032481 & -0.097406) & & -4 = & 0.719528 \\
\hline
\end{tabular}
date \(=\) '10. Feb 2003, 10:30:53'

Thank you for choosing '(gdpogtr')!
Bye, bye!

\subsection*{12.7 Output file "example.res" of FEM in CONICAL}
\[
\begin{aligned}
& \text { date }=\text { '10. Feb 2003, 10:06:22' } \\
& \text { *************************************** } \\
& \text { *************************************** } \\
& \text { ** ** } \\
& \text { ** C O N I C A L ** } \\
& \text { ** } * * \\
& * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ \\
& * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
\end{aligned}
\]

INFO OF SOLUTION (LEVEL=1):

Reflection efficiencies and coefficients
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ord} & Phi & Theta & \multirow[t]{2}{*}{E_z
H_z} & \multirow[b]{2}{*}{Efficiency} \\
\hline & & & & \\
\hline 0 & 47.00 & 30.00 & ( 0.19657, -0.16355) & \\
\hline & & & ( -0.05050, -0.15697) & 9.25813 \\
\hline -1 & 128.80 & 27.98 & ( 0.01482, -0.03567) & \\
\hline & & & ( 0.06213, -0.13130) & 2.30360 \\
\hline -2 & 158.51 & 86.74 & 0.07634, 0.09663) & \\
\hline
\end{tabular}
\[
(0.12963,0.05033) 0.22670
\]

Reflected energy: 11.78843

Transmission efficiencies and coefficients
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Order} & \multirow[t]{2}{*}{Phi} & \multirow[t]{2}{*}{Theta} & \multicolumn{2}{|l|}{E_z} & \multirow[b]{2}{*}{Efficiency} \\
\hline & & & H_ & & \\
\hline \multirow[t]{2}{*}{0} & 47.00 & 160.53 & ( -0.18113, & 0.45695) & \\
\hline & & & ( -0.14912, & \(0.68850)\) & 80.24261 \\
\hline \multirow[t]{2}{*}{1} & 20.54 & 135.99 & ( 0.07497, & \(0.15146)\) & \\
\hline & & & ( -0.05129, & 0.15348) & 5.32346 \\
\hline \multirow[t]{2}{*}{-1} & 128.80 & 161.77 & ( -0.05523, & -0.08440) & \\
\hline & & & ( 0.02083, & -0.07834) & 2.29025 \\
\hline \multirow[t]{2}{*}{-2} & 158.51 & 138.27 & ( 0.03830, & \(0.01953)\) & \\
\hline & & & ( 0.01062, & \(0.03930)\) & 0.35525 \\
\hline
\end{tabular}

Transmitted energy: 88.21157

INFO OF SOLUTION (LEVEL=2):

Reflection efficiencies and coefficients
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Order} & Phi & Theta & E_z & \multirow[b]{2}{*}{Efficiency} \\
\hline & & & H_Z & \\
\hline 0 & 47.00 & 30.00 & ( 0.00901, -0.00844) & \\
\hline \multirow{3}{*}{-1} & \multirow{3}{*}{128.80} & \multirow{3}{*}{27.98} & ( -0.13596, -0.02289) & 1.91613 \\
\hline & & & ( -0.00200, 0.08454) & \\
\hline & & & ( 0.04245, 0.01373) & 0.93218 \\
\hline \multirow[t]{2}{*}{-2} & 158.51 & 86.74 & ( -0.06824, 0.05857) & \\
\hline & & & ( \(-0.06300,0.12368\) ) & 0.17972 \\
\hline
\end{tabular}

Reflected energy: 3.02802
Transmission efficiencies and coefficients

Order Phi Theta Ez
\(047.00160 .53 \quad(-0.31129, \quad 0.27182) \quad\) Efficiency
\((-0.49973,0.42367) \quad 62.77211\)
\(120.54135 .99(-0.26115,0.05446)\)
( \(-0.32171,0.20006\) ) 17.87244
\(-1 \quad 128.80161 .77 \quad(-0.12492,-0.19255)\)
\((-0.13873,-0.20804) \quad 14.07546\)
-2 158.51 138.27 ( \(0.08036,-0.05007\) )
\[
(0.10289,-0.07817) \quad 2.25198
\]

Transmitted energy: 96.97198
```

 INFO OF SOLUTION (LEVEL=3):
    ```


Reflection efficiencies and coefficients
\begin{tabular}{|c|c|c|c|c|}
\hline Order & Phi & Theta & E_z & \\
\hline & & & H_Z & Efficiency \\
\hline 0 & 47.00 & 30.00 & ( 0.06129, -0.00846) & \\
\hline & & & ( -0.09079, -0.04955) & 1.45263 \\
\hline -1 & 128.80 & 27.98 & ( -0.02946, 0.01247) & \\
\hline & & & ( 0.02120, -0.02318) & 0.20498 \\
\hline -2 & 158.51 & 86.74 & ( -0.05922, -0.00385) & \\
\hline & & & ( -0.01123, 0.00823) & 0.02441 \\
\hline
\end{tabular}

Reflected energy: 1.68202

Transmission efficiencies and coefficients


Transmitted energy: 98.31798

INFO OF SOLUTION (LEVEL=4):

Reflection efficiencies and coefficients
---------------------------------------------

Order Phi Theta E_z
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{0} & & & H_Z & Efficiency \\
\hline & 47.00 & 30.00 & ( 0.06068, 0.01649) & \\
\hline & & & ( -0.07617, -0.03097) & 1.07145 \\
\hline \multirow[t]{2}{*}{} & 128.80 & 27.98 & ( -0.02951, 0.00963) & \\
\hline & & & ( 0.01652, -0.00861) & 0.13367 \\
\hline \multirow[t]{2}{*}{} & 158.51 & 86.74 & ( -0.04706, -0.03015) & \\
\hline & & & ( 0.00604, 0.01967) & 0.02330 \\
\hline \multicolumn{3}{|l|}{Reflected energy:} & 1.22842 & \\
\hline \multicolumn{5}{|c|}{Transmission efficiencies and coefficients} \\
\hline \multirow[t]{2}{*}{Order} & Phi & Theta & E_z & \\
\hline & & & H_Z & Efficiency \\
\hline \multirow[t]{2}{*}{0} & 47.00 & 160.53 & ( \(-0.38965,0.12856\) ) & \\
\hline & & & ( -0.61617, 0.20649) & 61.81559 \\
\hline \multirow[t]{2}{*}{1} & 20.54 & 135.99 & ( -0.25045, -0.03050) & \\
\hline & & & ( -0.41925, 0.03884) & 18.86494 \\
\hline \multirow[t]{2}{*}{-1} & 128.80 & 161.77 & ( -0.02063, -0.25490) & \\
\hline & & & ( -0.01257, -0.27967) & 17.53158 \\
\hline \multirow[t]{2}{*}{-2} & 158.51 & 138.27 & ( 0.05192, 0.01214) & \\
\hline & & & ( 0.04725, -0.02301) & 0.55947 \\
\hline \multicolumn{3}{|l|}{Transmitted energy:} & \multicolumn{2}{|l|}{98.77158} \\
\hline \multicolumn{5}{|l|}{INFO OF SOLUTION (LEVEL=5) :} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
\(============================================\) \\
Reflection efficiencies and coefficients
\end{tabular}} \\
\hline \multirow[t]{2}{*}{Order} & Phi & Theta & E_z & \\
\hline & & & H_Z & Efficiency \\
\hline \multirow[t]{2}{*}{} & 47.00 & 30.00 & ( 0.06175, 0.01688) & \\
\hline & & & ( \(-0.07173,-0.03108\) ) & 1.02091 \\
\hline \multirow[t]{2}{*}{} & 128.80 & 27.98 & ( -0.02812, 0.00775) & \\
\hline & & & ( 0.01579, -0.00606) & 0.11595 \\
\hline \multirow[t]{2}{*}{} & 158.51 & 86.74 & ( -0.04494, -0.03733) & \\
\hline & & & ( 0.00386, 0.01787) & 0.02462 \\
\hline \multicolumn{3}{|l|}{Reflected energy:} & \multicolumn{2}{|l|}{1.16148} \\
\hline \multicolumn{5}{|c|}{Transmission efficiencies and coefficients} \\
\hline \multirow[t]{2}{*}{Order} & Phi & Theta & E_z & \\
\hline & & & H_Z & Efficiency \\
\hline 0 & 47.00 & 160.53 & ( -0.39161, 0.10975) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{1} & \multirow{3}{*}{20.54135 .99} & ( -0.61958, & \(0.17733)\) & 60.76400 \\
\hline & & ( -0.25177, & -0.03911) & \\
\hline & & ( -0.42754, & 0.02212) & 19.38467 \\
\hline \multirow[t]{2}{*}{-1} & 128.80161 .77 & ( -0.00565, & -0.25896) & \\
\hline & & ( 0.00395, & -0.28489) & 18.04542 \\
\hline \multirow[t]{2}{*}{-2} & 158.51138 .27 & ( 0.05587, & 0.01457) & \\
\hline & & ( 0.05139, & -0.02021) & 0.64442 \\
\hline
\end{tabular}

Transmitted energy: 98.83852
```

END :

```

    date \(=\) '10. Feb 2003, 10:06:25'

Thank you for choosing ' \(C O N I C A L\) ')!
Bye, bye!

\subsection*{12.8 Data file "example.dat" of OPTIMIZE in OPTIM}
```

\#-*-makefile-*-
\#

\#

\#

\#\# \#\#

\#\# E X A M P L E \#\#

\#\# \#\#

\#

\#

all lines beginning with ''\#', are comments!

\#

input file for local optimization

using GFEM for conical diffraction

\#

N A M E O F O U T P U T F I L E


```
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \# Name of the output file.
```


The tag ''.res') will be added.

The file will be written in the ''RESULTS'' directory.

(Alternatively, a path for the location of the file

can be added before the name. This must contain at

least one slash '/'. E.g. for a file ''name.res''

in the current working directory write '، ./name'')

Name:

 example
 \#

G R A T I NG + I L L U M I N A T I O N

\#

Number of coating layers over the grating (N_co_ov).

The grating cross section consists of a rectangular area

parallel to the axes. This inhomogeneous part is determined

by a triangular grid and can have already a few

layers of coatings involved. Beneath and above

this rectangular structure, there might be additional

coated layers of rectangular shape. These kind of

layers are called coating layers over the grating and

coating layers beneath the grating, respectively.

Alternatively a

multilayer system input format is possible:

E.g. the input ''MLS n1 n2*n3 n4'' with n1,n2,n3,n4

replaced by non-negative integers means

N_co_ov=n1+n2*n3+n4 layers with n1 layers above,

n2 groups of n3 layers with same widths and materials

in the middle, and with 7 layers below.

Number:

 0
 \#

Widths of coating layers in micro meter.

N_co_ov entries. Needed only if N_co_ov >0.

Else no entry and no line.

Widths:

\#

Number of coating layers beneath the grating (N_co_be):

 O
 \#

Widths of coating layers in micro meter.

N_co_be entries. Needed only if N_co_be >0.

Else no entry and no line.

For a multilayer system the widths of the

n3 layers in the groups must be given only once.

I.e. for a multilayer system n1+n3+n4 input numbers

are needed.

Widths:

\#

Wave length in micro meter (lambda).

Either add a single value e.g. ''.63''.

Either add more values by e.g.

c، V

5

```
```


.63

. }6

. }6

. . }6
. }70\mathrm{ ''.
The last means that computation is to be done for
the wave lengths from the Vector of length 5:
'`.63'', '`.64'','`.65'','`.69'', and '`.70''. Or add e.g. '، I . 63 . 73 .02''. The last means that computation is to be done for the wave lengths ''.63+i*.02'' with i=0,1,2,... and with wave length '`.63+i*.02'' less or equal to '`.73''.
Wave length:

1.2

 I . 635 . 636 . 002
 \#

Temperature in degrees Celsius from 0 to 400.

20. for room temperature!

Must be set to any fixed number.

Will be ignored if optical indices are given explicitly.

Temperature:

 20.
 \#

Optical index (refractive index) of cover material.

This is c times square root of mu times epsilon.

This could be complex like e.g. ''4.298 +i 0.073') for

Si with wave length 500nm.

This could be also given by the name of a material

like: Air Ag Al Au CsBr Cu InP MgF2 NaCl PMMA PSKL

SF5 Si TlBr TlCl Cr ZnS Ge Si1.0 - Si2.0

TiO2r Quarz AddOn ... (cf. Userguide)
This could be a value interpolated from a user
defined table, determined by the name of the file
(file is to be located in the current directory,
name of file must begin with letter ''u'' and may
consist of no more than five letters like e.g. user,
the file consists of lines each with three real
numbers, first: wave length in micro meter, second:
the real part of the corresponding optical index,
third: the imaginary part of the corresponding index).

Optical index:

 1.0 +i 0.
 \#

Optical indices of the materials of the upper coating layers.

This is c times square root of mu times epsilon.

N_co_ov entries. Needed only if N_co_ov >0.

Else no entry and no line.

For a multilayer system the indices of the

n3 layers in the groups must be given only once.

I.e. for a multilayer system n1+n3+n4 input lines

are needed.

Optical indices:

\#

```
```


Optical indices of the materials of the lower coating layers.

This is c times square root of mu times epsilon.

N_co_be entries. Needed only if N_co_be >0.

Else no entry and no line.

Optical indices:

\#

Optical index of substrate material.

This is c times square root of mu times epsilon.

Optical index:

 1.5 +i 0.
 \#

Type of output results.

Either ''TE/TM'': results in terms of TE and TM part of Wave.

Either '(Jones'): results in terms of Jones vector

representation.

Or ''3.Com'': results in terms of the component in the z

axis, that is in the direction of the grooves.

For more details cf. Section 2.3 in USERGUIDE.ps.

Type:

 TE/TM
 \#

Type of polarization and coordinate system for incoming wave vector.

Either ''TE'': means that incident electric field is perpendicular

to wave vector and to normal of grating plane

(plane of grating grooves) and

incoming wave vector is presented in xz system as

(sin theta cos phi, -cos theta, sin theta sin phi).

Either ''TM'': means that incident magnetic field is perpendicular

to wave vector and to normal of grating plane and

incoming wave vector is presented in xz system as
(sin theta cos phi, -cos theta, sin theta sin phi).
Either ''TE/TM'':
means TE and TM, two calculations.
Either ''TP'': means polarized electro-magnetic field and
incoming wave vector is presented in xz system as
(sin theta cos phi, -cos theta, sin theta sin phi).
Or ''pol'): means polarized electro-magnetic field and
incoming wave vector is presented in xy system as

(sin theta cos phi, -cos theta cos phi, sin phi).

Type:

 TP
 \#

Parameter of polarization.

If type of polarization is '(pol') or ''TP'', then this is

the angle (in degrees) between x axis (axis in plane of

grating grooves which is perpendicular to grooves)

and projection of electric field vector onto x-z plane of

grating grooves.

Needed only if polarization is of type ''pol'' or ''TP''.

Else no entry and no line.

Parameter:

 20.
 \#

Angle of incident wave in degrees (theta).

```
```


If type of polarization is ''pol'',


```
```

 then the incident light beam takes the direction
    ```
    then the incident light beam takes the direction
    (sin theta cos phi, -cos theta cos phi, sin phi)
    (sin theta cos phi, -cos theta cos phi, sin phi)
    with the restriction -90 < phi,theta < 90.
    with the restriction -90 < phi,theta < 90.
    If type of polarization is ''TE''/'(TM''/'(TP'',
    If type of polarization is ''TE''/'(TM''/'(TP'',
    then the incident light beam takes the direction
    then the incident light beam takes the direction
    (sin theta cos phi, -cos theta, sin theta sin phi)
    (sin theta cos phi, -cos theta, sin theta sin phi)
    with the restriction 0 < theta < 90.
    with the restriction 0 < theta < 90.
    Either add a single value e.g. ''45.''.
    Either add a single value e.g. ''45.''.
    Either add more values by e.g.
    Either add more values by e.g.
    '، V
    '، V
        5
        5
        6 3 .
        6 3 .
        64.
        64.
            65.
            65.
            6 9 .
            6 9 .
            70. ''.
            70. ''.
    The last means that computation is to be done for
    The last means that computation is to be done for
        the angles from the Vector of length 5:
        the angles from the Vector of length 5:
    '`63.'', ''64.'','`65.'','`69.'', and '`70.').
    '`63.'', ''64.'','`65.'','`69.'', and '`70.').
    Or add e.g.
    Or add e.g.
    `، I 45 56 2''.
    `، I 45 56 2''.
    The last means that computation is to be done for
    The last means that computation is to be done for
    the angles '(45+i*2') with i=0,1,2,... and with
    the angles '(45+i*2') with i=0,1,2,... and with
    angle ''45+i*2'' less or equal to ''56''.
    angle ''45+i*2'' less or equal to ''56''.
    Note that either the wave length or the angle of
    Note that either the wave length or the angle of
        incident wave theta must be single valued.
        incident wave theta must be single valued.
Angle:
Angle:
I 30. 31. 2.
I 30. 31. 2.
######################################################################
######################################################################
# Angle of incident wave in degrees (phi).
# Angle of incident wave in degrees (phi).
# If type of polarization is ''pol'',
# If type of polarization is ''pol'',
# then the incident light beam takes the direction
# then the incident light beam takes the direction
# (sin theta cos phi, -cos theta cos phi, sin phi)
# (sin theta cos phi, -cos theta cos phi, sin phi)
# with the restriction -90 < phi,theta < 90.
# with the restriction -90 < phi,theta < 90.
# If type of polarization is '(TE''/'(TM''/'(TP'',
# If type of polarization is '(TE''/'(TM''/'(TP'',
# then the incident light beam takes the direction
# then the incident light beam takes the direction
# (sin theta cos phi, -cos theta, sin theta sin phi)
# (sin theta cos phi, -cos theta, sin theta sin phi)
# with the restriction 0 < theta < 90.
# with the restriction 0 < theta < 90.
# Either add a single value e.g. ''45.''.
# Either add a single value e.g. ''45.''.
# Either add more values by e.g.
# Either add more values by e.g.
# `، V
# `، V
# 5
# 5
```

 63.
    ```
            63.
            64.
            64.
            65.
            65.
            69.
            69.
            70. ''.
            70. ''.
    The last means that computation is to be done for
    The last means that computation is to be done for
    the angles from the Vector of length 5:
    the angles from the Vector of length 5:
        ''63.'', ''64.'','`65.'','`69.'', and ''70.''.
        ''63.'', ''64.'','`65.'','`69.'', and ''70.''.
        Or add e.g.
        Or add e.g.
        ،` I 45 56 2').
        ،` I 45 56 2').
        The last means that computation is to be done for
```

 The last means that computation is to be done for
    ```
```


the angles ''45+i*2') with i=0,1,2,... and with

angle ''45+i*2') less or equal to ''56''.

Note that two of the three, the wave length, the

angle of incident wave theta, and the angle of

incident wave phi, must be single valued.

Angle:
I 47. 48. 2.
\#

Length factor of additional shift of grating geometry.

This is shift into the x-direction, i.e. the

direction of the period to the right.

This is length of shift relative to period, i.e.

the grating structure given by subsequent input

will be shifted by factor times the period given

in subsequent input.

However, only the Rayleigh numbers and efficiencies

will be computed according to the shift. The field

vectors in the plots are drawn without shift, and

the graphics of the executable with tag ''_CHECK',

is drawn without shift!

Must be a real number between 0 and 1.

Length:

 0.
 \#

Stretching factor for grating in y-direction.

Must be a positive real number.

Length:

 1.
 \#

Length of additional shift of grating geometry in micro m.

This is shift into the y-direction, i.e. the

direction perpendicular to the grating surface

pointing into the cover material.

Must be a real number.

Length:

 0.
 \#

Period of grating in micro meter:

 0.25
 \#

P A R A M E T ERS O F G R A T I N G

\#

Parameters nd_geom_param, dl_geom_param, du_geom_param, and

ni_geom_param, and i_geom_param to describe grating geometry.

integer parameters: i_geom_param[i],

 i=1,...,ni_geom_param
 In particular
 i_geom_param[1] - class of gratings
 i_geom_param[2] - number of materials
 real parameters: d_geom_param[i],
 i=1,...,nd_geom_param
    ```

\section*{\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#}
\# CLASS 1 (i_geom_param[1]=1): polygonal function profile

```

bounds of real parameters: dl_geom_param[i],du_geom_param[i],
i=1,...,nd_geom_param,
dl_geom_param[i]<=du_geom_param[i].
name parameters (character strings):
s_geom_param[i],
i=1,...,ns_geom_param

```
Optimization runs over all real parameters d_geom_param[i] in
[dl_geom_param[i],du_geom_param[i]] with i such that
dl_geom_param[i]<du_geom_param[i]. The parameters d_geom_param[i]
with dl_geom_param[i]=du_geom_param[i] keep their values.
The integer and string parameters switch between the implemented
sub classes of gratings.
If the real parameter is the real resp. imaginary part of a
refractive index, then its value can be fixed by an input string
like ''Re Cr', or ' \(I m\) Ag'). The same string must be the input
for the corresponding lower and upper bounds (cf. Userguide).
If a real parameter depends on other free parameters, then this
dependency can be indicated as follows. Write ''Dep', on the
input place for d_geom_param[i] and du_geom_param[i]. On the
input place of dl_geom_param[i] write ''Dep:' ' followed by the
dependency in c-code. For instance, the simple dependency
expression d_geom_param[i]=d_geom_param[11]*d_geom_param[7] is
indicated by the line (cf. Userguide):
                                    Dep: p11*p7
If possible try to present the dependency in the form
Dep: f1+(f2)/(f3)
with f1, f2, and f3 as terms including the variables
d_geom_param[i], constants, and the operations +, -, and *
but without any blank and bracket.
            which is piecewise linear between the knots over
            a uniform partition of the interval [0,Period]
            - Number of string parameters: ns_geom_param=0
            - Number of integer parameters: ni_geom_param=3
            i_geom_param[1]=1
            i_geom_param[2]=2
            i_geom_param[3]=number of interior knots in the
                                    uniform partition of [0,Period]
    - Number of real parameters: nd_geom_param=i_geom_param[3]+4
        \(k=1, \ldots, i_{1}\) geom_param [3]
        d_geom_param[k]=function value of profile curve
                                    at Period*k/(i_geom_param[3]+1),
```


\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

```
- Polygonal grating defined by profile curve which is piecewise linear between the knots
- Warning: iterative solutions are tested for selfintersection but the constraints expressed by no selfintersection is not included into the optimization
- Number of string parameters: ns_geom_param=0
- Number of integer parameters: ni_geom_param=3
i_geom_param[1]=2
i_geom_param[2]=2
i_geom_param[3]=number of interior knots
with x -coordinate in (0,Period)
- Number of real parameters: nd_geom_param=2*i_geom_param[3]+4
m=1, . . ., i_geom_param [3]
(d_geom_param[2*m-1],d_geom_param[2*m])
=corner point of profile curve
in other words, polygonal grating
has i_geom_param[3]+2 corners at
the points
\((0,0)\)
(x_m,y_m), m=1,...,i_geom_param[3]
(Period,0)
where:
```

```
#
#
#
#
#
#
#
#
#
#
#
#
```

- Polygonal grating defined by profile curve which is piecewise linear between the knots
- In contrast to CLASS 2:
constraints expressed by no
selfintersection (cf. the constraints below) is included into the optimization
- For this class, we have implemented only the conjugate gradient algorithm (choose ind_opt=1).
- Number of string parameters: ns_geom_param=0
- Number of integer parameters: ni_geom_param=3
i_geom_param[1]=3
i_geom_param[2]=2
i_geom_param[3]=nkn:=number of interior knots

> with x-coordinate in (0,Period)

- Number of real parameters: nd_geom_param=2*i_geom_param[3]+5
$\mathrm{k}=1, \ldots$, i_geom_param [3]
P_k:=(d_geom_param $[2 * m-1]$, d_geom_param $[2 * m])$
=corner point of profile curve in other words, polygonal grating has i_geom_param[3]+2 corners at the points

$$
\begin{array}{ll}
\text { P_0 } & :=(0,0), \\
\text { P_m } & :=\left(x _m, y _m\right), m=1, \ldots, n k s
\end{array}
$$

$$
P_{-}\{n k s+1\}:=(\text { Period }, 0)
$$

where:

$$
\text { x_m:=d_geom_param }(2 * m-1)
$$

$$
\text { y_m:=d_geom_param }(2 * m)
$$

nks:=i_geom_param [3]
$\mathrm{k}=2 *$ i_geom_param [3] +1
d_geom_param[k]=real part of refractive index of cover material

```
```

 k=2*i_geom_param[3]+2
 d_geom_param[k]=imaginary part of refractive index of
 cover material
 k=2*i_geom_param[3]+3
 d_geom_param[k]=real part of refractive index of
 substrate material
 k=2*i_geom_param[3]+4
 d_geom_param[k]=imaginary part of refractive index of
 substrate material
 k=2*i_geom_param[3]+5
 d_geom_param[k]=small threshold EPSilon appearing
 in the constraint conditions for the
 feasible sets of parameters
 (0.0001<EPSilon<0.5)
 - Constraints:
 first nks+1 conditions: two consecutive points not too
 close to each other
 next nks*(nks-1) conditions: each point is not to close to
 each side of polygonal which
 does not contain the point
 (point not in ellipse around
 side with small half axis
 about square root of EPSilon
 times side length)
 last condition: no intersection of non-neighbour
 lines
 more precisely:
 a) i=1,2,...,nks+1
 2 2 2
 |P_i-P_(i-1)| >=EPSilon *Period
 b) j=1,2,\ldots,nks,
 m=1,2,\ldots,j-1,j+2,\ldots,nks+1,
 i=nks+1+(m'-1)*nks+j, m':=m if m<j
 m':=m-2 if m>j
 |P_j-P_m|+|P_j-P_(m-1)|-|P_m-P_(m-1) |>=EPSilon* |P_m-P_(m-1)|
 c) no intersection of [P_(i-1), P_i] and [P_(j-1), P_j] for
 i,j=1,2,3,\ldots,nks+1 if |i-j|>1
 - Following parameters must be fixed by setting upper bound=
 lower bound:
 d_geom_param[k],k=2*i_geom_param[3]+1, . ., 2*i_geom_param[3]+5
 \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

CLASS 4 (i_geom_param[1]=4): stack of trapezoids

--

- Stack grating consisting of several trapezoids

 with refractive indices included into the set of
 optimization parameters
 - Number of trapezoids is prescribed
    ```
\begin{tabular}{|c|c|}
\hline \# & - Whole stack in one period of the grating \\
\hline \# & - Lower side of stack is fixed by two parameters: \\
\hline \# & param_1 = posb/d = ratio of distance of right lower corner \\
\hline \# & from the left boundary line of the period \\
\hline \# & and period d \\
\hline \# & param_2 = posa/posb = ratio of distance of left lower corner \\
\hline \# & from the left boundary line of the period \\
\hline \# & and distance of right lower corner \\
\hline \# & from the left boundary line of the period \\
\hline \# & - Each trapezoid is determined by its hight, by the lower side \\
\hline \# & which is the upper side of the adjacent lower trapezoid, and \\
\hline \# & by the upper side prescribed by the two parameters: \\
\hline \# & param_k_1 = b_k/d = ratio of distance of right upper corner \\
\hline \# & from the left boundary line of the period \\
\hline \# & and period d \\
\hline \# & param_k_2 = a_k/b_k = ratio of distance of left upper corner \\
\hline \# & from the left boundary line of the period \\
\hline \# & and distance of right upper corner \\
\hline \# & from the left boundary line of the period \\
\hline \# & - Refractive index of the material of each trapezoid \\
\hline \# & is prescribed as an optimization parameter \\
\hline \# & - Number of string parameters: ns_geom_param=0 \\
\hline \# & - Number of integer parameters: ni_geom_param=2 \\
\hline \# & i_geom_param[1] =4 \\
\hline \# & i_geom_param[2]=number of different materials \\
\hline \# & =2+number of trapezoids \\
\hline \# & - Number of real parameters: nd_geom_param=5*i_geom_param[2]-4 \\
\hline \# & \\
\hline \# & k=1, . . , i_geom_param[2]-2 \\
\hline \# & \(\mathrm{h} k:=\mathrm{d}\) _geom_param[5*k-4] =height of k-th trapezoid in stack \\
\hline \# & (in micro meter, h_k>0) \\
\hline \# & \(\mathrm{b} k \mathrm{k} / \mathrm{d}:=\mathrm{d}\) _geom_param[5*k-3] =ratio of distance of right upper \\
\hline \# & corner from the left boundary \\
\hline \# & line of the period and period d \\
\hline \# & ( \(0<b\) _k/d<=1) \\
\hline \# & \(\mathrm{a} k / \mathrm{b} \_\mathrm{k}:=\mathrm{d}\) _geom_param[5*k-2]=ratio of distance of left upper \\
\hline \# & corner from the left boundary \\
\hline \# & line of the period and distance \\
\hline \# & of right upper corner from the \\
\hline \# & left boundary line of the period \\
\hline \# & (0<=a_k/b_k<1. \\
\hline \# & If not both of the parameters \\
\hline \# & b _k/d and a _k/b_k are fixed, \\
\hline \# & then we require: \\
\hline \# & a_k/b_k>0 for b_k/d=1) \\
\hline \# & n_k:=d_geom_param[5*k-1] +i*d_geom_param [5*k] \\
\hline \# & =refractive index \\
\hline \# & of k -th trapezoid in stack \\
\hline \# & ( \(\mathrm{Re} \mathrm{n} \_\mathrm{k}>0\), Im \(\mathrm{n} \_\mathrm{k}>=0\) ) \\
\hline \# & \(\mathrm{k}=5 *\) i_geom_param [2]-9 \\
\hline \# & posb/d:=d_geom_param[k] =ratio of distance of right lower \\
\hline \# & corner from the left boundary \\
\hline \# & line of the period and period d \\
\hline \# & ( \(0<\mathrm{posb} / \mathrm{d}<=1\) ) \\
\hline
\end{tabular}
```

k=5*i_geom_param[2]-8
posa/posb:=d_geom_param[k] =ratio of distance of left lower corner from the left boundary line of the period and distance of right lower corner from the left boundary line of the period (0<=posa/posb<1.
If not both of the parameters posb/d and posa/posb are fixed, then we require:
posa/posb>0 for posb/d=1)
k=5*i_geom_param[2]-7
n_co:=d_geom_param[k]+i*d_geom_param[k+1]
=refractive index of cover material
(Re $\mathrm{n}_{-} \mathrm{co}>0$, Im $\mathrm{n}_{-} \mathrm{co}>=0$)
k=5*i_geom_param[2]-5
n_su:=d_geom_param[k]+i*d_geom_param[k+1]
=refractive index of substrate
material resp. material
of adjacent lower coating strip
(Re $n_{-} s u>0$, Im $n_{-} s u=0$)

- Following parameters must be fixed by setting upper bound= lower bound:
d_geom_param[k], k=5*i_geom_param[2]-7, . . , 5*i_geom_param[2]-4 $+++++++++++$
Refractive indices:
n_co

```

```

n_su

```




```


\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#
\# CLASS 6 (i_geom_param[1]=6): EUV bridge
\# --
with refractive indices included into the set of optimization parameters

- Non-stop layers of different heights beneath the stack with refractive indices included into the set of optimization parameters
(In other words: Some of the lower additional layers can be added through the set of optimization parameters. Fixed further layers can be added in the GRATING+ILLUMINATION part of this input file.)
- Extra layer beside stack, height (>=zero, If upper line of this layers contains a corner of the trapezoids in the stack, then the height of the extra layer and all trapezoid heights of trapezoid beneath this line must be fixed by setting upper bound equal to lower bound.) and refractive indices included into the set of optimization parameters
- Number of trapezoids and layers is prescribed
- Whole stack (bridge) in one period of the grating
- sidewall angles can be restricted by penalty terms
- Lower side of stack (bridge) is fixed by two parameters: param_1 = posb/d = ratio of distance of right lower corner from the left boundary line of the period

The height hel of the extra layer beside the bridge may be any non-negative number, h_1<hel<h_2 is not supposed!
h_k:=d_geom_param[5*k-4] =height of k-th trapezoid in stack (in micro meter, h_k>0)
$\mathrm{b} _\mathrm{k} / \mathrm{d}:=\mathrm{d}$ _geom_param[5*k-3] =ratio of distance of right upper corner from the left boundary line of the period and period d ($0<b _k / d<=1$)
a_k/b_k:=d_geom_param[5*k-2]=ratio of distance of left upper corner from the left boundary line of the period and distance of right upper corner from the left boundary line of the period (0<=a_k/b_k<1.
If not both of the parameters b_k/d and a_k/b_k are fixed, then we require:
a_k/b_k>0 for $b_{-} k / d=1$)
$\mathrm{k}=1, \ldots$, i_geom_param[3]
posb/d:=d_geom_param[5*i_geom_param[3]+1]
=ratio of distance of right lower corner from the left boundary line of the period and period d ($0<\mathrm{posb} / \mathrm{d}<=1$)
posa/posb:=d_geom_param[5*i_geom_param[3]+2]
=ratio of distance of left lower corner from the left boundary line of the period and distance of right lower corner from the left boundary line of the period (0<=posa/posb<1.
If not both of the parameters posb/d and posa/posb are fixed, then we require:
\#

```
                                    posa/posb>0 for posb/d=1)
    hel/h_m:=d_geom_param[nd_geom_param-9], m=i_geom_param[5]
    =height of extra layer beside
                        stack (bridge) over the
                        lower line of the m-th trapezoid
            relative to height of m-th
            trapezoid
            (in micro meter, 0<=hel<=1),
        hl_k:=d_geom_param[5*i_geom_param[3]+3*k]
                            =height of k-th layer beneath stack
                            (in micro meter, hl_k>0),
        k=1,...,i_geom_param[4],
        + + + + + + + + + + + + +
```

 Penalty term parameters:
 phi_min=d_geom_param[nd_geom_param-2] minimal angle
 for sidewall angles of trapezoids
 (except the uppermost trapezoid)
 phi_max=d_geom_param[nd_geom_param-1] maximal angle
 for sidewall angles of trapezoids
 (except the uppermost trapezoid)
 phi_fac=d_geom_param[nd_geom_param] factor of penalty
term
In other words, to exclude solutions with too large
or too small sidewall angles phi, a penalty term of
the following form is added to the objective
functional for each sidewall angle phi.

- Following parameters must be fixed by setting upper bound= lower bound:
- d_geom_param[k],k=nd_geom_param-6, ...,nd_geom_param
i.e. refractive index of cover and substrate material
and the constants of the penalty terms
- if d_geom_param[nd_geom_param-9]=hel/h_m=0., then:
d_geom_param[nd_geom_param-9]
i.e. degenerated height hel
d_geom_param[5*k-4], k=1,2, ..,i_geom_param[5]-1


```
                    b_0:=posb
    param_k_2 = (a_k-a_(k-1))/(b_k-a_(k-1))
                            \(=\) ratio of difference of \(x\)-coordinates of
                        left upper and left lower trapezoid corner
                        over difference of \(x\)-coordinates of
                        right upper and left lower trapezoid corner
                    a_0:=posa
- Refractive index of the material of each trapezoid
        and layer is prescribed as an optimization parameter
    - Number of string parameters: ns_geom_param=0
    - Number of integer parameters: ni_geom_param=5
        i_geom_param[1]=6 (indicator of EUV bridge)
        i_geom_param[2]=number of different materials
            =number of trapezoids in stack (bridge) +
                        number of non-stop layers beneath stack +
                        (so far no non-stop layers are allowed)
                3 if height of additional layer > 0
            i_geom_param[2]=number of different materials
                    =number of trapezoids in stack (bridge) +
                    number of non-stop layers beneath stack +
                    (so far no non-stop layers are allowed)
                        2 if height of additional layer \(=0\)
    i_geom_param[3]=number of trapezoids in stack
    i_geom_param[4]=number of non-stop layers beneath stack
    i_geom_param[5]=index of trapezoid in stack through which
                        the upper line of the extra layer beside
                        the stack goes
                                (1<=i_geom_param[5] <=i_geom_param [3] )
- Number of real parameters:
        nd_geom_param=5*i_geom_param[3] +3*i_geom_param [4]+12
        \(++++++++++\quad+\)
        Refractive indices:
            n_co
```


\#

The height hel of the extra layer beside the bridge may be any non-negative number, h_1<hel<h_2 is not supposed!
$h _k:=d _g e o m _p a r a m[5 * k-4] \quad=h e i g h t$ of k-th trapezoid in stack (in micro meter, h_k>0)
b_k/b_(k-1) :=d_geom_param[5*k-3]
=ratio of distance of right upper corner from the left boundary line of the period and distance of right lower corner from the left boundary line of the period ($0<\mathrm{b} _\mathrm{k} / \mathrm{b} _$(k-1)<=1, b_0:=posb)
(a_k-a_(k-1))/(b_k-a_(k-1)):=d_geom_param[5*k-2]
=ratio of difference of
x-coordinates of left upper and left lower trapezoid corner over difference of x-coordinates of right upper and left lower trapezoid corner
($0<=\left(a_{-} k-a_{-}(k-1)\right) /\left(b_{-} k-a_{-}(k-1)\right)<1$, a_0:=posa)
k=1, . . ., i_geom_param [3]
posb/d:=d_geom_param[5*i_geom_param[3]+1]
=ratio of distance of right lower corner from the left boundary line of the period and period d ($0<\mathrm{posb} / \mathrm{d}<=1$)
posa/posb:=d_geom_param[5*i_geom_param[3]+2]
=ratio of distance of left lower corner from the left boundary line of the period and distance of right lower corner from the left boundary line of the period (0<=posa/posb<1.
If not both of the parameters posb/d and posa/posb are fixed, then we require:
posa/posb>0 for posb/d=1)
hel/h_m:=d_geom_param[nd_geom_param-9], m=i_geom_param [5]
=height of extra layer beside
stack (bridge) over the
lower line of the m-th trapezoid
relative to height of m-th
trapezoid
(in micro meter, $0<=$ hel<=1),
hl_k:=d_geom_param[5*i_geom_param[3] +3*k]
=height of k-th layer beneath stack
(in micro meter, hl_k>0),
$\mathrm{k}=1, \ldots$, i_geom_param [4] ,
$++++\quad+\quad+\quad+\quad+\quad+\quad+$

Penalty term parameters:
phi_min=d_geom_param[nd_geom_param-2] minimal angle for sidewall angles of trapezoids (except the uppermost trapezoid)
phi_max=d_geom_param[nd_geom_param-1] maximal angle for sidewall angles of trapezoids (except the uppermost trapezoid)
phi_fac=d_geom_param[nd_geom_param] factor of penalty term

In other words, to exclude solutions with too large or too small sidewall angles phi, a penalty term of the following form is added to the objective functional for each sidewall angle phi.

- Following parameters must be fixed by setting upper bound= lower bound:
- d_geom_param[k],k=nd_geom_param-6, ..., nd_geom_param i.e. refractive index of cover and substrate material
and the constants of the penalty terms
- if d_geom_param[nd_geom_param-9]=hel/h_m=0., then:
d_geom_param[nd_geom_param-9]
i.e. degenerated height hel
d_geom_param[5*k-4], k=1,2, ..,i_geom_param[5]-1
i.e. heights of trapezoids beneath upper
boundary line of extra layer
- if d_geom_param[nd_geom_param-9]=hel/h_m=1., then: d_geom_param[nd_geom_param-9]
i.e. degenerated height hel

```
# d_geom_param[5*k-4], k=1,2,..,i_geom_param[5]
    i.e. heights of trapezoids beneath upper
                        boundary line of extra layer
#
##################
# Number nd_geom_param of real parameters:
    6
# Lower bounds dl_geom_param (nd_geom_param numbers in nd_geom_param lines):
    -0.5
    -0.5
    1.
    0.
    1.5
    0.
# Upper bounds du_geom_param (nd_geom_param numbers in nd_geom_param lines):
    0.5
    0.5
    1.
    0.
    1.5
    0.
# Number ni_geom_param of integer parameters:
    3
# Integer params. i_geom_param (ni_geom_param numbers in ni_geom_param lines):
    1
    2
    2
# Number ns_geom_param of name parameters:
    0
# Parameter names s_geom_param.
# Each in one line, i.e., ns_geom_param lines.
# Parameters:
######################################################################
# Parameters d_geom_param of initial grating.
# d_geom_param (nd_geom_param numbers in nd_geom_param lines).
# With dl_geom_param[i]<=d_geom_param[i]<=du_geom_param[i] for all i.
# (If initial solution is to be sought by a deterministic search
# algorithm, then add the line: '' no n_0 n_1 n_2'', where n_0
# is the refinement level for the FEM computation, n_1 is the
# number of maximal subdivision points per dimension, and n_2 is
# an indicator. If n_2=1, then the minimum is improved by computing
# the local minimum of the linear Taylor polynomial around each
# mesh point.)
# Parameters:
    0.07
    -0.04
    1 .
    0.
    1.5
    0.
######################################################################
#
#
# L E V E L O F D I S C R E T I Z A T I O N #
#
```

```
#######################################################################
# Number of levels (Lev).
# Computation is performed on this level.
# Alternatively, an incremental input is possible.
# E.g.
            `' I 2 8 3',.
            The last means that computation is to be done for
            the levels ''2+i*3'' with i=0,1,2,... as long as
            level '' }2+i*3\mathrm{ '' is less or equal to '' }8\mathrm{ ''.
            The initial solution of the computation on level ''2''
            is the input initial solution. The initial solution
            of the computation on level '(2+i*3') for i>0 is the
            final solution of the level '(2+(i-1)*3''.
Number:
    1
######################################################################
#
\# O B J E C T I V E F U N C T I O N A L \#
#
######################################################################
#
#
value = w_lin_ene_re * energy +
                    w_lin_ene_tr * energy transmitted +
                                total
            w_lin_ene_to * energy +
n_lin_re
        --- reflected
            w_lin_re * efficiency +
        _-- w_lin_re * efficiency o_lin_re
    j=1
n_lin_tr
        --- transmitted
        > w_lin_tr * efficiency +
    --- j o_lin_tr
    j=1
n_qua_re
    --- reflected 2
    > w_qua_re [ efficiency - c_qua_re] +
    j=1
n_qua_tr
    --- w_qua_tr [ efficiency transmitted - c_qua_tr ] 2 +
```



```
# to be set to zero.
#
########################
#
#
```

```
If the wavelength or/and the incidence angles or/and the polarization run over a fixed set of values, then the last value of the objective function is replaced by the sum over the last values depending on the wavelengths or/and the angles or/and the polarization. In this case, the values w_... equal to
```

```
w_lin_ene_re, w_lin_ene_tr, w_lin_ene_to,
```

w_lin_ene_re, w_lin_ene_tr, w_lin_ene_to,
w_lin_re $^{\text {j }} \quad$ w_lin_tr j,
w_lin_re $^{\text {j }} \quad$ w_lin_tr j,
w_lin_k_re , w_lin_k_tr , k=1,2
w_lin_k_re , w_lin_k_tr , k=1,2
j j
j j
w_qua_re , w_qua_tr ,
w_qua_re , w_qua_tr ,
j j
j j
w_qua_k_re $_{j}, \quad$ w_qua_k_tr $_{j}, k=1,2$
w_qua_k_re $_{j}, \quad$ w_qua_k_tr $_{j}, k=1,2$
w_psh_k_re $_{j} \quad$ w_psh_k_tr $_{j}, k=1,2$
w_psh_k_re $_{j} \quad$ w_psh_k_tr $_{j}, k=1,2$
w_qua_ene_re, w_qua_ene_tr, w_qua_ene_to
w_qua_ene_re, w_qua_ene_tr, w_qua_ene_to
and, similarly, the corresponding prescribed parameters c_...
equal to

```
```

c_{j} cqua_re $^{\text {c_qua_tr }}$,

```
\(c_{j}\) cqua_re \(^{\text {c_qua_tr }}\),
c_qua_k_re , c_qua_k_tr , k=1,2
c_qua_k_re , c_qua_k_tr , k=1,2
    j j
    j j
c_psh_k_re , c_psh_k_tr , k=1,2
c_psh_k_re , c_psh_k_tr , k=1,2
    j j
    j j
c_ene_re, c_ene_tr, c_ene_to
c_ene_re, c_ene_tr, c_ene_to
may depend on the wavelengths or/and the angles or/and the polarization type. If the \(n_{-} .\). values of \(c_{-} .\). depend on m wavelengths resp. angles theta resp. angles phi, then the input consists of \(m * n_{1} . .+1\) lines. The first contains the indicator '(WAL') resp. ''ATH'' resp. ''APH', and is followed by \(m * n_{\text {_... }}\) lines each containing a number \(c_{-} .\).
```


| \# | c_... (lambda1 | ,thetam2, phi2 | ,mode1 |
| :---: | :---: | :---: | :---: |
| \# | c_... (lambda1 | , thetam2, phi2 | , mode2 |
| \# | | | |
| \# | c_... (lambda1 | , thetam2, phi2 | , moden |
| \# | | | |
| \# | c_... (lambda1 | ,thetam2, phim3 | , mode1 |
| \# | c_... (lambda1 | , thetam2, phim3 | , mode2 |
| \# | | | |
| \# | c_... (lambda1 | , thetam2, phim3 | , moden |
| \# | c_... (lambda2 | ,theta1 , phi1 | , mode1 |
| \# | c_... (lambda2 | ,theta1 , phi1 | , mode2 |
| \# | | | |
| \# | c_... (lambda2 | ,theta1 , phi1 | , moden |
| \# | c_... (lambda2 | ,theta1 , phi2 | , mode1 |
| \# | c_... (lambda2 | ,theta1 , phi2 | , mode2 |
| \# | | | |
| \# | c_... (lambda2 | ,theta1 , phi2 | , moden |
| \# | | | |
| \# | c_... (lambda2 | ,theta1 , phim3 | , mode1 |
| \# | c_... (lambda2 | ,theta1 , phim3 | , mode2 |
| \# | | | |
| \# | c_... (lambda2 | ,theta1 , phim3 | , moden |
| \# | c_... (lambda2 | ,theta2 , phi1 | , mode1 |
| \# | c_... (lambda2 | ,theta2 , phi1 | , mode2 |
| \# | | | |
| \# | c_... (lambda2 | ,theta2 ,phi1 | , moden |
| \# | c_... (lambda2 | ,theta2 , phi2 | , mode1 |
| \# | c_... (lambda2 | ,theta2 , phi2 | , mode2 |
| \# | | | |
| \# | c_... (lambda2 | ,theta2 , phi2 | , moden |
| \# | | | |
| \# | c_... (lambda2 | ,theta2 , phim3 | , mode1 |
| \# | c_... (lambda2 | ,theta2 , phim3 | , mode2 |
| \# | | | |
| \# | c_... (lambda2 | ,theta2 , phim3 | , moden |
| \# | | | |
| \# | c_... (lambda2 | , thetam2, phi1 | , mode1 |
| \# | c_... (lambda2 | , thetam2, phi1 | , mode2 |
| \# | | | |
| \# | c_... (lambda2 | , thetam2, phi1 | , moden |
| \# | c_... (lambda2 | , thetam2, phi2 | , mode1 |
| \# | c_... (lambda2 | , thetam2, phi2 | , mode2 |
| \# | | | |
| \# | c_... (lambda2 | , thetam2, phi2 | , moden |
| \# | | | |
| \# | c_... (lambda2 | , thetam2, phim3 | , mode1 |
| \# | c_... (lambda2 | , thetam2, phim3 | , mode2 |
| \# | | | |
| \# | c_... (lambda2 | , thetam2, phim3 | , moden |
| \# | | | |
| \# | c_... (lambdam1 | ,theta1 , phi1 | , mode1 |
| \# | c_... (lambdam1 | ,theta1 , phi1 | , mode2 |
| \# | ... | | |
| \# | C_... (lambdam1 | ,theta1 , phi1 | , moden |

```
    c_...(lambdam1,theta1 ,phi2 ,mode1 )
    c_...(lambdam1,theta1 ,phi2 ,mode2 )
    c_...(lambdam1,theta1 ,phi2 ,moden_...)
    c_...(lambdam1,theta1 ,phim3,mode1 )
    c_...(lambdam1,theta1 ,phim3,mode2 )
        __..(lambdam1,theta1 ,phim3,moden_...)
    c_...(lambdam1,theta2 ,phi1 ,mode1 )
    c_...(lambdam1,theta2 ,phi1 ,mode2 )
    c_...(lambdam1,theta2 ,phi1 ,moden_...)
    c_...(lambdam1,theta2 ,phi2 ,mode1 )
    c_...(lambdam1,theta2 ,phi2 ,mode2 )
        c_...(lambdam1,theta2 ,phi2 ,moden_...)
    c_...(lambdam1,theta2 ,phim3,mode1 )
    c_...(lambdam1,theta2 ,phim3,mode2 )
    c_...(lambdam1,theta2 ,phim3,moden_...)
    c_...(lambdam1,thetam2,phi1 ,mode1 )
    c_...(lambdam1,thetam2,phi1 ,mode2 )
    c_...(lambdam1,thetam2,phi1 ,moden_...)
    c_...(lambdam1,thetam2,phi2 ,mode1 )
    c_...(lambdam1,thetam2,phi2 ,mode2 )
        c_...(lambdam1,thetam2,phi2 ,moden_...)
    c_...(lambdam1,thetam2,phim3,mode1 )
    c_...(lambdam1,thetam2,phim3,mode2 )
    c_...(lambdam1,thetam2,phim3,moden_...) ,'
    If, additionally, the type of polarization runs over two types
    (in this case input type of polarization must be TE/TM:
    first type poltype1=TE and second type poltype2=TM), then the
    value of the objective function is replaced by the additional
    sum over the polarization types. In this case, the values
    c_... may depend on the type of polarization, too. The input of
these values is
POL
c_...(poltyp1,mode1)
c_...(poltyp1,mode2)
...
\(c_{-} . .(\)poltyp1, moden_... \()\)
c_...(poltyp2,mode1)
c_...(poltyp2,mode2)
c_...(poltyp2,moden_...) ',
```

if the values do not depend on lambda, theta, and phi. In case it depends on lambda, theta, or phi, the input starts with '(WAL+POL', for '(WAL', ' 'ATH+POL', for ' $A T H$ ', ' 'APH+POL', for ' $A P H$ ', ' ' $W+T+P O L$ ', for ' $W+T$ ', ' ' $W+P+P O L$ ', for ' $W+P$ ', , ' 'T+P+POL', for ' $T+P$ '), ' 'WTP+POL', for ' 'WTP''. Then there follows the doubled number of lines with values of $c_{-} .$. . This corresponds to a loop over lambda/theta/phi, as usually. In the inner of the loop, for fixed lambda, theta, and phi, first the $n_{-} .$. values for the first polarization type poltyp1 are listed in the usual order. Then the $n_{\sim} .$. values for the second polarization type poltyp2 follow.
If a value $c_{-} .$. or a value $w_{\text {_ }}$. . depends on the wavelengths or/and the angles or/and the polarization type, then the corresponding value $\mathrm{w}_{\mathrm{\prime}} .$. . or a value $\mathrm{c}_{-} .$. must be given in the same way. In other words, if, e.g., w_... is constant but $c_{-} .$. depends on m values of wavelength, then the input for $w_{-} .$. must start with the line 'WAL', and after wards the constant value $\mathrm{w}_{\mathrm{L}} .$. must be repeated m-times in m separate lines.
If the type of polarization and coordinate system for the incoming wave vector is '‘TE/TM'', then the phase shifts are computed first for TE and then for TM , and terms like

```

\begin{tabular}{|c|c|}
\hline \# & with \\
\hline \# & \\
\hline \# & \\
\hline \# & reflected,TE/TM reflected,TE reflected,TM \\
\hline \# & ps_1 \(=\) phaseshift_1 \\
\hline \# & o_psh_1_re o_psh_1_re o_psh_1_re \\
\hline \# & j j j \\
\hline \# & \\
\hline \# & transmitted,TE/TM transmitted,TE transmitted,TM \\
\hline \# & ps_1 = phaseshift_1 - phaseshift \\
\hline \# & o_psh_1_tr o_psh_1_tr o_psh_1_tr \\
\hline \# & j j j \\
\hline \# & \\
\hline \# & reflected,TE/TM reflected,TE reflected,TM \\
\hline \# & ps_2 = phaseshift_2 - phaseshift_2 \\
\hline \# & o_psh_2_re o_psh_2_re o_psh_2_re \\
\hline \# & j j j \\
\hline \# & \\
\hline \# & transmitted,TE/TM transmitted,TE transmitted, TM \\
\hline \# & ps_2 \(=\) phaseshift_2 - phaseshift_2 \\
\hline \# & o_psh_2_tr o_psh_2_tr o_psh_2_tr \\
\hline \# & j j j \\
\hline \# & \\
\hline \# & \\
\hline \# & are of interest. To indicate that terms of this type are to be \\
\hline \# & included instead of the terms depending on one phaseshift only \\
\hline \# & add a TE/TM before the input of the numbers n_psh_1_re, \\
\hline \# & \multirow[t]{2}{*}{n_psh_2_re, n_psh_1_tr, and n_psh_2_tr, respectively. E.g.} \\
\hline \# & \\
\hline \# & \# n_phs_2_tr: \\
\hline \# & TE/TM \\
\hline \# & 1 \\
\hline \# & \\
\hline \# & In such a case an input of weights \(\mathrm{w}_{\text {_ }} . .\). and prescribed values \\
\hline \# & c_... beginning with ...+POL is wrong since the phaseshifts \\
\hline \# & for different polarization are included into one term, only. \\
\hline \# & \\
\hline \# & If the type of polarization and coordinate system for the \\
\hline \# & incoming wave vector is ''TE/TM', if the type of output \\
\hline \# & is ''TE/TM', and if the angle phi of illumination is zero \\
\hline \# & (classical case), then the phase shift are computed first \\
\hline \# & for TE and then for TM, and terms like \\
\hline \# & \\
\hline \# & \\
\hline \# & n_psh_1_re \\
\hline \# & --- reflected,TE/TM 2 \\
\hline \# & > w_psh_1_re [ PS_1 - c_psh_1_re] + \\
\hline \# & -- j o_psh_1_re j * \\
\hline \# & \multirow[t]{2}{*}{j} \\
\hline \# & \\
\hline \# & n_psh_1_tr \\
\hline \# & --- transmitted ,TE/TM 2 \\
\hline \# & > w_psh_1_tr [ PS_1 - c_psh_1_tr ] + \\
\hline
\end{tabular}
```

```
    ---
```

```
    ---
    j=1
    j=1
    with
    with
    reflected,TE/TM reflected,TE reflected,TM
    reflected,TE/TM reflected,TE reflected,TM
PS_1 = phaseshift_1 - phaseshift_2
PS_1 = phaseshift_1 - phaseshift_2
    o_psh_1_re o_psh_1_re o_psh_1_re
    o_psh_1_re o_psh_1_re o_psh_1_re
    j j j
    j j j
    transmitted,TE/TM transmitted,TE transmitted,TM
    transmitted,TE/TM transmitted,TE transmitted,TM
PS_1 = phaseshift_1 - phaseshift_2
PS_1 = phaseshift_1 - phaseshift_2
    o_psh_1_tr o_psh_1_tr o_psh_1_tr
    o_psh_1_tr o_psh_1_tr o_psh_1_tr
                    j j j
                    j j j
    are of interest. To indicate that terms of this type are to be
    are of interest. To indicate that terms of this type are to be
    included instead of the terms depending on one phaseshift only
    included instead of the terms depending on one phaseshift only
    add a CL:TE/TM before the input of the numbers n_psh_1_re
    add a CL:TE/TM before the input of the numbers n_psh_1_re
    and n_psh_1_tr, respectively. E.g.
    and n_psh_1_tr, respectively. E.g.
    In such a case an input of weights w_... and prescribed values
    In such a case an input of weights w_... and prescribed values
    c_... beginning with ...+POL is wrong since the phaseshifts
    c_... beginning with ...+POL is wrong since the phaseshifts
    for different polarization are included into one term, only.
    for different polarization are included into one term, only.
########################
########################
#
```



```
```

 # n_phs_1_tr:
    ```
    # n_phs_1_tr:
```

 # n_phs_1_tr:
 CL:TE/TM
 CL:TE/TM
 CL:TE/TM
 2
    ```
    2
```

 2
    ```
```

 reciprocal squared uncertainty and if this uncertainty
    ```
    reciprocal squared uncertainty and if this uncertainty
    should be a function of the prescribed efficiency value, e.g.:
    should be a function of the prescribed efficiency value, e.g.:
    w_qua_1_tr=1/(u*u), u=f(c_qua_1_tr), f(E):=sqrt(E*E+1e-2)
    w_qua_1_tr=1/(u*u), u=f(c_qua_1_tr), f(E):=sqrt(E*E+1e-2)
    Then the input is as follows:
    Then the input is as follows:
        '`# n_qua_1_tr
        '`# n_qua_1_tr
        2
        2
    # w_qua_1_tr
    # w_qua_1_tr
        unc.fct. sqrt(E*E+1e-2)
        unc.fct. sqrt(E*E+1e-2)
        0.
        0.
        1.
        1.
    # o_qua_1_tr
    # o_qua_1_tr
        -1
        -1
            0
            0
        # c_qua_1_re
        # c_qua_1_re
            10.
            10.
            13. ,'
            13. ,'
Note that the two input values for the w_qua_1_tr
```

Note that the two input values for the w_qua_1_tr

```
```


\#

\#LINEAR TERMS, REFLECTED EFFICIENCY

w_ene_lin_re

 O

w_ene_lin_tr

 O

w_ene_lin_to

 O

n_lin_re:

 0

w_lin_re (n_lin_re numbers in n_lin_re lines):

o_lin_re (n_lin_re numbers in n_lin_re lines):

\#LINEAR TERMS, FIRST (TE or S) REFLECTED EFFICIENCY

n_lin_1_re:

 O

w_lin_1_re (n_lin_1_re numbers in n_lin_1_re lines):

o_lin_1_re (n_lin_1_re numbers in n_lin_1_re lines):

\#LINEAR TERMS, SECOND (TM or P) REFLECTED EFFICIENCY

n_lin_2_re:

 0

w_lin_2_re (n_lin_2_re numbers in n_lin_2_re lines):

o_lin_2_re (n_lin_2_re numbers in n_lin_2_re lines):

\#LINEAR TERMS, TRANSMITTED EFFICIENCY

n_lin_tr:

 O

w_lin_tr (n_lin_tr numbers in n_lin_tr lines):

o_lin_tr (n_lin_tr numbers in n_lin_tr lines):

\#LINEAR TERMS, FIRST (TE or S) TRANSMITTED EFFICIENCY

n_lin_1_tr:

 0

w_lin_1_tr (n_lin_1_tr numbers in n_lin_1_tr lines):

o_lin_1_tr (n_lin_1_tr numbers in n_lin_1_tr lines):

\#LINEAR TERMS, SECOND (TM or P) TRANSMITTED EFFICIENCY

n_lin_2_tr:

 O

w_lin_2_tr (n_lin_2_tr numbers in n_lin_2_tr lines):

o_lin_2_tr (n_lin_2_tr numbers in n_lin_2_tr lines):

\#QUADRATIC TERMS, REFLECTED EFFICIENCY

n_qua_re:

 O

w_qua_re (n_qua_re numbers in n_qua_re lines):

o_qua_re (n_qua_re numbers in n_qua_re lines):

c_qua_re (n_qua_re numbers in n_qua_re lines):

\#QUADRATIC TERMS, FIRST (TE or S) REFLECTED EFFICIENCY

n_qua_1_re:

```
```

 1

w_qua_1_re (n_qua_1_re numbers in n_qua_1_re lines):

 0.03

o_qua_1_re (n_qua_1_re numbers in n_qua_1_re lines):

 0

c_qua_1_re (n_qua_1_re numbers in n_qua_1_re lines):

 51.603605
 \#QUADRATIC TERMS, SECOND (TM or P) REFLECTED EFFICIENCY

n_qua_2_re:

 0

w_qua_2_re (n_qua_2_re numbers in n_qua_2_re lines):

o_qua_2_re (n_qua_2_re numbers in n_qua_2_re lines):

c_qua_2_re (n_qua_2_re numbers in n_qua_2_re lines):

\#QUADRATIC TERMS, TRANSMITTED EFFICIENCY

n_qua_tr:

 0

w_qua_tr (n_qua_tr numbers in n_qua_tr lines):

o_qua_tr (n_qua_tr numbers in n_qua_tr lines):

c_qua_tr (n_qua_tr numbers in n_qua_tr lines):

\#QUADRATIC TERMS, FIRST (TE or S) TRANSMITTED EFFICIENCY

n_qua_1_tr:

 O

w_qua_1_tr (n_qua_1_tr numbers in n_qua_1_tr lines):

o_qua_1_tr (n_qua_1_tr numbers in n_qua_1_tr lines):

c_qua_1_tr (n_qua_1_tr numbers in n_qua_1_tr lines):

\#QUADRATIC TERMS, SECOND (TM or P) TRANSMITTED EFFICIENCY

n_qua_2_tr:

 O

w_qua_2_tr (n_qua_2_tr numbers in n_qua_2_tr lines):

o_qua_2_tr (n_qua_2_tr numbers in n_qua_2_tr lines):

c_qua_2_tr (n_qua_2_tr numbers in n_qua_2_tr lines):

\#QUADRATIC TERMS, FIRST (TE or S) REFLECTED PHASE SHIFT

n_phs_1_re:

 1

w_phs_1_re (n_phs_1_re numbers in n_phs_1_re lines):

 30.

o_phs_1_re (n_phs_1_re numbers in n_phs_1_re lines):

 O

c_phs_1_re (n_phs_1_re numbers in n_phs_1_re lines):

 -91.464440
 \#QUADRATIC TERMS, FIRST (TE or S) TRANSMITTED PHASE SHIFT

n_phs_1_tr:

 O

w_phs_1_tr (n_phs_1_tr numbers in n_phs_1_tr lines):

o_phs_1_tr (n_phs_1_tr numbers in n_phs_1_tr lines):

c_phs_1_tr (n_phs_1_tr numbers in n_phs_1_tr lines):

\#QUADRATIC TERMS, SECOND (TM or P) REFLECTED PHASE SHIFT

n_phs_2_re:

 O

w_phs_2_re (n_phs_2_re numbers in n_phs_2_re lines):

o_phs_2_re (n_phs_2_re numbers in n_phs_2_re lines):

c_phs_2_re (n_phs_2_re numbers in n_phs_2_re lines):

\#QUADRATIC TERMS, SECOND (TM or P) TRANSMITTED PHASE SHIFT

n_phs_2_tr:

```
```

 0

w_phs_2_tr (n_phs_2_tr numbers in n_phs_2_tr lines):

o_phs_2_tr (n_phs_2_tr numbers in n_phs_2_tr lines):

c_phs_2_tr (n_phs_2_tr numbers in n_phs_2_tr lines):

\#QUADRATIC TERMS, REFLECTED ENERGY

w_qua_ene_re:

 0.

c_ene_re (no line if w_ene_re=0.):

\#QUADRATIC TERMS, TRANSMITTED ENERGY

w_qua_ene_tr:

 0.

c_ene_tr (no line if w_ene_tr=0.):

\#QUADRATIC TERMS, TOTAL ENERGY

w_qua_ene_to:

 0.

c_ene_to (no line if w_ene_to=0.):

\#

O P T I M I Z A T I O N A L G O R I T H M

\#

Data for optimization algorithm.

- maximal number of iterations
This is usually a positive number.
However, if the level is varying (incremental input of level),
then the maximal number of iterations can be chosen in
dependence of the level. For m different number of levels,
the corresponding input consists of m+1 lines. The first line
contains ''LEV'' and is followed by m lines each containing
a positive number of maximal iterations.
E.g. for the level input '، I 2 8 3'':
`، LEV
5
7
13 ,'
means maximal 5 iterations for level 2
maximal }7\mathrm{ iterations for level 5 and
maximal }13\mathrm{ iterations for level }8
 - indicator ind_opt of method
ind_opt=1: conjugate gradient method/projection
onto feasibility set
ind_opt=2: interior point method
ind_opt=3: augmented Lagrangian method
ind_opt=4: simulated annealing
ind_opt=5: Newton type method
 - number of integer parameters ni_opt
 - vector i_opt of integer parameters (each number
in a separate line, ni_opt numbers)
 - number of real parameters nd_opt
 - vector d_opt of real parameters (each number
in a separate line, nd_opt numbers)
 - number of string parameters ns_opt

- vector s_opt of string parameters (each string

```
```


in a separate line, nd_opt numbers)

- vector d_geom_scal of positive scaling parameters

 d_geom_scal[j], j=1,...,nd_geom_param
 Indeed, if partial derivatives of objective functional
 with respect to some parameter coordinate d_geom_param[j]
 are much larger than the others, then this d_geom_param[j]
 together with the bounding [dl_geom_param[j],du_geom_param[j]]
 must be scaled:
 d_geom_param[j]' = d_geom_param[j]*d_geom_scal[j]
 dl_geom_param[j]'=du_geom_param[j]*d_geom_scal[j]
du_geom_param[j]'=dl_geom_param[j]*d_geom_scal[j]
(Without scaling the iterative procedure reduces the
large components of the gradient vector upto the
discretization error, and an optimization in the
gradient directions of the remaining components
is hindered by the relatively large discretization error
of the gradient components which had formerly been large.)
All scaling factors d_geom_scal[j] for the d_geom_param[j]
fixed by setting dl_geom_param[j]=du_geom_param[j] must be
set to one.

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

INTERIOR POINT METHOD (ind_opt=2)

```



```


\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

 LEVENBERG MARQUARDT METHOD (ind_opt=6)
 - ni_opt=0
 - nd_opt=4
 - d_opt[1]: scaling factor mu for initial regularization
 of symmetrized Jacobian
 - d_opt[2]: stopping threshold epsilon1
 stop if gradient norm ||J^T e||_inf<epsilon1
 - d_opt[3]: stopping threshold epsilon2
stop if increment norm ||Dp||^2_2<epsilon2 ||Dp'||^2_2
with ||Dp'||^2_2 the term of previous step
- d_opt[4]: stopping threshold epsilon3
stop if least square functional
||e||^2_2<epsilon3
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

Maximal number of iterations:

 10000

Indicator for optimization method:

 1 # conj.grad.meth.

ni_opt:

 1 # number of integer param.

i_opt:

 # # n times the same grad.norms -> stop

nd_opt:

 5 # number of real param.

d_opt:

 1. # maximal stepsize factor in line search
 0.001 # constant c_1 in Armijo criterion
 1e-3 # expected accuracy threshold
 1e-2 # gradient accuracy threshold
 1e-2 # grad.norm deviation threshold

Scaling parameters d_geom_scal:

 1.
 1.
 1.
 1.
 1.
 1.
 \#

S T O C H A S T I C E R R O R A N A L Y S I S

\#

No further input is required. However, if the next

line starts with " SD: ", then:

Suppose that prescribed input values for the

efficiencies E and/or the phase shifts P

(corresponding to the efficiency value denoted

by E) have a normally distributed error of

```
```


expectation O and standard deviation sigma(E)

and sigma(P), respectively.

Programm computes

- standard deviations of reconstructed values

- correlation factors

The following three varaiants can be chosen:

1) Suppose that standard deviation sigma(E) and

sigma(P) are given as

sigma(E) = u(E),

sigma(P) = u(E) * 360/100,

The function u of variable E should be given in

the next input line as a c code formula without

blanks preceded by "SD: ".

2) Suppose that standard deviation sigma(E) and

sigma(P) are equal to the deviation of the given

(measured) values from those computed for the

reconstructed grating. Input line should be:

"SD: dev"

3) Suppose that standard deviation sigma(E)

and sigma(P) are to be equal to the reciprocal

square root of the weight for the corresponding

term in the objective functional. Input line

should be: "SD: orig"

No error analysis is provided

- if the c code is not defined in this data input file

- if linear terms appear in objective functional

- if energy terms appear in objective functional

- if phase shift terms appear without the analoguous

structure of efficiency term input

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

 SD: sqrt(1e-2+E*E)

SD: dev

SD: orig

\#

E N D

\#

```

\subsection*{12.9 Output file "example.res" of OPTIMIZE in OPTIM}
```

**

```

```

** OPTIMIZE GRATING/CONICAL CASE **
** **


```
    date \(=\) ' 9. Aug 2005, 10:27:23'

DATA OF OPTIMIZATION PROBLEM:

grating geometry:
    refr.ind.of cov.mater. \(=1.0000000\) +i 0.0000000
    n.of diff.grating mat. \(=5\)
                        refr.ind. \(=0.5421322+\mathrm{i} 0.1500000\)
                        refr.ind. = 0.6495191 +i 0.0000000
                        refr.ind. \(=0.0000000\) +i 0.0000000
                        refr.ind. \(=0.0000000\) +i 0.0000000
                        refr.ind. = -0.0000000 +i 0.6495191
    refr.ind.of substr.mat. \(=1.5000000+i \quad 0.0000000\)
    temperature \(=20.0000000\)
    discret.level \(=3\)
    additional horizontal sh. \(=0.0000000\)
    stretching factor \(=1.0000000\)
    additional vertical sh. \(=0.0000000\)
    period of grating \(=1.0000000\)
incoming light:
\begin{tabular}{lllll} 
wave length & \(=\) I 0.6350000 & 0.6360000 & 0.0020000 \\
type of output res. & \(=\mathrm{TE} / \mathrm{TM}\) & & \\
type of polarization & \(=\mathrm{TP}\) & & \\
polarization angle & \(=20.0000000\) & & \\
angle of incidence theta & \(=\) I 30.0000000 & 31.0000000 & 2.0000000 \\
angle of incidence phi & \(=\) I 47.0000000 & 48.0000000 & 2.0000000
\end{tabular}
data of generalized FEM:
\begin{tabular}{ll} 
n_DOF & \(=0\) \\
n_LFEM & \(=0\) \\
n_UPA & \(=0\)
\end{tabular}
```

grating parameters:

```
```

class number = 5
number of materials = 5
number of real param. = 13
real param.[1] = 1.0000000
real param.[2] = 0.0000000
real param.[3] in : [1.0000000 , 1.5000000]
real param.[4] in : [0.0000000 , 0.5000000]
real param.[5] in : [1.0000000 , 1.5000000]
real param.[6] in : [0.0000000 , 0.5000000]
real param.[7] in : [1.0000000 , 1.5000000]
real param.[8] in : [0.0000000 , 0.5000000]
real param.[9] = 1.5000000
real param.[10] = 0.0000000
real param.[11] in : [-0.1350241 , 0.0953109]
real param.[12] in : [-0.2417941 , 0.1350241]
real param.[13] = 0.1000000
number of integer param. = 6
integer param.[3] = 2
integer param.[4] = 11
integer param.[5] = 9
integer param.[6] = 3
number of char strg.par. = 1
char strg.par.[1] =
initial parameters:
real parameter[3]

```
objective functional:

data for optimization:
    max.n.of iterations \(=100\)
    method of optimization \(=\) interior point method
    initial parameter of op. \(=0.10000000000000001\)
    reduct.fact.for param. \(=0.50000000000000000\)
    const.in Armijo criter. \(=0.00100000000000000\)
    bound of stepsize factor \(=0.90000000000000002\)
    threshold for gradient \(=0.00000000000001000\)
```

threshold of rel.diff. = 0.00001000000000000

```
max.n.of almost same res.= 3

    DISCRETIZATION DATA:
=====================================================================2
    level of discr. \(=3\)
    stepsize of discr. \(=0.03978873577297385\) times period
    number of nodes \(=3935\)
    degrees of freedom \(=7870\)
    DATA OF INTERIOR POINT METHOD:

```

 number of iterations = 81 (max. 100 per call)
 number of eval.grad. = 230
 norm of red.gradient = 0.63985931836072452
 call of inter_pnt_me : only once
 stopping criterion : Warning: 3 times the same gradient norm!
 ==
RESULTS OF OPTIMIZATION:
==

```
    optimal value of objective functional \(=0.00006906968592636\)
    optimal set of parameters:
        param [ 3] = 1.39654044740417649
        param [ 4] = 0.02205203290024821
        param [ 5] = 1.29279672856900452
        param[ 6] = 0.08879797922972749
        param [ 7] = 1.16142455471499551
        param[ 8] = 0.06526282507629259
        param[11] \(=0.07701248245801905\)
        param[12] \(=0.13277015218125693\)
    END:

    date \(=\) ' 9. Aug 2005, 10:30:13'
    Thank you for choosing '‘OPTIMIZE''!
    Bye, bye!

\section*{13 Copyright}

Responsible programmer:
A. Rathsfeld

The programs are part of the package:
DIPOG
(Direct and Inverse Problems for Optical Gratings)

The programs require codes written by:
J.R. Shewchuk : triangulation code TRIANGLE
O. Schenk, K. Gärtner : direct solver PARDISO
R.W. Freund, N.M. Nachtigal : qmr solver
B. Spitzak and others: FLTK for graphical user interface

The programs are based on codes written by:
K. Gärtner : direct solver, cgs solver
R. Schlundt : gmres solver
J. Ehlert : simplex method
J. Fuhrmann, T. Koprucki, H. Langmach : PDELIB, adaption of GLTOOLS
F. Huth, M. Uhle : TGUI, graphical user interface for TRIANGLE
T. Arnold : some routines for optimization
B. Kleemann, G. Schmidt, A. Rathsfeld : adaption to the grating, diffraction problem, generalized Fem
Owner of program:
Weierstrass Institute for Applied Analysis and Stochastics
D-10117 Berlin, Mohrenstr. 39, Germany
part of: Forschungsverbund Berlin e.V.
Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz e.V.

References: see Sections 2.4 and 10.4 .
Acknowledgements:
The author gratefully acknowledges the support of the German Ministry of Education, Research and Technology under Grant No. 03-ELM3B5.
```

* Copyright (C) 2007 *

```
```


[^0]: ${ }^{1}$ Don't read the complete user guide. Don't you have anything better to do? If you have to compute the efficiencies, phase sifts, and energies of the waves diffracted by gratings, then go to the directory DIPOG2.1/GUI and start the program DIPOG-2.1-GUI which is self explanatory. Alternatively, for gratings with more complex input data, you should change to the directory DIPOG-2.1/CLASSICAL or DIPOG-2.1/CONICAL. Read the data file "example.dat". Change it according to your requirements. Run one of the executables with "example.dat" as argument. Read the results. Plots with efficiency curves can be produced via the executables in the directory DIPOG-2.1/RESULTS. If you still have a question, come back to this user guide and read the corresponding part, only. Good luck!

 In case you have to optimize a grating, read the Sections 10.1.1, 10.1.2, 10.2, 10.3.1, and 10.3 .2 of this user guide. Then go to the directory DIPOG-2.1/OPTIM and read the data file "example.dat". Change it according to your requirements. Run the executable OPTIMIZE with "example.dat" as argument. Read the results. If you still have a question, come back to this user guide and read the corresponding part, only. Good luck!
 ${ }^{2}$ PARDISO itself requires some routines from LAPACK and some BLAS routines.

[^1]: ${ }^{3}$ Contrary to the original meaning of binary, several layers are admitted.

[^2]: ${ }^{4}$ The temporary directory is defined in MHEAD before the installation. Its name will be stored in the first line of the file MAKES/make_info and can be changed in this file at any time. Alternatively, the temporary working directory can be chosen by setting the environment variable TMPDIR.

[^3]: ${ }^{5}$ If needed, change to the subdirectories and follow the instructions of the corresponding files README.txt. If not needed, delete the subdirectories.
 ${ }^{6}$ This subdirectory exists only during internal installation.

[^4]: ${ }^{7}$ For technical reasons in the FEM code, it is important to have the same material on both sides of the boundary lines $\Gamma^{ \pm}$.

[^5]: ${ }^{8}$ In other words $\pi-\theta_{i}$ and ϕ_{i} are the spherical coordinates of \vec{k} / k^{+}, and θ_{i} is not the angle enclosed by \vec{k} / k^{+}and the positive y axis but the angle enclosed by \vec{k} / k^{+}and the negative y axis.

[^6]: ${ }^{9}$ If this formal assumption is not fulfilled, then a rectangular upper resp. lower coating strip does not make sense and, without coated layers, a thicker artificial strip can be added without problem
 ${ }^{10}$ Indeed, the corner points at the upper resp. lower boundary lines of the FEM domain must be part of a uniform grid. This is required by the fast boundary element discretization.

[^7]: ${ }^{11}$ To make it precise, suppose P and Q are the common corner points of the two polygonal curves and that $R_{1}^{1}, R_{2}^{1}, \ldots, R_{m}^{1}$ are the consecutive corner points between P and Q on the first polygonal line and $R_{1}^{2}, R_{2}^{2}, \ldots, R_{n}^{2}$ those on the second polygonal. Then the code requires $m=n$ and that the coating area between the two polygonal lines is the disjoint union of the triangle $P R_{1}^{1} R_{1}^{2}$, the quadrilaterals $R_{1}^{1} R_{2}^{1} R_{2}^{2} R_{1}^{2}$, $\ldots, R_{(m-1)}^{1} R_{m}^{1} R_{m}^{2} R_{(m-1)}^{2}$, and the triangle $R_{m}^{1} Q R_{m}^{2}$.

[^8]: ${ }^{12}$ I.e., over a flat grating with surface $\{(x, 0): 0 \leq x \leq 1\}$ a material part is attached which is located between $\{(x, 0): 0 \leq x \leq 1\}$ and $\left\{\left(f_{x}(t), f_{y}(t)\right): 0 \leq t \leq 1\right\}$. Here $\left\{\left(f_{x}(t), f_{y}(t)\right): 0 \leq t \leq 1\right\}$ is a simple open arc connecting $\left(f_{x}(0), f_{y}(0)\right)=\left(x_{\min }, 0\right)$ with $\left(f_{x}(1), f_{y}(1)\right)=\left(1-x_{\text {min }}, 0\right)$ such that $0<x_{\text {min }}<0.5$ is a fixed number, such that $0<f_{x}(t)<1,0<t<1$, and such that $0<f_{y}(t), 0<t<1$.
 ${ }^{13}$ I.e., over a flat grating with surface $\{(x, 0): 0 \leq x \leq 1\}$ a material part is attached which is located between $\{(x, 0): 0 \leq x \leq 1\}$ and $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$. Here $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$ is a simple open arc connecting $\left(f_{x}(1,0), f_{y}(1,0)\right)=\left(x_{\text {min }}, 0\right)$ with $\left(f_{x}(1,1), f_{y}(1,1)\right)=\left(1-x_{\text {min }}, 0\right)$ such that $0<x_{\min }<0.5$ is a fixed number, such that $0<f_{x}(1, t)<1,0<t<1$, and such that $0<f_{y}(1, t), 0<t<1$. Additionally, a coating layer is attached located between the first curve $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$ and a second curve $\left\{\left(f_{x}(2, t), f_{y}(2, t)\right): 0 \leq t \leq 1\right\}$. The last connects the point $\left(f_{x}\left(1, a_{1}\right), f_{y}\left(1, a_{1}\right)\right)=$ $\left(f_{x}(2,0), f_{y}(2,0)\right)$ with $\left(f_{x}\left(1, a_{2}\right), f_{y}\left(1, a_{2}\right)\right)=\left(f_{x}(2,1), f_{y}(2,1)\right)$. Moreover, $\left\{\left(f_{x}(2, t), f_{y}(2, t)\right): 0 \leq t \leq 1\right\}$ is a simple open arc above $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$ such that $0<f_{x}(2, t)<1,0<t<1$.
 ${ }^{14}$ I.e., over a flat grating with surface $\{(x, 0): 0 \leq x \leq 1\}$ a material part is attached which is located between the line $\{(x, 0): 0 \leq x \leq 1\}$ and $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$. Here $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right)\right.$: $0 \leq t \leq 1\}$ is a simple open arc connecting $\left(f_{x}(1,0), f_{y}(1,0)\right)=\left(x_{\min }, 0\right)$ with $\left(f_{x}(1,1), f_{y}(1,1)\right)=$ $\left(1-x_{\min }, 0\right)$ such that $0<x_{\min }<0.5$ is a fixed number, such that $0<f_{x}(1, t)<1,0<t<1$, and such that $0<f_{y}(1, t), 0<t<1$. Additionally, a coating layer is attached located between the first curve $\left\{\left(f_{x}(1, t), f_{y}(1, t)\right): 0 \leq t \leq 1\right\}$ united with the the two straight line segments $\left\{(x, 0): x_{1} \leq x \leq x_{m i n}\right\}$ and $\left\{(x, 0): 1-x_{\text {min }} \leq x \leq x_{2}\right\}$ and a second curve $\left\{\left(f_{x}(2, t), f_{y}(2, t)\right): 0 \leq t \leq 1\right\}$. The last connects

[^9]: \# Grating data:
 trapezoid 60. 0.630 .20 .10 .10 .05

[^10]: ${ }^{15}$ To make it precise, suppose P and Q are the common corner points of the two polygonal curves and that $R_{1}^{1}, R_{2}^{1}, \ldots, R_{m}^{1}$ are the consecutive corner points between P and Q on the first polygonal line and $R_{1}^{2}, R_{2}^{2}, \ldots, R_{n}^{2}$ those on the second polygonal. Then the code requires $m=n$ and that the coating area between the two polygonal lines is the disjoint union of the triangle $P R_{1}^{1} R_{1}^{2}$, the quadrilaterals $R_{1}^{1} R_{2}^{1} R_{2}^{2} R_{1}^{2}$, $\ldots, R_{(m-1)}^{1} R_{m}^{1} R_{m}^{2} R_{(m-1)}^{2}$, and the triangle $R_{m}^{1} Q R_{m}^{2}$.

[^11]: ${ }^{16}$ Of course, the values presented in the Tables 13 are taken from a discrete set of test values, only. Indeed, we have computed only those relative mesh sizes which result from the halving the mesh size strategy realized in the code by switching to higher refinement levels.

[^12]: ${ }^{17}$ Note that the mesh size shown on the screen or in the result files "name.res" after calling the program FEM_FULLINFO and GFEM_FULLINFO are just the h_{r}.
 ${ }^{18}$ Fastest method means the one with the smallest complexity estimate 6.1.

[^13]: ${ }^{19}$ In the case of TE polarization, the phase shift is computed by $p_{n}^{ \pm}=\arg \left[A_{n}^{ \pm} /\left|A_{n}^{ \pm}\right|\right]$. For Tm polarization, there holds $p_{n}^{ \pm}=\arg \left[B_{n}^{ \pm} /\left|B_{n}^{ \pm}\right|\right]$. Finally, in the case of conical diffraction, the phase shift $p_{n}^{l, \pm}$ is that of the corresponding field component presented in the efficiency $e_{n}^{l, \pm}$ in accordance with the chosen output type (cf. Section 2.3). In particular, for output type "3.Com" (first type in Section 2.3) and incidence angle $\phi=0$, the phase shifts of the classical case are computed. In the case of output type "TE/TM" (second type) and incidence angle $\phi=0$, the phase shifts computed by the conical case are either equal to those of the classical or they differ by an angle of $\pm 180^{\circ}$. Equality corresponds to a vector $s_{n}^{ \pm}$equal to the unit vector in the direction of the z coordinate and deviation by $\pm 180^{\circ}$ to $s_{n}^{ \pm}$equal to the unit vector in the direction opposite to the z coordinate.

[^14]: ${ }^{20}$ If no good initial solution is known, then the user can try to find one by a deterministic search algorithm over a tensor product grid of parameter points. In other words, the initial solution of parameter values is the parameter point of the grid at which the objective functional takes its minimum over the finite grid. Instead of a list of initial values the user writes a line like " no $n_{\text {lev }} n_{n m b} 0$ " into the input file. Here $n_{\text {lev }}$ is the discretization level of the FEM method at which the search is to be accomplished. The second number $n_{n m b}$ is the maximal number of grid points in one dimension. This is attained at least in the direction of the longest side of the box domain defined by the upper and lower parameter bounds. If the user adds the input line " no $n_{\text {lev }} n_{n m b} 1$ ", then the minimum search over the grid points is improved by replacing the value of the objective functional at each grid point by the minimum of the linear Taylor approximation taken over a small neighbourhood of the grid point.

[^15]: ${ }^{21}$ First type efficiency means efficiency of the Te part of the mode if the type of the output is set to Te/Tm (second variant of output) and the S-part of the mode if the type of the output is set to Jones (third variant of output in Section 2.3).

[^16]: ${ }^{22}$ The values for c_{n}^{-}and w_{n}^{-}, respectively, are given in a nested loop over the wave length, angle θ, angle ϕ, polarization type, and the index of the mode. The innermost loop is over the n_qua_tr modes. The next is over the m_{t} polarization types, the next over the l_{ϕ} angles ϕ, and the next over the k_{θ} angles θ. Finally, the outermost loop is over the j_{λ} values of the wave length.

[^17]: ${ }^{23}$ Unfortunately, the optimization is interrupted if the width of the first coating layer adjacent to the stack of trapezoids is less than the width of the additional strip automatically added to the Fem domain (cf. Section 3.2). The last width is the sum of two numbers. The first number is the minimum of the height of the lowest trapezoid and of half of the width of the first coating layer. The second number is the period multiplied by the minimum of the meshsize (0.5 to the power of the refinement level) and 0.05 .

[^18]: ${ }^{24}$ If the indexing should be confusing, then the resulting distribution of the materials can be checked entering "OPTIMIZE -i name.dat". With this result a picture like the right in the Figure 31 appears.

[^19]: ${ }^{25}$ Obviously, for the classes in the Sections 10.2 .2 , 10.2 .3 10.2.5 10.2 .6 and 10.2 .7 , there are no additional constraints, i.e., $M=0$. In case of the class of Section 10.2 .4 the M constraints $g_{m}(r) \leq 0$ are the inequalities in Equation 10.7 .

[^20]: ${ }^{26}$ This change of r_{0} and the corresponding change of the subsequent iterates r_{j} before the application of the projection of $P\left[-\nabla f\left(r_{0}\right)\right]$ avoids a lot of unnecessary time consuming tiny iteration steps toward the boundary.

[^21]: ${ }^{27}$ Take heed that a symbol with lower index i denotes the i th component of a vector whereas the same symbol with lower index j denotes the j th iterate of the vector in an iterative process.

