How many infinities are there?
(A) none
(B) one
(C) more than one
(D) infinity

How many infinities are there?

(A) none
(B) one
(C) more than one
(D) infinity

Surya Prajnapti: 7

How many infinities are there?
(A) none
(B) one
(C) more than one
(D) infinity

Georg Cantor

Surya Prajnapti: 7
\Rightarrow Infinity \approx Number

$$
\approx \text { Property of a set }
$$

Assumption 1. Infinite sets exist

How do you count an infinite set?

When are two sets equal in size?

Assumption 2. Two sets are equal in size if all elements can be paired together

\Rightarrow Infinity \approx Number

\Rightarrow Number \approx Property of a set

Assumption 1. Infinite sets exist

0
0
0

0
0

0
0
-
-

0
-
-
-

0

\Rightarrow Infinity \approx Number

\Rightarrow Number \approx Property of a set

Assumption 1. Infinite sets exist

\Rightarrow Infinity \approx Number
\Rightarrow Number \approx Property of a set
Assumption 1. Infinite sets exist

How do you count an infinite set?
\Rightarrow Infinity \approx Number
\Rightarrow Number \approx Property of a set
Assumption 1. Infinite sets exist
\Rightarrow How do you count an infinite set?
\Rightarrow Infinity \approx Number
\Rightarrow Number \approx Property of a set
Assumption 1. Infinite sets exist
\Rightarrow How do youcount an infinite set?
\Rightarrow When are two sets equal in size?
\Rightarrow Infinity \approx Number
\Rightarrow Number \approx Property of a set
Assumption 1. Infinite sets exist
\Rightarrow How do youcount an infinite set?
\Rightarrow When are two sets equal in size?
Assumption 2. Two sets are equal in size if all elements can be paired together

[01]:

\Rightarrow Infinity \approx Number
\Rightarrow Number \approx Property of a set
Assumption 1. Infinite sets exist
\Rightarrow How do youcount an infinite set?
\Rightarrow When are two sets equal in size?
Assumption 2. Two sets are equal in size if all elements can be paired together

Assumption 1. Infinite sets exist

Assumption 2. Two sets are equal in size if all elements can be paired together
set of natural numbers (1, 2, ...)

Assumption 1. Infinite sets exist

Assumption 2. Two sets are equal in size if all elements can be paired together
size of set of natural numbers (1, 2, ...)

Assumption 1. Infinite sets exist

Assumption 2. Two sets are equal in size if all elements can be paired together

An infinite number:
$\aleph_{0}=$ size of set of natural numbers $(1,2, \ldots)$

Assumption 1. Infinite sets exist

Assumption 2. Two sets are equal in size if all elements can be paired together

An infinite number:
$\aleph_{0}=$ size of set of natural numbers $(1,2, \ldots)$
"Aleph-zero"

[012:

\aleph_{0} rooms
\aleph_{0} guests

\aleph_{0} rooms
$\aleph_{0}+1$ guests

[0ा:

\aleph_{0} rooms
$\aleph_{0}+1$ guests

[1014

[TOU:

\aleph_{0} rooms
$2 \times \aleph_{0}$ guests

COT:

\aleph_{0} rooms
$2 \times \aleph_{0}$ guests

\aleph_{0} rooms
$2 \times \aleph_{0}$ guests

[TOIT: FOLC

\aleph_{0} rooms
$2 \times \aleph_{0}$ guests

[TOIT: FOLC

$$
2 \times \aleph_{0}=\aleph_{0}
$$

\aleph_{0} rooms
$2 \times \aleph_{0}$ guests

[OTIT:

\aleph_{0} rooms
2 guests

\aleph_{0} rooms
2×2 guests

\aleph_{0} rooms
$2 \times 2 \times 2$ guests

COT:

\aleph_{0} rooms

$2 \times 2 \times 2 \times \ldots=2^{\aleph_{0}}$ guests
 now

COT:

\aleph_{0} rooms

$$
2 \times 2 \times 2 \times \ldots=2^{\aleph_{0}} \text { guests }
$$

$$
2^{\aleph_{0}}>\aleph_{0}
$$

More weird facts

$2^{\aleph_{0}}>\aleph_{0}$ but how big exactly?
\Rightarrow undecidable!
$2^{x}>x$ true for any x (Cantor)
\Rightarrow there are always "igger infinittes!
The set of all infinities does not exist (Russell)
\Rightarrow there are more than infinite infinities!

More weird facts

$2^{\aleph_{0}}>\aleph_{0}$ but how big exactly?
\rightarrow undecidable!

\Rightarrow there are always bigger infinities! The set of all infinities does not exist (Russell) \Rightarrow there are more than infinite infinities!

More weird facts

$2^{\aleph_{0}}>\aleph_{0}$ but how big exactly?
\rightarrow undecidable!
$2^{x}>x \quad$ true for any x (Cantor)
\Rightarrow there are always bigger infinities!
The set of all infinities does not exist (Russell)
\Rightarrow there are more than infinite infinities!

More weird facts

$2^{\aleph_{0}}>\aleph_{0}$ but how big exactly?
\rightarrow undecidable!
$2^{x}>x$ true for any x (Cantor)
\Rightarrow there are always bigger infinities!

The set of all infinities does not exist (Russell) \Rightarrow there are more than infinite infinities!

More weird facts

$2^{\aleph_{0}}>\aleph_{0}$ but how big exactly?
\rightarrow undecidable!
$2^{x}>x$ true for any x (Cantor)
\Rightarrow there are always bigger infinities!
The set of all infinities does not exist (Russell)

More weird facts

$2^{\aleph_{0}}>\aleph_{0}$ but how big exactly?
\rightarrow undecidable!
$2^{x}>x$ true for any x (Cantor)
\Rightarrow there are always bigger infinities!
The set of all infinities does not exist (Russell)
\Rightarrow there are more than infinite infinities!

Georg Cantor
(1845-1918)

