How many infinities are there?

How many infinities are there?

How many infinities are there?

→ Infinity ≈ Number

• Number \approx Property of a set

Assumption 1. Infinite sets exist

- ➡ How do you count an infinite set?
- → When are two sets equal in size?

- → Infinity ≈ Number
- → Number \approx Property of a set

- How do you count an infinite set?
- ➡ When are two sets equal in size?

- → Infinity ≈ Number
- → Number \approx Property of a set

- How do you count an infinite set?
- ➡ When are two sets equal in size?

- → Infinity ≈ Number
- ➡ Number ≈ Property of a set

➡ How do you count an infinite set?

→ When are two sets equal in size?

- ➡ Infinity ≈ Number
- → Number \approx Property of a set

- ➡ How do you count an infinite set?
- ➡ When are two sets equal in size?

- ➡ Infinity ≈ Number
- ➡ Number ≈ Property of a set

- How do you count an infinite set?
- → When are two sets equal in size?

- ➡ Infinity ≈ Number
- ➡ Number ≈ Property of a set

- How do you count an infinite set?
- → When are two sets equal in size?

- ➡ Infinity ≈ Number
- ➡ Number ≈ Property of a set

- How do you count an infinite set?
- → When are two sets equal in size?

Assumption 2. Two sets are equal in size if all elements can be paired together

An infinite number:

 $\aleph_0 = size of set of natural numbers (1, 2, ...)$

Assumption 2. Two sets are equal in size if all elements can be paired together

An infinite number:

 $\aleph_0 = size of set of natural numbers (1, 2, ...)$

Assumption 2. Two sets are equal in size if all elements can be paired together

An infinite number:

 $\aleph_0 = size of set of natural numbers (1, 2, ...)$

Assumption 2. Two sets are equal in size if all elements can be paired together

An infinite number:

"Aleph-zero"

 \aleph_0 rooms \aleph_0 guests

 \aleph_0 rooms \aleph_0 guests

 \aleph_0 rooms $\aleph_0 + 1$ guests

 \aleph_0 rooms $\aleph_0 + 1$ guests

 \aleph_0 rooms $\aleph_0 + 1$ guests

 \aleph_0 rooms $\aleph_0 + 1$ guests $\aleph_0 + 1 = \aleph_0$

 \aleph_0 rooms

 $\aleph_0 \, \text{ rooms}$

 $leph_0$ rooms

$$2 \times \aleph_0 = \aleph_0$$

 \aleph_0 rooms $2 \times \aleph_0$ guests

 $\aleph_0 \, \text{ rooms}$

2 guests

 $\aleph_0 \text{ rooms}$

 $2\times 2~{\rm guests}$

 $\aleph_0 \text{ rooms}$

 $2 \times 2 \times 2$ guests

 \aleph_0 rooms

 $2 \times 2 \times 2 \times \ldots = 2^{\aleph_0}$ guests

 \aleph_0 rooms

 $2 \times 2 \times 2 \times \ldots = 2^{\aleph_0}$ guests

- $2^{\aleph_0} > \aleph_0$ but how big exactly?
- ➡ undecidable!
- $2^x > x$ true for any x (Cantor)
- ➡ there are always bigger infinities!
- The set of all infinities does not exist (Russell)
- → there are more than infinite infinities!

- $2^{\aleph_0} > \aleph_0$ but how big exactly?
- ➡ undecidable!
- $2^x > x$ true for any x (Cantor)
- ➡ there are always bigger infinities!
- The set of all infinities does not exist (Russell)
- ➡ there are more than infinite infinities!

 $2^{\aleph_0} > \aleph_0$ but how big exactly?

➡ undecidable!

- $2^x > x$ true for any x (Cantor)
- ➡ there are always bigger infinities!
- The set of all infinities does not exist (Russell)
- ➡ there are more than infinite infinities!

 $2^{\aleph_0} > \aleph_0$ but how big exactly?

➡ undecidable!

 $2^x > x$ true for any x (Cantor)

→ there are always bigger infinities!

The set of all infinities does not exist (Russell)

➡ there are more than infinite infinities!

- $2^{\aleph_0} > \aleph_0$ but how big exactly?
- ➡ undecidable!
- $2^x > x$ true for any x (Cantor)
- → there are always bigger infinities!
- The set of all infinities does not exist (Russell)
- → there are more than infinite infinities!

- $2^{\aleph_0} > \aleph_0$ but how big exactly?
- ➡ undecidable!
- $2^x > x$ true for any x (Cantor)
- → there are always bigger infinities!
- The set of all infinities does not exist (Russell)
- → there are more than infinite infinities!

Georg Cantor (1845-1918)