Simulating fMRI data: the R package neuRosim

Marijke Welvaert

Department of Data Analysis
Ghent University

Berlin Workshop on Statistics and Neuroimaging 2011
1 Motivation
 - The need for simulation
 - The need for validated simulation
 - The need for software

2 Features
 - Goals
 - What can you do with neuRosim?
 - How is neuRosim organized?

3 Example
 - Setting up the design
 - Simulating the data
 - Exporting and analyzing the data

4 Summary
Knowing the ground truth in MRI

Outline

Motivation

The need for simulation
The need for validated simulation
The need for software

Features

Goals
What can you do with neuRosim?
How is neuRosim organized?

Example

Setting up the design
Simulating the data
Exporting and analyzing the data

Summary
Knowing the ground truth in fMRI
Reflection in the literature

Web of Science publications/year

Number of publications

Year of publication
fMRI data components

Activation
- experimentally induced
- spontaneous

Known artefacts
- B_0 inhomogeneities
- low-frequency drift

Noise
- system
- movement
- physiological
- task-related
- ...

Spatial and temporal correlations
Typical fMRI simulation studies

1. **hybrid simulation**
 - *known* activation combined with *real* noise
 - e.g. Bianciardi *et al.* (2004), Lange (1999), Weibull *et al.* (2008)

2. **white time series**
 - *known* activation combined with *white* noise
 - i.i.d or AR(1) Gaussian distribution
 - e.g. Lei *et al.* (2010), Lin *et al.* (2010), Purdon & Weisskoff (1998), Smith *et al.* (2011)

3. **other**
 - model-based simulation, Bloch equations, noise based on residuals of real data
Problems - Discrepancies - Shortcomings

- *real* noise may contain undesired activity
- simulated noise = system noise
- beware of the phrase:
 “...simulations under realistic noise conditions...”
- total ignorance of spatial context
- no stand-alone simulations
- often missing (crucial) information while reporting simulation studies
The choice of simulation model matters!

Low CNR

High CNR

Contrast-to-noise ratio

Power

White noise
AR(1) noise
Phys. noise
Real noise
Towards a convergence of simulation methods

- in-house developed software routines, often not available for the community
- language barrier
- no widespread software packages

But...

- POSSUM (FSL)
- DCM simulator (SPM)
- simtb (Matlab Toolbox)
neuRosim wants

- to provide a tool for simulating fMRI data
- to be a base for more validated simulation studies
- to make simulation available for less technical researchers
- to allow maximum flexibility for the useRs
What can you do with neuRosim?

- specify your experimental design based on stimulus onsets and durations
- specify activated regions using an xyz-coordinate system
- simulate BOLD activation with the choice of different models
- simulate resting state activation (still under development)
- simulate fMRI noise originating from different noise sources
- generate fMRI data from 1D time series to 4D volume data
Low-level functions

Building blocks for advanced users who want in-depth control over their simulation data

<table>
<thead>
<tr>
<th>Activation functions</th>
<th>Noise functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>stimfunction()</td>
<td>systemnoise()</td>
</tr>
<tr>
<td>specifydesign()</td>
<td>temporalnoise()</td>
</tr>
<tr>
<td>specifyregion()</td>
<td>spatialnoise()</td>
</tr>
<tr>
<td>canonicalHRF()</td>
<td>lowfreqdrift()</td>
</tr>
<tr>
<td>gammaHRF()</td>
<td>physnoise()</td>
</tr>
<tr>
<td>balloon()</td>
<td>tasknoise()</td>
</tr>
</tbody>
</table>
High-level functions

Direct simulation of fMRI data

Preparation functions
- `simprepTemporal()`
- `simprepSpatial()`

Simulation functions
- `simTSfmri()`
- `simVOLfmri()`
- `simRestingStatefmri()`
Consider the data from a *repetition priming* experiment performed using event-related fMRI (Henson *et al.*, 2002).

- 2 × 2 factorial design
- famous vs non-famous faces
- effect of repetition
Setting up the design (1)

Temporal Parameters

```
R> nscan <- 351
R> TR <- 2
R> total.time <- nscan*TR
R> onsets.N1 <- c( 6.75, 15.75, 18.00, 27.00, 29.25, 31.50,
+ 36.00, 42.75, 65.25, 74.25, 92.25, 112.50, 119.25,
+ 123.75, 126.00, 137.25, 141.75, 144.00, 146.25, 155.25,
+ 159.75, 162.00, 164.25, 204.75, 238.50)*TR
R> onsets.N2 <- c(13.50, 40.50, 47.25, 56.25, 90.00, 94.50,
+ 96.75, 135.00, 148.50, 184.50, 191.25, 202.50, 216.00,
+ 234.00, 236.25, 256.50, 261.00, 281.25, 290.25, 303.75,
+ 310.50, 319.50, 339.75, 342.00)*TR
R> onsets.F1 <- c( 0.00, 2.25, 9.00, 11.25, 22.50, 45.00,
+ 51.75, 60.75, 63.00, 76.50, 78.75, 85.50, 99.00,
+ 101.25, 103.50, 117.00, 130.50, 150.75, 171.00, 189.00,
+ 227.25, 265.50, 283.50, 285.75, 288.00, 344.25)*TR
R> onsets.F2 <- c(33.75, 49.50, 105.75, 153.00, 157.50, 168.75,
+ 177.75, 180.00, 182.25, 198.00, 222.75, 240.75, 254.25,
+ 267.75, 270.00, 274.40, 294.75, 299.25, 301.50, 315.00,
+ 317.25, 326.25, 333.00, 335.25, 337.50, 346.50)*TR
R> onsets <- list(onsets.N1, onsets.N2, onsets.F1, onsets.F2)
R> dur <- list(0, 0, 0, 0)
```
Setting up the design (2)

Spatial parameters

R> region.1A.center <- c(13,13,11)
R> region.1A.radius <- 4
R> region.1B.center <- c(40,18,9)
R> region.1B.radius <- 6
R> region.1C.center <- c(10,45,24)
R> region.1C.radius <- 3
R> region.2.center <- c(15,16,31)
R> region.2.radius <- 5
R> region.3.center <- c(12,16,13)
R> region.3.radius <- 5
R> coord.regions <- list(region.1A.center, region.1B.center,
+ region.1C.center, region.2.center, region.3.center)
R> radius.regions <- c(region.1A.radius,region.1B.radius,
+ region.1C.radius,region.2.radius,region.3.radius)
R> onsets.regions <- list(onsets, onsets, onsets,
+ onsets, onsets)
R> dur.regions <- list(dur, dur, dur, dur, dur)
Setting up the design (3)

Conditions per region

- region 1a-b-c: faces versus baseline
- region 2: non-famous versus famous
- region 3: unfamiliar versus familiar (repetition effect)

Effect sizes

```r
R> region.1a.d <- list(160.46, 140.19, 200.16, 160.69)
R> region.1b.d <- list(140.51, 120.71, 160.55, 120.44)
R> region.1c.d <- list(120.53, 120.74, 140.02, 100.48)
R> region.2.d <- list(-0.24, 10.29, 80.18, 160.24)
R> region.3.d <- list(200.81, 50.04, 240.60, 50.83)
R> effect <- list(region.1a.d, region.1b.d, region.1c.d, + region.2.d, region.3.d)
```
Using the high-level functions of neuRosim

Preparing the spatial and temporal structure

```r
R> design <- simprepTemporal(regions=5,
+   onsets=onsets.regions, durations=dur.regions,
+   hrf="double-gamma", TR=TR, totaltime=total.time,
+   effectsize=effect)
R> spatial <- simprepSpatial(regions=5,
+   coord=coord.regions, radius=radius.regions,
+   form="sphere", fading=0.01)
```

Generating the dataset

```r
R> sim.data <- simVOLfmri(design=design, image=spatial,
+   base=baseline, SNR=3.87, noise="mixture", type="rician",
+   rho.temp=c(0.142,0.108,0.084), rho.spat=0.4,
+   w=c(0.05,0.1,0.01,0.09,0.05,0.7), dim=c(53,63,46),
+   template=baseline.bin, spat="gaussRF")
```
Visual comparison of the data

Real data

Simulated data
I have my simulated data, and now...
Conclusions

neuRosim provides

- fairly fast simulation of time series to 4D fMRI data
- flexibility for the useRs, both advanced and new
- several activation models
- combination of noise sources

Coming up

- guidelines for validated simulation
- more neurobiological models
 (e.g. Drysdale et al., 2010, Sotero et al., 2009)
- complex-valued fMRI data
Thank you for your attention

Thanks to

Yves Rosseel
Joke Durnez
Beatrijs Moerkerke
Geert Verdoolaege

You want to be a useR?

http://cran.r-project.org/web/packages/neuRosim
Marijke.Welvaert@UGent.be

Check out!

Special issue of Journal of Statistical Software: *MRI in R*