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Tunnel Field Effect Transistors (TFETSs) are candidateddexpower logic switches with steep (sub-thermal) slope
which could enable a strongly reduced supply voltage. Dewied circuit simulations of TFETs have shown:a 8
smaller delay-energy product at a supply voltage of 0.35 Mgared to CMOS [1]. To improve the ON/OFF-current
ratio, IlI-V/Si hetero junctions have been proposed [2]ingshanowires has additional advantages: (i) the postibili
of many different material combinations [3], (ii) efficiegtrain relaxation with shrinking diameter [3], (iii) a good
electrostatic control due to the surrounding gate. Sinutatesults of this presentation are based on experimeatal d
by Tomioka et al. [4,5,6] and Bjork et al. [7] who advanced thtegration of InAs nanowires on Si with nanometer-
scale hetero epitaxy.

We show how the combined application of a quantum transpdwes and a TCAD tool can help to understand the
behavior of InAs/Si hetero nanowire Esaki diodes and TFEBslihg to design guidelines for the optimization of
geometry, doping, gating, and biasing. We used the magspaehllel, multi-dimensional, and atomistic quantum
transport simulator OMEN [8] which is based on ddjs* tight-binding representation of the band structure. Quiant
transport simulation can be done either in the Non-equilibtGreens Function (NEGF) formalism, if electron-phonon
scattering must be included, or using the much faster Wawetian formalism in the ballistic case. OMEN has been
applied to direct and phonon-assisted band-to-band tingnBTBT) in InAs, Si, and Ge nanowire homo TFETs [9].
The commercial device simulator Sentaurus-Device [1@rsfizarious local and non-local BTBT models. However,
neither a theory nor an analytical model for BTBT in a hetemciion between a direct and an indirect semiconductor
exist. A practical workaround has to be used with Sentalesgice, since a tunnel path across the hetero interface
must either belong to a direct (zero-phonon) or to a phorasisted tunnel process. Therefore, tdgrfamic nonlocal
path BTBT modé&[11], calibrated for InAs, is also used on the silicon sifited to experimental data of [12], whereas
the calibrated model for Si [13] is also used on the InAs sitkr @roper modifications.

First, the BTBT current of short, unconfined Esaki homo do@&11), 20 nm length, abrupt doping) was simulated
with OMEN for different materials and doping levels. For thieect materials (InAs, GaSb) and for Ge, where coherent
BTBT is dominant [9], the simulation of bulk-like diodes isaightforward. Bulk simulations are needed because of
the absence of geometrical confinement in the fabricatedwia@ TFETS (diameters in the range 25 nm — 100 nm). It
turns out that InAs has the highest BTBT current densitypfeéd by GaSb and Ge. The upper limit for InAs-s

10 MA/cm?. In the case of Si, due to the demanding electron-phononliogyat least one-dimensional confinement
has to be applied. The estimated bulk limit of Si remainswel00 kA/cn?, a factor 500 smaller than that of InAs.
The doping concentrations at the InAs side of InAs/Si naneWwetero Esaki diodes produced at IBM Research-Zurich
[14,15] are determined by reverse modeling. Measured BiAsdnowire TFET Vs characteristics [6] are then
compared with calibrated TCAD simulations. Whereas thesuesal Vs curves show an almost constant slope
over 2-3 orders of magnitude, a very weak ambipolarity, astt@ng saturation of the ON-current for each source-
drain voltage, simulation yields much higher ON-curremsstrong ambipolarity, curved slopes typical for BTBT,
a minimum point slope of 45mV/dec, and no ON-current satomat The most likely explanation of the measured
currents is that they are dominated by defect-assistecetumy(DAT), either during interface or bulk Shockley-Read
Hall generation. Although multi-phonon coupling paramgtef the involved defects in InAs are not known, the
shape of thed V gs curves can be qualitatively reproduced with a physics-¢h&A& model [16] in Sentaurus-Device.
The apparent absence of BTBT in the measurement could beodemrtpressive biaxial strain in the highly lattice
mismatched system.
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