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Introduction Transport equations (Boltzmann, Wigner) on 6-dimensiphalse spaces describe the behavior of charge carriers
in semiconductors and form the basis for Technology CompAiged Design (TCAD) on device level. However, the numeri-
cal solution of these high-dimensional equations involvage matrices which practically limits contemporary dirsglvers to
problems with only one real space dimension. Since the iategerator in the Wigner transport equation (WTE) produfca
matrices, 2-dimensional simulations are only feasibletfier Boltzmann transport equation (BTE) so far. Even for ti&RBhe
simulation of 2D devices calls for coarse meshes and gearaksimplicity which sets limitations to the accuracy ahd prac-
tical application for the new TCAD challenges introducedtbg rapidly increasing importance of 3D devices. By far thestn
established numerical BTE approach is the Spherical Haicadexpansion Method (SHE) which is based on a representatio
of the momentum space in spherical coordinates and an ewppaofthe angular variables in SH. The SH” build a dense
basis inL5 on the sphereV{ c Vi c ..V& c LS, with V¥ = span{Y™ : | = 0,..N;m = —I,...,l}. Any V¥ may be
decomposed a&f = Wk © V&, with Wk L V5. A special property of SH is that the detail spatg4 are spanned by SH
Y, themselves. The SH coefficients only contain the additidatdil information to the orders before and decay quickigile
detail order (typically only 7 orders are necessary to sataikilicon transistors). The SH coefficient size has régéeen used

as an adaptive criterion for a variable order SHE expangnaitie feasibility of 3D SHE simulations have been investidél ].

Multi-Wavelets  All contemporary numerical BTE approaches apply piecewmgnomials (pp) as basis functions. Usually,
they apply piecewise constants (pc) in all dimensions (tH& @pplies pc in the energy and real space directions). Rlgcen
the Discontinuous Galerkin (DG) method for the BTE has bemp@sed[2]. The DG method is flux conserving and is (in
contrast to SHE) stable with high-order pp in real space aradgy directions (hp-stable) and is therefore a promisiteyrsa-
tive. LetV* be the space of all one-dimensional pp of the degree lessitltama uniform mesh (to keep the notation simple)
with 2™ equidistant intervals within0, 1]. By bisecting the mesh, pp build a dense basi&4nand fulfill the nested structure
Vg C V. C VEL C Ly([0,1]). Itis possible to decomposé”, , into V¥ and a perpendicular spag€” which only contains
the additional details of,*, , comparedtd/*: V¥ e Wk = V¥, with V¥ L WP. RecursivelyV,F can be decomposed by detail
spacef = VF o Wk o Wl o ..o Wk . W} is spanned bp!~ 'k detail functions); ; ; which are called Multi-Wavelets
(MWs) (se€[3]) wherel indexes the detail ordef,indexes the vanishing moment order ariddexes the position.

Multi-Wavelet Discontinuous Galerkin Method  Instead of using pg V,* (nodal DG: NDG), the solution of the BTE
could be expanded in tensor products of one-dimensional Mgé (Multi-Wavelet Discontinuous Galerkin method: MWDG)
O(z,y, 2, 14,0,w0) = D1 kL aLJ,K,wa’y’Zwﬁw}iwf (multi-indexesI are used fofl,,7}). x,y,z are the real space coordi-
nates,u is the cosine of the polar angle,is the azimuthal angle and is the energy. Note that a tensor product is only build
within the momentum space and with the real space. Withirréhéspace, unstructured grids are typically necessaryttzand
construction of MWs)™¥>#* on unstructured grids can be done following the procedufd]inA strongly growing community
utilizes the detail and vanishing moment properties of wetedor the adaptive compression for different complexagbems. For
the solution of PDEs, hierarchical bases build the “driviagce” behind modern adaptive solvers and pre-conditisnétow-
ever, of particular interest are the properties of wavedasbr bases. The coefficient decay (as a property of thed datare of
wavelets) is strongly enhanced in multi-dimensional tefsses so that most wavelets can be canceled. This is rkferiees
high-dimensional wavelets compression (HWC) here andllectadaptive sparse grids in literatujig. Preliminary work on
adaptive sparse grids concentrated on FEM formulationoargtalar wavelets rather than on the flux conserving fortimuna
that are necessary for the solution of transport equatifsthermore, in contrast to scalar wavelets, MWs have aitiaddl
vanishing moment hierarchy within each detail to repre$égit order pp and compression leads to some kind of supese&par
grid. This is referred to as vanishing moment compressidd¢y here. Preliminary work on DG and MWs (e.{$i]) use MW
coefficients as adaption criterion, but always keep a futl go that the MWDG and the NDG stay equivalent. MWDG simula-
tions of 1D devices with pc MWs ifir] show that adaptive HWC can compress the basis by about 99 #thelfmore, MWDG
simulations of 1D devices with higher-order polynomial$§hperform significantly better even for uncompressed MWDGttup
96% saving for only 1.4% error in the current) and HWC and VM{ compress the basis by additional 90 %.

Future Work  Even larger compression rates are expected for future futhdiaptive MWDG simulations of 3D devices. A
drawback of MWs is the higher coupling of difference operatmompared to a conventional pp basis which can reduce the ad
vantages of MWs compression. However, the product straaitithe BTE within the momentum space and with the real space
enables (in combination with the corresponding producisbaisove) to decompose the system matrix into a Kronecketyato
M=M,,.®M,® M M,. Utilizing the distributive property enables to calculateatrix vector product without building

up the matrix)/ and with a complexity that scales with the number of unknoamly (undirectional principld9]). Hence, an
iterative solver in combination with a multi-level pre-atitioner make the problem independent of the couplingsiwithe sub-
dimensions. If guantum mechanical effects become impgrtia@ WTE has to be solved. Since the solution of the BTE aad th
WTE stay similar, similar high MW compression rates are etpé for the WTE. MWs are advantageous for the discretiratio
of integral operators such as the Wigner potential, sineentlatrices show a quasi-sparse structure. Additionally,ptoduct
structure of the Wigner potential enables the undirectipriaciple so that 3D MWDG WTE solvers could become feasibltne
future.
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