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Introduction Transport equations (Boltzmann, Wigner) on 6-dimensionalphase spaces describe the behavior of charge carriers
in semiconductors and form the basis for Technology Computer Aided Design (TCAD) on device level. However, the numeri-
cal solution of these high-dimensional equations involveshuge matrices which practically limits contemporary direct solvers to
problems with only one real space dimension. Since the integral operator in the Wigner transport equation (WTE) produces full
matrices, 2-dimensional simulations are only feasible forthe Boltzmann transport equation (BTE) so far. Even for the BTE the
simulation of 2D devices calls for coarse meshes and geometrical simplicity which sets limitations to the accuracy and the prac-
tical application for the new TCAD challenges introduced bythe rapidly increasing importance of 3D devices. By far the most
established numerical BTE approach is the Spherical Harmonics Expansion Method (SHE) which is based on a representation
of the momentum space in spherical coordinates and an expansion of the angular variables in SH. The SHY m
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detail order (typically only 7 orders are necessary to simulate silicon transistors). The SH coefficient size has recently been used
as an adaptive criterion for a variable order SHE expansion and the feasibility of 3D SHE simulations have been investigated[1].
Multi-Wavelets All contemporary numerical BTE approaches apply piecewisepolynomials (pp) as basis functions. Usually,
they apply piecewise constants (pc) in all dimensions (the SHE applies pc in the energy and real space directions). Recently,
the Discontinuous Galerkin (DG) method for the BTE has been proposed[2]. The DG method is flux conserving and is (in
contrast to SHE) stable with high-order pp in real space and energy directions (hp-stable) and is therefore a promising alterna-
tive. LetV k

n be the space of all one-dimensional pp of the degree less thank on a uniform mesh (to keep the notation simple)
with 2n equidistant intervals within[0, 1]. By bisecting the mesh, pp build a dense basis inL2 and fulfill the nested structure
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(MWs) (see[3]) wherel indexes the detail order,j indexes the vanishing moment order andi indexes the position.
Multi-Wavelet Discontinuous Galerkin Method Instead of using pp∈ V k

n (nodal DG: NDG), the solution of the BTEΦ
could be expanded in tensor products of one-dimensional MW bases (Multi-Wavelet Discontinuous Galerkin method: MWDG):
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L (multi-indexesI are used for{l, i, j}). x,y,z are the real space coordi-

nates,µ is the cosine of the polar angle,φ is the azimuthal angle andω is the energy. Note that a tensor product is only build
within the momentum space and with the real space. Within thereal space, unstructured grids are typically necessary andthe
construction of MWsψx,y,z on unstructured grids can be done following the procedure in[4]. A strongly growing community
utilizes the detail and vanishing moment properties of wavelets for the adaptive compression for different complex problems. For
the solution of PDEs, hierarchical bases build the “drivingforce” behind modern adaptive solvers and pre-conditioners. How-
ever, of particular interest are the properties of wavelet tensor bases. The coefficient decay (as a property of the detail nature of
wavelets) is strongly enhanced in multi-dimensional tensor bases so that most wavelets can be canceled. This is referred to as
high-dimensional wavelets compression (HWC) here and is called adaptive sparse grids in literature[5]. Preliminary work on
adaptive sparse grids concentrated on FEM formulations andon scalar wavelets rather than on the flux conserving formulations
that are necessary for the solution of transport equations.Furthermore, in contrast to scalar wavelets, MWs have an additional
vanishing moment hierarchy within each detail to representhigh order pp and compression leads to some kind of super sparse
grid. This is referred to as vanishing moment compression (VMC) here. Preliminary work on DG and MWs (e.g.[6]) use MW
coefficients as adaption criterion, but always keep a full grid so that the MWDG and the NDG stay equivalent. MWDG simula-
tions of 1D devices with pc MWs in[7] show that adaptive HWC can compress the basis by about 99 %. Furthermore, MWDG
simulations of 1D devices with higher-order polynomials in[8] perform significantly better even for uncompressed MWDG (upto
96% saving for only 1.4% error in the current) and HWC and VMC can compress the basis by additional 90 %.
Future Work Even larger compression rates are expected for future full hp-adaptive MWDG simulations of 3D devices. A
drawback of MWs is the higher coupling of difference operators compared to a conventional pp basis which can reduce the ad-
vantages of MWs compression. However, the product structure of the BTE within the momentum space and with the real space
enables (in combination with the corresponding product basis above) to decompose the system matrix into a Kronecker product
M = Mx,y,z ⊗Mµ ⊗Mφ ⊗Mω. Utilizing the distributive property enables to calculatea matrix vector product without building
up the matrixM and with a complexity that scales with the number of unknownsonly (undirectional principle[9]). Hence, an
iterative solver in combination with a multi-level pre-conditioner make the problem independent of the couplings within the sub-
dimensions. If quantum mechanical effects become important, the WTE has to be solved. Since the solution of the BTE and the
WTE stay similar, similar high MW compression rates are expected for the WTE. MWs are advantageous for the discretization
of integral operators such as the Wigner potential, since the matrices show a quasi-sparse structure. Additionally, the product
structure of the Wigner potential enables the undirectional principle so that 3D MWDG WTE solvers could become feasiblein the
future.
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