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Introduction

In archaeometry or geology, the chemical composition 

of oxides of objects is measured, and often the results 

are presented in percentages. Then, so-called 

“compositional data analysis” (Aitchison 1986) should 

be applied as the only one valid statistical analysis.

Nowadays, besides oxides, a much greater number of 

trace elements can be measured by new innovative 

technical equipment. Usually, these measurements are 

in ppm (parts per million) or ppb (parts per billion). 

The question arises: Can we find groups in such 

(mixed) data by applying “usual” statistical clustering?
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Introduction

First, the talk is concerned with finding groups (clusters) 

in (strict) compositional data, that is nonnegative data 

with row sums equal to a constant, usually 1 in case of 

proportions or 100 in case of percentages. 

Without loss of generality, the cluster analysis of 

observations of compositional data is considered, 

where the row profiles contains parts of some whole.  

Distance functions between profiles and appropriate 

clustering methods are recommended. Finally, 

applications to archaeometry are presented. 
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Motivation

In archaeology, the aim of clustering is to find groups in 

data such as proveniences of glass objects or pottery. 

The motivating example is taken from Baxter & Freestone 

(2006) where the complete original data matrix Z is 

published as it is analyzed hereafter. 

Each object is characterized by J = 11 variables, the 

contents of oxides in %. The sum in each row is 100%. 

This dataset of colorless Romano-British vessel glass 

contains two groups. Group 1 consists of 40 cast bowls 

with high amounts of Fe2O3. Group 2 also consists of 40 

objects: this is a collection of facet-cut beakers with low 

Al2O3. 
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Motivation

Log-ratio 

compositional 

data analysis 

(Aitchison 

1986): use X

with elements 

instead of Z, 

where 

is the geometric 

mean of object i.
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Motivation

Log-ratio compositional data analysis produces outliers, see object 

79. Moreover, if one changes the value of Sb2O3 quite slightly, say 

from 0.08 to 0.0008, object 79 “drives” far away in the PCA plot. 
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Motivation

In robust 

statistics, a 

common 

approach is to 

transfer the 

values for every 

variable to their 

rank values. 

PCA plot of 

groups of 

Romano-British 

vessel glass 

based on ranks.
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Motivation

Transformation into ranks solves the problems of different scales, 

skewness, and (univariate) outliers. Alternatives are concave 

transformations such as the logarithmic transformation (see later). 
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Motivation

What happens if one 

applies “usual” 

clustering? Heatmap

of the Euclidean (80 

× 80) distance 

matrix D of the 

vessel glass objects. 

The square of a cell 

is proportional to the 

distance value. 

Both, Ward and k-

means find the true 

classes without 

error.
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Clustering of profiles

Let’s consider a compositional data matrix Z = (zij)

consisting of I rows and J columns (variables). The 

values of each row sums up to a constant c. 

To be general, let us work with the matrix X = (xij) of 

profiles of proportions                 (or                  ). 

Further, let C = { x1, ..., xi, ..., xI } denote the finite set of 

the I observations (shortly: C = { 1, ..., i, ..., I }). 

In order to find groups in compositional data some 

kind of appropriate (dis)similarity measure is needed 

such as the Minkowski distance between profiles 

where p is a real number larger than or equal to 1. 
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Clustering of profiles

The usual task of clustering is finding a partition of C in K

non-empty clusters (subsets) Ck, k = 1,2,...,K. 

The most general model-based Gaussian clustering is 

when the covariance matrix Σk of each cluster k is allowed 

to vary completely. 

Then                                has to minimized, where

is the sample cross-product 

matrix, nk the cardinality, and     the mean profile cluster k.  

Clearly, Wk is singular in the case of compositional data. 

12

 





K

k k

k
kK

n
nV

1

log
W

 T

ki

Ci

kik

k

)()( xxxxW 


 

kx



AG DANK Meeting, Berlin, WIAS      XIX.XI.2016

Clustering of profiles

However, the sum of squares (SS) criterion                          

looks fit for clustering of profiles. 

This is equivalent to minimizing                                        ,       

where                         is the squared 

Euclidean distance. The latter can be generalized to 

,

where Q is diagonal with qjj = qj >0. Examples are 

(to get Chi-squared distance),             

(S: estimate of Σ)

(transformation to mean 1)  …
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Applications to archaeometry

PCA plot of cluster membership of 54 basalt mortars from El-Wad 

based on logarithmic transformed data                       . Ward’s 

hierarchical method is applied. 11 oxides (28 trace elements not used). 
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Applications to archaeometry

Investigation of stability of Ward’s clustering via bootstrap 

resampling technique. The ARI votes for K=2 clusters.
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Applications to archaeometry

Investigation of individual cluster stability of Ward’s clustering. The 

stability of clusters look quite different.
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Introduction

Investigation of 

stability (reliability) of 

cluster membership of 

each observation 

(partial view of the 

table). 
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Summary

Log-ratio compositional data analysis is problematic (zero 

values not allowed, generates outliers, geometric mean 

seems to be inappropriate,…).

The most difficult problems in clustering remain:

model selection (variable selection),

 validation (investigation of stability) of clustering results,

 appropriate data preprocessing such as logarithmic  

transformation (for instance,                     )

Thank you very much for your attention!
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