Flow in a porous visco-elasto-plastic solid.

Bettina Albers ${ }^{(1)}$, Pavel Krejčí ${ }^{(2)}$, and Elisabetta Rocca ${ }^{(3)}$

(1) University of Duisburg-Essen, Germany
(2) Institute of Mathematics, Czech Academy of Sciences, Prague, Czech Republic
(3) WIAS Berlin, Germany

A model for porous media flow with hysteretic pressure-saturation relation involving thermodynamic effects and governed by the system
(1) $\rho_{s} u_{t t}=\operatorname{div}\left(B \nabla_{s} u_{t}+P\left[\nabla_{s} u\right]\right)+\nabla p-\beta \nabla \theta+g$,
(2) $G[p]_{t}=\operatorname{div} u_{t}+\frac{1}{\rho_{L}} \operatorname{div}(\mu(p) \nabla p)$,

$$
\begin{align*}
c_{0} \theta_{t}= & \operatorname{div}(\kappa(\theta) \nabla \theta)+\left\|D_{P}\left[\nabla_{s} u\right]_{t}\right\|_{*}+\left|D_{G}[p]_{t}\right|+B \nabla_{s} u_{t}: \nabla_{s} u_{t}+\frac{1}{\rho_{L}} \mu(p)|\nabla p|^{2} \tag{3}\\
& -\beta \theta \operatorname{div} u_{t},
\end{align*}
$$

has been derived and existence of global strong solutions in 3D for the isothermal case has been proved in [1]. Existence for the full system under suitable hypotheses is proved in [2]. The unknowns are u (displacement of the solid matrix), p (capillary pressure), and θ (absolute temperature). The system contains four hysteresis operators: The degenerate Preisach operator G describing pressure-saturation hysteresis, P describing elastoplastic hysteresis, and the associated dissipation operators D_{P} and D_{G}. The main challenge in the existence proof is related to the degeneracy of G which has been handled by means of a hysteretic version of Moser's iterations.

The permeability μ is assumed to depend only on the pressure. A more realistic case of saturation dependence has been considered [3, 4], but existence results have been obtained only if solid-liquid interaction is neglected and if additional time or space regularizing operators are involved.

References

[1] B. Albers and P. Krejčí, Unsaturated porous media flow with thermomechanical interaction, Math. Meth. Appl. Sci., accepted.
[2] B. Albers, P. Krejčí, and E. Rocca, Solvability of an unsaturated porous media flow problem with thermomechanical interaction, in progress.
[3] F. Bagagiolo and A. Visintin, Hysteresis in filtration through porous media, Z. Anal. Anwendungen 19 (2000), 977-997.
[4] F. Bagagiolo and A. Visintin, Porous media filtration with hysteresis, Adv. Math. Sci. Appl. 14 (2004), 379-403.

