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Microscopic regularizations of ill-posed forward-backward diffusion equations have many
applications and provide dynamical models for diffusive interfaces. Typical examples are
the Cahn-Hilliard equation, the viscous approximations studied in [1, 4], and spatially
discrete gradient systems such as

u̇j = ∆pj , pj = Φ′(uj) , j ∈ Z ,

where ∆ denotes the discrete Laplacian and Φ′ is the bistable derivative of a double-well
potential. While the Cahn-Hilliard case is well understood, very little is known about
the mathematical analysis of viscous or lattice regularizations.

In this talk we choose Φ′ as a trilinear function and demonstrate that the dynamics
of both moving and standing phase interface is intimately related to a family of entropy
inequalities and a hysteretic Stefan condition, see the figure and [2] for a simpler case.
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Figure. Cartoon of the nonlinearity Φ′ and the macroscopic hysteresis loop.

Theorem (macroscopic evolution in the parabolic scaling limit). Identifying

uj(t) = U(τ, ξ) , pj(t) = P (τ, ξ) , τ = ε2t , ξ = εj ,

the limit ε→ 0 for well-prepared single-interface initial data is governed by

∂τU = ∂2
ξP , U = P +M[P ] ,

where the relay operator M acts pointwise in ξ on temporal functions. In particular,
there exists a unique interface curve ξ = ξ∗(τ) which separates space-time regions with
either U ≤ −u∗ or U ≥ +u∗.

The key arguments in the proof are derived by a careful analysis of the lattice ODE and
can informally be summarized as follows (see [3] for the details):

(1) Macroscopic interfaces exist according to a persistence lemma.
(2) The waiting lemma provides an upper bound for the interface speed.
(3) Microscopic phase transitions can be characterized by a slow-fast splitting.
(4) Several fluctuation estimates control the impact of the mesoscopic oscillations.
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