SPONTANEOUS SYMMETRY-BREAKING, OSCILLATION DEATH AND CHIMERA STATES IN DYNAMICAL NETWORKS

Eckehard Schöll
Institut für Theoretische Physik
and
SFB 910 Control of Self-Organizing Nonlinear Systems
Technische Universität Berlin
Germany

http://www.itp.tu-berlin.de/schoell

In collaboration with Anna Zakharova, Marie Kapeller, Isabelle Schneider, Bernold Fiedler
Symmetry-breaking in dynamical networks

- Motivation and introduction to synchronization in networks
- Oscillation death
- Chimera states as coherence-incoherence transitions
- Chimera death: bridging of chimeras and oscillation death

Chimera of Arezzo
400 BC, Nat. Archeol. Museum Florence
My personal history

- 1980s: hysteresis in semiconductor transport

\[
\frac{dn}{dt} = g(n) - r(n)
\]

Springer Series in Synergetics
Vol. 35 (1987)

Russian translation
(1991)
My personal history

- **1990s:** multistability in semiconductor heterostructures

- current density: \(J_{m\rightarrow m+1}(F_m, n_m, n_{m+1}) \)
- continuity eq.: \(\dot{n}_m = \frac{1}{\epsilon} (J_{m-1\rightarrow m} - J_{m\rightarrow m+1}) \)
- Poisson eq.: \(\epsilon_r \epsilon_0 (F_m - F_{m-1}) = e(n_m - N_D) \)
- voltage (global constraint): \(U = \sum_{m=0}^{N} F_m d \)

- \(N_D \): doping density, \(U \): applied voltage, \(e < 0 \)

Prengel, Wacker, Schöll PRB 50, 1704 (1994)
My personal history

- **2000s**: slow-fast neural systems: FitzHugh-Nagumo

With activator u, inhibitor v: $\mathbf{x} = (u, v)^T$

$$F(x) = \left(\frac{1}{\epsilon} \left(u - \frac{u^3}{3} - v \right), u + a \right)$$

- opto-electronic oscillator:

Rosin, Callan, Gauthier, Schöll: EPL 96, 34001 (2011)
My personal history

- **2010s**: networks: multistability of synchronization
 - in-phase synchronization
 - group/cluster synchronization
 - partial synchronization, chimera states, oscillation death
Examples of complex networks

- Brain
- Power grid
- Internet
- Friendships
Complex networks

US power grid
Synchronization in complex networks

- Synchronization and Desynchronization
 - Constructive role for strongly coherent fields:
 - Laser system, ...
 - Synchronization
 - On occasion, undesirable phenomenon:
 - Parkinsonian tremor
 - Swaying motion of London’s Millennium Bridge
 - Desynchronization

Symmetry-breaking in neuronal systems

- Unihemispheric sleep: some birds and dolphins sleep with one half of their brain, while the other half remains awake.

Unihemispheric sleep of bottlenose dolphin (EEG)
B: right,
C: left hemisphere asleep

N.C. Rattenborg et al. / Neuroscience and Biobehavioral Reviews 24 (2000) 817–842
Two different examples of spontaneous symmetry-breaking in dynamical networks:

- Oscillation death
- Chimera states
- Bridging between these two: chimera death
Two different examples of spontaneous symmetry-breaking in dynamical networks:

- Oscillation death

- Chimera states

- Bridging between these two: chimera death
Oscillation death: Suppression of oscillations in coupled oscillators by symmetry-breaking steady state

- Example of coupling which breaks the S^1 symmetry

\[
\begin{align*}
\dot{z}_1 &= (\lambda + i\omega - |z_1|^2) z_1 + \varepsilon (x_2 - x_1) \\
\dot{z}_2 &= (\lambda + i\omega - |z_2|^2) z_2 + \varepsilon (x_1 - x_2)
\end{align*}
\]

Stuart-Landau model

newly created stable inhomogeneous steady state due to coupling of oscillators:

- Morphogenesis: cellular differentiation

Oscillation death: Symmetry-breaking steady st.

- Analytic result: Bifurcation diagram

\[z_+ = \frac{1}{2} (z_1 + z_2), \quad z_- = \frac{1}{2} (z_1 - z_2) \]

Secondary oscillation death

Oscillation death: Symmetry-breaking steady st.

- Delayed coupling can control the threshold for oscillation death

\[
\dot{z}_1 = (\lambda + i \omega - |z_1(t)|^2) \, z_1(t) + \varepsilon \left(x_2(t - \tau) - x_1(t) \right) \\
\dot{z}_2 = (\lambda + i \omega - |z_2(t)|^2) \, z_2(t) + \varepsilon \left(x_1(t - \tau) - x_2(t) \right)
\]

Stuart-Landau model

\[\lambda = 1\]

\[\lambda = 3.5\]

Two different examples of spontaneous symmetry-breaking in dynamical networks:

- Oscillation death
- Chimera states
- Bridging between these two: chimera death
Chimera states in networks of identical oscillators with nonlocal coupling

- Spatially coexisting domains of coherent/phase-locked and incoherent/desynchronized oscillators
- Chimera in **Greek mythology**: fire-breathing monster with three heads: lion’s head, goat’s head, serpent’s head
- Prototype behavior of system on the transition from complete coherence to complete incoherence
- Essential: nonlocal coupling of range \(r \) between local and global coupling
Chimera states in networks of identical phase oscillators

- **Theory:** Kuramoto and Battogtokh 2002
 Abrams and Strogatz 2004
Chimera states in networks of identical oscillators

- **Theory:** Kuramoto and Battogtokh 2002
 Abrams and Strogatz 2004

Experimentally verified only recently (2012 - 2014):

- **Optical experiment:** Spatial light modulator
 Hagerstrom, Murphy, Roy, Hövel, Omelchenko, Schöll, Nature Phys. 8, 658 (2012)

- **Chemical experiment:** Light-sensitive BZ reaction

- **Mechanical experiment:** coupled pendula
 Martens, Thutupalli, Fourriere, Hallatschek, PNAS 110, 10563 (2013)

- **Electronic experiment:** frequency-modulated delay oscillator
 Larger, Penkovsky, Maistrenko, PRL 111, 054103 (2013)

- **Electrochemical experiment:** electro-oxidation of Si
 Schmidt, Schönleber, Krischer, Garcia-Morales, Chaos 24, 013102 (2014)
Networks with nonlocal coupling

Local coupling

Global coupling

Nonlocal (intermediate) coupling

Coupling radius
\[r = \frac{P}{N} \]

\(P \) – number of coupled nearest neighbors
\(N \) – total number of elements in network
Dynamics of networks with nonlocal coupling of range r

\[\dot{X} = F(X) + \frac{\sigma}{2P} (G \otimes H)X \]

$X = (X_1, \ldots, X_N)$ – state vector
F – dynamics of individual element
H – local interaction matrix
G – coupling matrix (network topology)

Here G – circulant matrix with rows
\[(-2P, 1, \ldots, 1, 0, \ldots, 0, 1, \ldots, 1) \]
\[g_{ii} = -2P \]

σ – coupling strength
P – number of coupled neighbors (in each direction)
N – total number of elements

Coupling radius
\[r = P/N \]
Time-discrete maps (logistic map) with step-like coupling function

\[z_i^{t+1} = f(z_i^t) + \frac{\sigma}{2P} \sum_{j=i-P}^{i+P} \left[f(z_j^t) - f(z_i^t) \right] \]

- \(z_i \) - state variables, \(i = 1, \ldots, N \)
- \(P \) - number of coupled nearest neighbors (in each direction)
- \(\sigma \) - coupling strength
- \(N \) - number of elements
- \(t \) - discrete time

Periodic boundary conditions:
\[z_{N+1} = z_1 \]

Local dynamics:
\[f(z) = az(1 - z), \quad a = 3.8 - \text{chaotic} \]

Spatially coherent states

Snapshots:

- $k=0$
- $k=1$
- $k=2$
- $k=3$

Wavevector k

$z_i^t (i = 1, ..., N)$ - coherent on the ring S^1 as $N \to \infty$ if for any point $x \in S^1$

$$\lim_{N \to \infty} \lim_{t \to \infty} \sup_{i,j \in U^N_\delta(x)} |z_i^t - z_j^t| \to 0, \text{ for } \delta \to 0,$$

\longrightarrow scan (σ, r)-plane
Bifurcation diagram

coherence-incoherence tongues:

CIB = Coherence-Incoherence Bifurcation

Bifurcation parameters:

\[r = \frac{P}{N} \] - coupling radius,
\[\sigma \] - coupling strength
Coherence-incoherence transition ($r=0.32$)

Analytical results: critical coupling strength

Continuum limit (large N), period-2 dynamics:

\[z_{1-j}(x) = (1 - \sigma)f(z_j(x)) + \frac{\sigma}{2r} \int_{x-r}^{x+r} f(z_j(y))dy. \]

Transition from coherence to incoherence: Profile becomes discontinuous (infinite slope) at some point \(x \rightarrow \) neglect coupling term

Multiplying the eqs for even and odd time steps:

Assume: \(z_0(x)=z_1(x)=z^* \) at turning points \(x=x_1 \) with fixed point of map \(z^*=f(z^*) \)

\[\sigma_c = 1 - \frac{1}{|f'(z^*)|} \]

Universal result for critical coupling strength \(\sigma_c \)
Application of analytical results:

Logistic map

Logistic map \(f(z) = az(1-z) \), \(f'(z) = a(1-2z) \)

Analytical approximation: \(z_0(x) = z_1(x) = z^* \)
with fixed point of map \(z^* = f(z^*) = 1 - \frac{1}{a} \)

Critical coupling strength

\[
\sigma \approx 1 - \frac{1}{a - 2}
\]

Optical experiment: spatial light modulator

Cosine map \(f(z) = \pi a (1 - \cos z) \), \(f'(z) = \pi a \sin z \)

Analytical approximation: \(z_0(x) = z_1(x) = \phi^* \)
with fixed point of map \(\phi^* = f(\phi^*) = \phi^* \)

Critical coupling strength:

\[
\epsilon_c = 1 - \frac{1}{(\pi a)|\sin \phi^*|}
\]

Good agreement with experiment

Experimental realization

Liquid crystal spatial light modulator

Simulation

\[z_i^{t+1} = az_i^t (1 - z_i^t) \]

Experiment

\[z_i^{t+1} = \pi a (1 - \cos z_i^t) \]

A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll:

Comparison with time-continuous systems

Logistic map

\[z_{i+1} = az_i (1 - z_i) \]

\(a = 3.2 \) (periodic), \(r = 0.1 \)

Rössler model

\[\dot{x}_i = -y_i - z_i \]
\[\dot{y}_i = x_i + ay_i \]
\[\dot{z}_i = b + z_i(x_i - c) \]

\(a = 0.42, b = 2, c = 4, r = 0.3 \)

Structure of coherence–incoherence tongues

Two different examples of spontaneous symmetry-breaking in dynamical networks:

- Oscillation death
- Chimera states
- Bridging between these two: chimera death
Novel phenomenon: Chimera death

- Bridging between chimera states and oscillation death

Coexisting domains of (i) spatially coherent oscillation death
(ii) spatially incoherent oscillation death

\[\dot{z}_j = f(z_j) + \frac{\sigma}{2P} \sum_{k=j-P}^{j+P} (\text{Re}z_k - \text{Re}z_j) \]

Stuart-Landau model coupling breaks S^1 symmetry

- Amplitude chimeras
 P=4

- In-phase synchronization
 P=5

- Chimera death
 P=33

A. Zakharova, M. Kapeller, E. Schöll: PRL 112, 154101 (2014)
Amplitude chimeras

- Spatially incoherent amplitudes, phases are correlated

\[P = 4, \sigma = 14 \]

Snapshots at \(t = 1000 \)

\[\text{center of mass } y_{CoM} = \int_0^T y_i(t) dt / T \]

Distance between the center of mass of each oscillator and the origin

- Incoherent domains:
 displacement of center of mass of oscillations

A. Zakharova, M. Kapeller, E. Schöll: PRL 112, 154101 (2014)
Direct transition from amplitude chimera to chimera death

$\sigma = 26$

P=4: amplitude chimera

P=5: chimera death

- Multicluster-chimera

A. Zakharova, M. Kapeller, E. Schöll: PRL 112, 154101 (2014)
Dynamic regimes

- AC: amplitude chimera (oscillations)
- N-CD: N-cluster chimera death (inhomog. steady state)

Amplitude dynamics - inhomogeneous steady states
Partially coherent spatio-temporal patterns

A. Zakharova, M. Kapeller, E. Schöll: PRL, in print (2014), arXiv1402.0348
Conclusions

Symmetry breaking in nonlocally coupled networks

- Oscillation death: quenching of oscillations by coupling
 -> inhomogeneous steady state

- Chimera states: splitting in spatially coherent + incoherent domain
 Universal mechanism for coherence-incoherence transition via
 chimera states: critical coupling strength
 logistic map, cosine map, Rössler oscillator, optical experiment

- Chimera death: coherence-incoherence
 patterns of inhomogeneous steady states:
 Bridging between chimera states and oscillation death

A. Zakharova, M. Kapeller, E. Schöll: PRL 112, 154101 (2014)
Thanks to my collaborators:
Anna Zakharova Marie Kapeller Isabelle Schneider Bernold Fiedler

Further collaborators:
Iryna Omelchenko, Philipp Hövel, Julien Siebert (TU Berlin)
Yuliya Kyrychko, Kostya Blyuss (University of Sussex, UK)
Yuri Maistrenko (Kiev)
Oleh Omel‘chenko (WIAS Berlin)
Aaron Hagerstrom (Univ of Maryland, USA)
Thomas Murphy (Univ. of Maryland, USA)
Rajarshi Roy (Univ. of Maryland, USA)

Thank you!