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Hysteresis-Delay Differential equations

u̇(t) = Au + kH(u)(t) + B[u(t − T )− u(t)] a.e for t ≥ 0

u(t) = ϕ(t) a.e for t ∈ [−T , 0]
u(0+) = v

where Initial Conditions for (ϕ, v) ∈ (L2(−T , 0))N × RN

Hysteresis: nonideal relay

u(t) ∈ Rn.

u ∈ L2(−T ,∞))N ∩H1(0,∞))N .

Solution becomes piecewise smoother with time.
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Hysteresis-Delay Differential equations

u̇(t) = Au + kH(u)(t) + B[u(t − T )− u(t)] a.e for t ≥ 0
u(t) = ϕ(t) a.e for t ∈ [−T , 0]
u(0+) = v

We study orbital stability of a given periodic solution of
period T in the (L2(−T , 0))N × RN space.

Infinite dimensional problem due to the delay.

Main result: finite dimensional reduction

Reduce the question of stability of periodic solutions to a finite
dimensional eigenvalue problem.

Stabilization 3D systems

Sufficient conditions under which an unstable 3D system can be
stabilized.
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Application: thermal control

Reactor - Q ⊂ Rm

Temperature - u(x , t)
Density of sensors - m(x)
Density of heating elements - K (x)

ut = ∆u, x ∈ Q ⊂ Rm bounded
u(x , 0) = φ(x)
∂u
∂ν = K (x)H(û)(t) on ∂Q,

where û(t) =
∫
Q m(x)u(x , t)dx is the mean temperature.

Goal: Study stability of periodic solutions.
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where û(t) =
∫
Q m(x)u(x , t)dx is the mean temperature.

Goal: Study stability of periodic solutions.

Eyal Ron Differential Equations with Hysteresis and Delay



Application: thermal control

Reactor - Q ⊂ Rm

Temperature - u(x , t)
Density of sensors - m(x)
Density of heating elements - K (x)

ut = ∆u, x ∈ Q ⊂ Rm bounded
u(x , 0) = φ(x)
∂u
∂ν = K (x)H(û)(t) on ∂Q,
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where û(t) =
∫
Q m(x)u(x , t)dx is the mean temperature.

Goal: Study stability of periodic solutions.

Eyal Ron Differential Equations with Hysteresis and Delay



Application: thermal control

Reactor - Q ⊂ Rm

Temperature - u(x , t)
Density of sensors - m(x)
Density of heating elements - K (x)

ut = ∆u, x ∈ Q ⊂ Rm bounded
u(x , 0) = φ(x)
∂u
∂ν = K (x)H(û)(t) on ∂Q,
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History Survey

Problem suggested by Glashoff and Sprekels [1981, 1982].

Pruess [1985], Friedman, L.-S. Jiang [1988]. Dimension 1:
periodicty.

Kopfová, Kopf [2002]. Compared thermal control with
hysteresis to ODE with delay in the hysteresis: H(û)(t − T ).

Gurevich [2011] and Gurevich and Tikhomirov [2012]:
periodicity at higher dimensions. Existence of stable and
unstable periodic solutions.
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Delayed Feedback Control (Pyragas Control)

u̇(t) = f (u(t))

up(t) is a solution with minimal period T > 0:
up(t + T ) = up(t).

Pyragas [1992] Delayed feedback control:
u̇(t) = f (u(t)) + b(u(t − T )− u(t)).

up(t)− up(t − T ) = 0

Why does it work? Geometrically:
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Thermal control with Pyragas Control

Thermal control problem

ut = ∆u x ∈ Q
u(x , 0) = φ(x)
∂u
∂ν = K (x)H(û)(t) x ∈ ∂Q.

Is turned into

ut = ∆u x ∈ Q
u(x , 0) = φ(x)
∂u
∂ν = K (x)H(û)(t) + b(x)(û(t)− û(t − T )) x ∈ ∂Q,

where û(t) =
∫
Q m(x)u(x , t)dx

Fourier decomposition: reduction to infinite dimensional ODE.

If the sensor density m(x) has a finite number of nonzero
modes, then reduction to a finite dimensional ODE.
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where û(t) =
∫
Q m(x)u(x , t)dx

Fourier decomposition: reduction to infinite dimensional ODE.

If the sensor density m(x) has a finite number of nonzero
modes, then reduction to a finite dimensional ODE.

Eyal Ron Differential Equations with Hysteresis and Delay



Dimension Reduction: Poincaré Map

u̇(t) = Au + kH(u)(t) + B[u(t − T )− u(t)] a.e for t ≥ 0
u(t) = ϕ(t) a.e for t ∈ [−T , 0]
u(0+) = v

Figure : Poincaré without delay Figure : Poincaré with delay
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP = F + V

F is a finite rank operator, i.e., Range(F) is finite dimensional.

V is a volterra operator (in N-dimensions!)

V has only the eiganvalue 0 at its spectrum.

DP is a compact operator, whose spectrum has only
eigenvalues.
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP = F + V,

Dimension Reduction

λ 6= 0 is an eigenvalue if and only if there is a ξ such that
(λI − V − F )ξ = 0.

Let ρ = (λI − V )ξ ⇒ ξ = (λI − V )−1ρ.

Then

0 = (λI − V − F )(λI − V )−1ρ = (I − F (λI − V )−1)ρ

nonzero λ is an eigenvalue of DP if and only if the finite rank
operator (I − F (λI − V )−1)ρ has a non-trivial kernel.
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DP = F + V,

Dimension Reduction

λ 6= 0 is an eigenvalue if and only if there is a ξ such that
(λI − V − F )ξ = 0.

Let ρ = (λI − V )ξ ⇒ ξ = (λI − V )−1ρ.

Then

0 = (λI − V − F )(λI − V )−1ρ = (I − F (λI − V )−1)ρ

nonzero λ is an eigenvalue of DP if and only if the finite rank
operator (I − F (λI − V )−1)ρ has a non-trivial kernel.

Eyal Ron Differential Equations with Hysteresis and Delay



Dimension Reduction: Analyzing Poincaré Map
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DP = F + V,

Dimension Reduction

λ 6= 0 is an eigenvalue if and only if there is a ξ such that
(λI − V − F )ξ = 0.

Let ρ = (λI − V )ξ ⇒ ξ = (λI − V )−1ρ.

Then

0 = (λI − V − F )(λI − V )−1ρ = (I − F (λI − V )−1)ρ

nonzero λ is an eigenvalue of DP if and only if the finite rank
operator (I − F (λI − V )−1)ρ has a non-trivial kernel.

Eyal Ron Differential Equations with Hysteresis and Delay



Stabilization: 3D Example

Stabilizing a 3D example from Gurevich and Tikhomirov.

m: control parameter of the original system
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Stabilization: 3D Example

Stabilizing a 3D example from Gurevich and Tikhomirov.

m: control parameter of the original system

b: pyragas control parameter.

J: a polynomial, achieved from the finite rank operator.

A complex λ = λ1 + iλ2 is an eigenvalue of the Poincaré map
if and only if

J(b,m, λ1, λ2) = J1(b,m, λ1, λ2) + iJ2(b,m, λ1, λ2) = 0,
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A complex λ = λ1 + iλ2 is an eigenvalue of the Poincaré map
if and only if

J(b,m, λ1, λ2) = J1(b,m, λ1, λ2) + iJ2(b,m, λ1, λ2) = 0,
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Stabilization: 3D Example

For b = 0 (no delay):

Want (b 6= 0):
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Stabilization: 3D Example

λ2 =
√

1− λ2
1

J∗(b,m, λ1) := J(b,m, λ1,
√

1− λ2
1).

Condition 1: detD(b,λ1)J
∗ 6= 0.

r = λ2
1 + λ2

2

J∗∗(b, r , λ1) := J(b, c , λ1,
√

r − λ2
1).

Condition 2: detD(b,λ1)J
∗∗ 6= 0.
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Thank you!

Thank you for your attention!
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