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u(t) = Au+ kH(u)(t) + Blu(t — T) — u(t)] a.efort >0
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where Initial Conditions for (¢, v) € (IL2(—T,0))N x RV
Hysteresis: nonideal relay

H
1

=

a
A

hysteresis gap
e u(t) e R™.
o uecl?(—T,o00))N NH(0,00))N.
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Hysteresis-Delay Differential equations

u(t) = Au+ kH(u)(t) + Blu(t — T) — u(t)] a.efort >0
u(t) = ¢(t) a.efort € [-T,0]
u(0+)=v

where Initial Conditions for (¢, v) € (IL2(—T,0))N x RV
Hysteresis: nonideal relay
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o uecl?(—T,o00))N NH(0,00))N.
@ Solution becomes piecewise smoother with time.
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@ We study orbital stability of a given periodic solution of
period T in the (L?(—T,0))N x RN space.
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Hysteresis-Delay Differential equations

u(t) = Au+ kH(u)(t) + Blu(t — T) — u(t)] a.efort >0
u(t) = ¢(t) a.efor t € [-T,0]
u(0+) =v

@ We study orbital stability of a given periodic solution of
period T in the (L?(—T,0))N x RN space.
@ Infinite dimensional problem due to the delay.

Main result: finite dimensional reduction

Reduce the question of stability of periodic solutions to a finite
dimensional eigenvalue problem.
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Hysteresis-Delay Differential equations

u(t) = Au+ kH(u)(t) + Blu(t — T) — u(t)] a.efort >0
u(t) = ¢(t) a.efor t € [-T,0]
u(0+) =v

@ We study orbital stability of a given periodic solution of
period T in the (L?(—T,0))N x RN space.
@ Infinite dimensional problem due to the delay.

Main result: finite dimensional reduction

Reduce the question of stability of periodic solutions to a finite
dimensional eigenvalue problem.

| \

Stabilization 3D systems

Sufficient conditions under which an unstable 3D system can be
stabilized.
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Application: thermal control

heating
elements Reactor - Q C R™

Temperature - u(x, t)
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thermal
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ur = Au, x € Q@ C R™ bounded
u(x,0) = ¢(x)
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Application: thermal control

heating
elements Reactor - Q C R™

Temperature - u(x, t)
Density of sensors - m(x)
Density of heating elements - K(x)

=

thermal
SEeNnsors
ur = Au, x € Q@ C R™ bounded !
u(x,0) = ¢(x) /
54 = K(x)H(#)(t) on 9Q, 5 8
-1

hysteresis gap
where &(t) = [, m(x)u(x, t)dx is the mean temperature.
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Application: thermal control

heating
elements Reactor - Q C R™

Temperature - u(x, t)
Density of sensors - m(x)
Density of heating elements - K(x)

thermal
SEeNnsors
ur = Au, x € Q@ C R™ bounded !
u(x,0) = ¢(x) /

=

54 = K(x)H(#)(t) on 9Q, 5

-1
hysteresis gap

where &(t) = [, m(x)u(x, t)dx is the mean temperature.

Goal: Study stability of periodic solutions.
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@ Problem suggested by Glashoff and Sprekels [1981, 1982].
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History Survey

@ Problem suggested by Glashoff and Sprekels [1981, 1982].

o Pruess [1985], Friedman, L.-S. Jiang [1988]. Dimension 1:
periodicty.
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e Kopfova, Kopf [2002]. Compared thermal control with
hysteresis to ODE with delay in the hysteresis: H(&)(t — T).

Eyal Ron Differential Equations with Hysteresis and Delay



History Survey

@ Problem suggested by Glashoff and Sprekels [1981, 1982].

o Pruess [1985], Friedman, L.-S. Jiang [1988]. Dimension 1:
periodicty.

e Kopfova, Kopf [2002]. Compared thermal control with
hysteresis to ODE with delay in the hysteresis: H(&)(t — T).

@ Gurevich [2011] and Gurevich and Tikhomirov [2012]:
periodicity at higher dimensions. Existence of stable and
unstable periodic solutions.
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Delayed Feedback Control (Pyragas Control)

o u(t) = f(u(t))
@ up(t) is a solution with minimal period T > 0:
up(t + T) = up(t).
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Delayed Feedback Control (Pyragas Control)

o u(t) = f(u(t))

@ up(t) is a solution with minimal period T > 0:
up(t + T) = up(t).

e Pyragas [1992] Delayed feedback control:
u(t) = f(u(t)) + bu(t — T) — u(t)).
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o u(t) = f(u(t))

@ up(t) is a solution with minimal period T > 0:
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Delayed Feedback Control (Pyragas Control)

o u(t) = f(u(t))

@ up(t) is a solution with minimal period T > 0:
up(t + T) = up(t).

e Pyragas [1992] Delayed feedback control:
u(t) = f(u(t)) + bu(t — T) — u(t)).

° up(t) —up(t—T)=0

Why does it work? Geometrically:

g
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Thermal control with Pyragas Control

Thermal control problem

u=Au xeQ
u(x,0) = ¢(x)
= K(x)H(2)(t) x € 9Q.

du
ov
Is turned into

uy=Au xeQ
u(x,0) = ¢(x)
84 = K(x)H(a)(t) + b(x)(a(t) — o(t = T)) x € dQ,

where &(t) = [ m(x)u(x, t)dx
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Thermal control with Pyragas Control

Thermal control problem

u=Au xeQ
u(x,0) = ¢(x)
% = K(x)H(2)(t) x € 9Q.

Is turned into

uy=Au xeQ
u(x,0) = ¢(x)
84 = K(x)H(a)(t) + b(x)(a(t) — o(t = T)) x € dQ,

where &(t) = [ m(x)u(x, t)dx

v

@ Fourier decomposition: reduction to infinite dimensional ODE.
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Thermal control with Pyragas Control

Thermal control problem

u=Au xeQ
u(x,0) = ¢(x)
% = K(x)H(2)(t) x € 9Q.

Is turned into

uy=Au xeQ
u(x,0) = ¢(x)
84 = K(x)H(a)(t) + b(x)(a(t) — o(t = T)) x € dQ,

where &(t) = [ m(x)u(x, t)dx

@ Fourier decomposition: reduction to infinite dimensional ODE.
o If the sensor density m(x) has a finite number of nonzero
modes, then reduction to a finite dimensional ODE.
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Dimension Reduction: Poincaré Map

u(t) = Au+ kH(u)(t) + Blu(t — T) — u(t)] a.efort >0
u(t) = p(t) a.efort € [-T,0]
u(0+)=v
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Dimension Reduction: Poincaré Map

u(t) = Au+ kH(u)(t) + Blu(t — T) — u(t)] a.efort >0
u(t) = p(t) a.efort € [-T,0]
u(0+)=v

Figure : Poincaré without delay
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u(t) = Au+ kH(u)(t) + Blu(t — T) — u(t)] a.efort >0
u(t) = p(t) a.efort € [-T,0]
u(0+)=v

Figure : Poincaré without delay Figure : Poincaré with delay
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP =F+V
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP =F+V

e F is a finite rank operator, i.e., Range(F) is finite dimensional.
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP =F+V

e F is a finite rank operator, i.e., Range(F) is finite dimensional.

@ V is a volterra operator (in N-dimensions!)
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP =F+V

e F is a finite rank operator, i.e., Range(F) is finite dimensional.

@ V is a volterra operator (in N-dimensions!)

@ V has only the eiganvalue 0 at its spectrum.
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP =F+V

e F is a finite rank operator, i.e., Range(F) is finite dimensional.
@ V is a volterra operator (in N-dimensions!)
@ V has only the eiganvalue 0 at its spectrum.

@ DP is a compact operator, whose spectrum has only
eigenvalues.
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP=F+V,

Dimension Reduction
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP=F+V,

Dimension Reduction

@ )\ # 0 is an eigenvalue if and only if there is a £ such that
(M -V —-F)=0.
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP=F+V,

Dimension Reduction

@ )\ # 0 is an eigenvalue if and only if there is a £ such that
(M -V —-F)=0.

oletp=\—-V)=|&=(\—V)1p
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP=F+V,

Dimension Reduction
@ )\ # 0 is an eigenvalue if and only if there is a £ such that
(M -V —-F)=0.
oletp=\—-V)=|&=(\—V)1p
@ Then

0=MN-V-F) W\ -=V)o=(U-FX\ -V
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Dimension Reduction: Analyzing Poincaré Map

Derivative of Poincaré map has the form:

DP=F+V,

Dimension Reduction
@ )\ # 0 is an eigenvalue if and only if there is a £ such that
(M -V —-F)=0.
oletp=\—-V)=|&=(\—V)1p
@ Then

0=MN-V-F) W\ -=V)o=(U-FX\ -V

nonzero A is an eigenvalue of DP if and only if the finite rank
operator (I — F(Al — V)™1)p has a non-trivial kernel.
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Stabilizing a 3D example from Gurevich and Tikhomirov.
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Stabilization: 3D Example

Stabilizing a 3D example from Gurevich and Tikhomirov.

@ m: control parameter of the original system
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Stabilization: 3D Example

Stabilizing a 3D example from Gurevich and Tikhomirov.

@ m: control parameter of the original system

ImA

b=0

m<C

Eyal Ron

Differential Equations with Hysteresis and Delay



Stabilization: 3D Example

Stabilizing a 3D example from Gurevich and Tikhomirov.

@ m: control parameter of the original system

ImA b=0 ImA b=0

m<C m>C
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Stabilization: 3D Example

Stabilizing a 3D example from Gurevich and Tikhomirov.

@ m: control parameter of the original system

ImA

b=0
m>C

b=0

m<C

ImA
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Stabilization: 3D Example

Stabilizing a 3D example from Gurevich and Tikhomirov.
@ m: control parameter of the original system

@ b: pyragas control parameter.
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Stabilization: 3D Example

Stabilizing a 3D example from Gurevich and Tikhomirov.
@ m: control parameter of the original system
@ b: pyragas control parameter.

@ J: a polynomial, achieved from the finite rank operator.
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Stabilization: 3D Example

Stabilizing a 3D example from Gurevich and Tikhomirov.
@ m: control parameter of the original system
@ b: pyragas control parameter.
@ J: a polynomial, achieved from the finite rank operator.

@ A complex A = A1 4+ i)y is an eigenvalue of the Poincaré map
if and only if

J(b, m, A1, X2) = J1(b, m, A1, \2) + iJa(b, m, A1, A2) =0,
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For b =0 (no delay):

b=0

m<C
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Stabilization: 3D Example

/’/ | S [b=0
Ay | h2= 1o
b / J*(b, m, )\1) = J(b,m A1, 4/1 — )\%)

Mg, 1 S Condition 1: det Dy, 5,)J* # 0.
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Stabilization: 3D Example

ImA
s 7 ‘\ b=0
s/, \ \ “m:C )\2 _ /1 _ )\%
) JH(b,m, AL) := J(b,m, Ay, /1 — A2).
N | Condition 1: det Dyp,)J* # 0.
~._b=0
b>0 \
6} Rer
ooy
.\/y’/'
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Stabilization: 3D Example

Imx
b>0
_
*
pd e |b=0
/ \ |mec
} .gm | ReA
[ oofee I
C/
ImA
m=C
s . b=0
b>0 \
K:‘ b ReA
. y
o\ /
/’/

Ay = /1= A2
J*(b, m, A1) := J(b,m, A1, /1 — A2).

Condition 1: det Dy, 5,)J* # 0.

r=2%+ A3
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Stabilization: 3D Example

Imx
b>0
_
*
e e |b=0
/ \ |m=C
}‘ .:m ReA
[ oofe I
C/
ImA
m=C
. b=0
b>0 \
K:‘ b ReA
oo y
~ /
){

Ay =4/1— X2
J*(b,m,AY) == J(b,m, A1, /1 — A2).

Condition 1: det Dy, 5,)J* # 0.

r=2%+ A3

J*(b,r, A1) = J(b, ¢, A1, /1 — A2).
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Stabilization: 3D Example

‘m:C )\2 _ ﬂ
e—r= J*(b, m, A1) := J(b,m, A1, /1 — A2).

vy Condition 1: det Dy, 5,)J* # 0.
_b=0
P
b>:) r = )\% ‘l‘ )\%
Gy— J*(b, r, A1) i= J(b, c, A1, /1 — A2).
‘)

Condition 2: det Dy, 5,)J** # 0.
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Thank you for your attention!
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