Weierstrass Institute for Applied Analysis and Stochastics

Effective model for a reaction-diffusion system in strongly heterogeneous media

Sina Reichelt, jointly with Alexander Mielke and Marita Thomas

1 Set-up of the original, macroscopic model

2 Two-scale convergence

3 Existing results

4 Deriving the effective model

1 Set-up of the original, macroscopic model

2 Two-scale convergence

3 Existing results

4 Deriving the effective model

Given: original, macroscopic model depending on $\varepsilon=\frac{\text { micro-length }}{\text { macr-ength }} \ll 1$

$$
\begin{align*}
\dot{u}_{\varepsilon} & =\operatorname{div}\left(D_{1}^{\varepsilon} \nabla u_{\varepsilon}\right)+F_{1}^{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right) \\
\dot{v}_{\varepsilon} & =\operatorname{div}\left(\varepsilon^{2} D_{2}^{\varepsilon} \nabla v_{\varepsilon}\right)+F_{2}^{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right)
\end{align*} \quad \text { in }[0, T] \times \Omega
$$

Difficulty: Coupling via nonlinear reaction terms + slow diffusion (degeneracy) in v_{ε}-equation

> Model with ε-periodic microstructure $\left(P_{\varepsilon}\right)$.

E.g. $D_{i}^{\varepsilon}(x):=D_{i}\left(x, \frac{x}{\varepsilon}\right)$ $F_{i}^{\varepsilon}(x, u, v):=F_{i}\left(x, \frac{x}{\varepsilon}, u, v\right)$ (periodic in $y=\frac{x}{\varepsilon}, i=1,2$)

1 Set-up of the original, macroscopic model

2 Two-scale convergence

3 Existing results

4 Deriving the effective model

Definition [Nguetseng'89, Allaire'92]

We say $u_{\varepsilon} \rightharpoonup U$ in the two-scale sense, if

$$
\int_{\Omega} u_{\varepsilon}(x) \Phi\left(x, \frac{x}{\varepsilon}\right) \mathrm{d} x \rightarrow \int_{\Omega \times Y} U(x, y) \Phi(x, y) \mathrm{d} x \mathrm{~d} y \quad \text { for all } \Phi \in C_{c}^{\infty}\left(\Omega \times Y_{\text {per }}\right)
$$

- This is a weak convergence.

■ Nonlinearity requires strong convergence.
■ Strong two-scale convergence formulation via periodic unfolding operator $\mathcal{T}_{\varepsilon}$.

Notation:
$\Omega \subset \mathbb{R}^{d}:$ macroscopic domain
Λ : lattice in \mathbb{R}^{d}
$Y=(0,1)^{d}$: unit-cell
$Y_{\text {per }}=\mathbb{R}^{d} / \Lambda$: torus

We decompose every point $x \in \mathbb{R}^{d}$ as follows

$$
x=\mathcal{N}_{\varepsilon}(x)+\varepsilon y,
$$

where $y \in Y$ and $\mathcal{N}_{\varepsilon}(x)=\varepsilon\left[\frac{x}{\varepsilon}\right]$ is the closest lattice point to x (node of lattice Λ).

The periodic unfolding operator $\mathcal{T}_{\varepsilon}: L^{2}(\Omega) \rightarrow L^{2}\left(\Omega \times Y_{\text {per }}\right)$ is defined via

$$
\left(\mathcal{T}_{\varepsilon} u\right)(x, y)=u\left(\mathcal{N}_{\varepsilon}(x)+\varepsilon y\right) . \quad \text { [Cioranescu/Damlamian/Griso'02] }
$$

$$
\left(\mathcal{T}_{\varepsilon} u\right)(x, y)=u\left(\mathcal{N}_{\varepsilon}(x)+\varepsilon y\right)
$$

Example 1: micro-macro decomposition
■ $\Omega=(0,2 \pi), Y=(0,1)$, and $\Lambda=\left\{\ldots,-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \ldots\right\}$

- $u(x)=\sin (x)$
$\square\left(\mathcal{T}_{\varepsilon} u\right)(x, y)=\sin \left(\mathcal{N}_{\varepsilon}(x)+\varepsilon y\right) \rightarrow \sin (x)$

No gain in using periodic unfolding, if $u_{\varepsilon} \rightarrow u$!

Example 2: benefit of periodic unfolding in periodic case
$\square \Omega=Y=(0,1), \Lambda=\left\{\ldots,-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \ldots\right\}$

- $u_{\varepsilon}(x)=\sin \left(2 \pi \frac{x}{\varepsilon}\right)$

■ $u_{\varepsilon} \rightharpoonup 0$ in $L^{2}(\Omega)$, but $u_{\varepsilon} \nrightarrow 0$ in $L^{2}(\Omega)$
$\square\left(\mathcal{T}_{\varepsilon} u_{\varepsilon}\right)(x, y)=\sin \left(2 \pi \frac{\mathcal{N}_{\varepsilon}(x)+\varepsilon y}{\varepsilon}\right)=\sin (2 \pi y)$

Definition (weak and strong two-scale convergence) [Mielke/Timotte' 07 , Visintin'04'06]

Let $\left(u_{\varepsilon}\right)_{\varepsilon>0}$ be a sequence in $L^{2}(\Omega)$.

$$
\begin{array}{lll}
u_{\varepsilon} \xrightarrow{2 \mathrm{w}} U \text { in } L^{2}\left(\Omega \times Y_{\text {per }}\right) & : \stackrel{\text { Def }}{\Longrightarrow} & \mathcal{T}_{\varepsilon} u_{\varepsilon} \rightharpoonup U \text { in } L^{2}\left(\Omega \times Y_{\text {per }}\right) \\
u_{\varepsilon} \xrightarrow{2 \mathrm{~s}} U \text { in } L^{2}\left(\Omega \times Y_{\text {per }}\right) & : \Longleftrightarrow & \mathcal{T}_{\varepsilon} u_{\varepsilon} \rightarrow U
\end{array} \text { in } L^{2}\left(\Omega \times Y_{\text {per }}\right)
$$

In Example 2: $\mathcal{T}_{\varepsilon} u_{\varepsilon} \xrightarrow{2 \mathrm{~s}} U$, where $U(x, y)=\sin (2 \pi y)$

Strong two-scale convergence of (ε-periodic) oscillations

$$
\Psi: \Omega \times Y_{\text {per }} \rightarrow \mathbb{R} \text { suff. smooth, } \quad \psi_{\varepsilon}(x):=\Psi\left(x, \frac{x}{\varepsilon}\right) \quad \Longrightarrow \quad \psi_{\varepsilon} \xrightarrow{2 \mathrm{~s}} \Psi
$$

Example 3: two-scale limit is Y-periodic
$\square \Omega=Y=(0,1), \Lambda=\left\{\ldots,-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \ldots\right\}$

- $u_{\varepsilon}(x)=\sin \left(2 \pi \frac{x}{\varepsilon}\right)+4 x$
$\square\left(\mathcal{T}_{\varepsilon} u_{\varepsilon}\right)(x, y)=\sin (2 \pi y)+4\left(\mathcal{N}_{\varepsilon}(x)+\varepsilon y\right)$ is not Y-periodic

$$
\varepsilon=0.5
$$

$\varepsilon=0.25$

$\varepsilon=0.1$

■ Limit $\lim _{\varepsilon \rightarrow 0}\left(\mathcal{T}_{\varepsilon} u_{\varepsilon}\right)(x, y)=\sin (2 \pi y)+4 x$ is Y-periodic

We call this $\mathcal{T}_{\varepsilon}$-property of recovered periodicity: for $u_{\varepsilon} \in H^{1}(\Omega): \mathcal{T}_{\varepsilon} u_{\varepsilon} \in L^{2}\left(\Omega ; H^{1}(Y)\right)$, but $\lim _{\varepsilon \rightarrow 0} \mathcal{T}_{\varepsilon} u_{\varepsilon} \in L^{2}\left(\Omega ; H^{1}\left(Y_{\text {per }}\right)\right)$

1 Set-up of the original, macroscopic model

2 Two-scale convergence

3 Existing results

4 Deriving the effective model

$$
\begin{array}{rlr}
\dot{u}_{\varepsilon}= & \operatorname{div}\left(D_{1}^{\varepsilon} \nabla u_{\varepsilon}\right)+F_{1}^{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right) & \text { in }[0, T] \times \Omega \\
\dot{v}_{\varepsilon}= & \operatorname{div}\left(\varepsilon^{2} D_{2}^{\varepsilon} \nabla v_{\varepsilon}\right)+F_{2}^{\varepsilon}\left(u_{\varepsilon}, v_{\varepsilon}\right) & \\
& + \text { homog. Neumann bound. cond. on } \partial \Omega &
\end{array}
$$

Solutions of $\left(P_{\varepsilon}\right)$:

- $u_{\varepsilon}:[0, T] \times \Omega \rightarrow \mathbb{R}$ "classically" diffusing variable

■ $v_{\varepsilon}:[0, T] \times \Omega \rightarrow \mathbb{R}$ slowly diffusing variable

Assumptions on the given data ($i=1,2$):
■ $D_{i}^{\varepsilon}: \Omega \rightarrow \mathbb{R}^{d \times d}$ uniformly elliptic and bounded

- $F_{i}^{\varepsilon}: \Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ differentiable and globally Lipschitz-continuous
■ suitable choice of initial data: $u_{\varepsilon}^{0}, v_{\varepsilon}^{0} \in L^{2}(\Omega)$ and $\operatorname{div}\left(D_{1}^{\varepsilon} \nabla u_{\varepsilon}^{0}\right), \operatorname{div}\left(\varepsilon^{2} D_{2}^{\varepsilon} \nabla v_{\varepsilon}^{0}\right) \in L^{2}(\Omega)$

Theorem (Existence and improved time-regularity)
For given $T>0, \varepsilon>0$, there exists a unique (weak) solution $\left(u_{\varepsilon}, v_{\varepsilon}\right) \in C^{1}\left([0, T] ; L^{2}(\Omega)\right)$ with $\left(\nabla u_{\varepsilon}, \varepsilon \nabla v_{\varepsilon}\right) \in C^{0}\left([0, T] ; L^{2}(\Omega)\right)$.

For all $t \in[0, T], \varepsilon>0$, we have

$$
\begin{array}{r}
\max _{0 \leq t \leq T}\left\|u_{\varepsilon}(t)\right\|_{L^{2}(\Omega)}+\left\|\nabla u_{\varepsilon}(t)\right\|_{L^{2}(\Omega)} \leq C \\
\max _{0 \leq t \leq T}\left\|v_{\varepsilon}(t)\right\|_{L^{2}(\Omega)}+\varepsilon\left\|\nabla v_{\varepsilon}(t)\right\|_{L^{2}(\Omega)} \leq C .
\end{array}
$$

The boundedness implies (for a subsequ.)

$$
\begin{array}{lll}
u_{\varepsilon}(t) \rightarrow u(t) & \text { and } \quad \nabla u_{\varepsilon}(t) \rightharpoonup \nabla u(t) & \text { in } L^{2}(\Omega), \\
v_{\varepsilon}(t) \xrightarrow{2 \mathrm{w}} V(t) & \text { and } \quad \varepsilon \nabla v_{\varepsilon}(t) \xrightarrow{2 \mathrm{w}} \nabla_{y} V(t) & \text { in } L^{2}\left(\Omega \times Y_{\text {per }}\right) .
\end{array}
$$

Existing results:
■ nondegenerating and nonlinear: $\dot{u}_{\varepsilon}=\operatorname{div}\left(D^{\varepsilon} \nabla u_{\varepsilon}\right)+f^{\varepsilon}\left(u_{\varepsilon}\right)$
[Bensoussan/Lions/Papanicolaou'78, Murat/Tarar'97, etc.] (G-convergence is applicable)
\square degenerating and linear: $\dot{v}_{\varepsilon}=\operatorname{div}\left(\varepsilon^{2} D^{\varepsilon} \nabla v_{\varepsilon}\right)+f^{\varepsilon} \cdot v_{\varepsilon}\left(\right.$ also $f^{\varepsilon}=\nabla \Phi, \Phi$ convex)
[Hornung/Jäger/Mikelić'94, Peter/Böhm'08, Visintin'07, Hanke'11, etc.]
■ degenerating and nonlinear: asymp. expansion + conv. rates for suff. smooth data [Eck'04]
Our task (rigorous proof):
\square degenerating and nonlinear: $\dot{v}_{\varepsilon}=\operatorname{div}\left(\varepsilon^{2} D^{\varepsilon} \nabla v_{\varepsilon}\right)+f^{\varepsilon}\left(v_{\varepsilon}\right)$
Therefore we need to prove $v_{\varepsilon} \xrightarrow{2 \mathrm{~s}} V$.

1 Set-up of the original, macroscopic model

2 Two-scale convergence

3 Existing results

4 Deriving the effective model

Theorem (Mielke/R/Thomas'13 (WIAS Preprint Nr. 1834))

We assume $\mathcal{T}_{\varepsilon} D_{i}^{\varepsilon} \rightarrow D_{i} \in L^{\infty}\left(\Omega \times Y_{p e r}\right)$ pointwise, $F_{i}^{\varepsilon}(\cdot, u, v) \xrightarrow{2 \mathrm{~s}} F_{i}(\cdot, \cdot, u, v)$ and $v_{\varepsilon}^{0} \xrightarrow{2 \mathrm{~s}} V^{0}$ in $L^{2}\left(\Omega \times Y_{p e r}\right)$ and $u_{\varepsilon}^{0} \rightarrow u^{0}$ in $L^{2}(\Omega)$.

Then we have for all $t \in[0, T]$:

$$
u_{\varepsilon}(t) \rightarrow u(t) \text { in } L^{2}(\Omega) \text { and } v_{\varepsilon}(t) \xrightarrow{2 \mathrm{~s}} V(t) \text { in } L^{2}\left(\Omega \times Y_{p e r}\right),
$$

where (u, V) solves the effective two-scale model $\left(P_{0}\right)$.
Macroscopic equation on $[0, T] \times \Omega$:

$$
\dot{u}(t, x)=\underbrace{\operatorname{div}\left(D_{\text {eff }}(x) \nabla u(t, x)\right)}_{\text {macro-diffusion }}+\underbrace{\int_{Y} F_{1}(x, y, u(t, x), V(t, x, y)) \mathrm{d} y}_{\text {macro-reaction }}
$$

Two-scale equation on $[0, T] \times Y_{\text {per }}, \quad \Omega \sim$ "set of parameter":

$$
\dot{V}(t, x, y)=\underbrace{\operatorname{div}_{y}\left(D_{2}(x, y) \nabla_{y} V(t, x, y)\right)}_{\text {micro-diffusion }}+\underbrace{F_{2}(x, y, u(t, x), V(t, x, y))}_{\text {two-scale reaction }} .
$$

1. Consider $\dot{v}_{\varepsilon}=\operatorname{div}\left(\varepsilon^{2} D^{\varepsilon} \nabla v_{\varepsilon}\right)+F^{\varepsilon}\left(v_{\varepsilon}\right) \quad$ in Ω

$$
\text { and } \dot{V}=\operatorname{div}_{y}\left(D \nabla_{y} V\right)+F(V) \quad \text { in } \Omega \times Y_{\text {per }}
$$

Aim: Gronwall-estimate for the difference $W_{\varepsilon}=\mathcal{T}_{\varepsilon} v_{\varepsilon}-V$:

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|W_{\varepsilon}(t)\right\|^{2} \leq L\left\|W_{\varepsilon}(t)\right\|^{2}+\Delta^{\varepsilon}(t)
$$

(then $\left\|W_{\varepsilon}(t)\right\|^{2} \leq c\left(\left\|W_{\varepsilon}(0)\right\|^{2}+\Delta^{\varepsilon}(t)\right)$ and show $\Delta^{\varepsilon}=\Delta_{1}^{\varepsilon}+\Delta_{2}^{\varepsilon}+\Delta_{3}^{\varepsilon}$ vanishes)

Therefore
■ Given $\mathcal{T}_{\varepsilon}$ and folding operator $\mathcal{F}_{\varepsilon}: L^{2}\left(\Omega \times Y_{\text {per }}\right) \rightarrow L^{2}(\Omega)$ with $\mathcal{F}_{\varepsilon} \mathcal{T}_{\varepsilon}=\mathrm{id}_{L^{2}(\Omega)}$,

$$
\mathcal{F}_{\varepsilon}=\mathcal{T}_{\varepsilon}^{\prime}, \text { and } \mathcal{F}_{\varepsilon} V \xrightarrow{2 \mathrm{~s}} V \text { for all } V \in L^{2}\left(\Omega \times Y_{\text {per }}\right)
$$

■ Gradient folding operator $\mathcal{G}_{\varepsilon}: L^{2}\left(\Omega ; H^{1}\left(Y_{\text {per }}\right)\right) \rightarrow H^{1}(\Omega)$ (= recovery operator) with $\mathcal{G}_{\varepsilon} V \xrightarrow{2 \mathrm{~s}} V$ and $\varepsilon \nabla\left(\mathcal{G}_{\varepsilon} V\right) \xrightarrow{2 \mathrm{~s}} \nabla_{y} V$ for all $V \in L^{2}\left(\Omega ; H^{1}\left(Y_{\text {per }}\right)\right)$

- Desirable test functions

$$
w_{\varepsilon}=v_{\varepsilon}-\mathcal{G}_{\varepsilon} V \text { resp. } \mathcal{T}_{\varepsilon} w_{\varepsilon} \quad \text { and } \quad W_{\varepsilon}=\mathcal{T}_{\varepsilon} v_{\varepsilon}-V \text { resp. } \mathcal{F}_{\varepsilon} W_{\varepsilon}=v_{\varepsilon}-\mathcal{F}_{\varepsilon} V
$$

not admissible \Rightarrow test limit equation only with V and create error Δ_{2}^{ε}

- Δ_{1}^{ε} : mismatch between folding operators $\mathcal{F}_{\varepsilon}$ and $\mathcal{G}_{\varepsilon}$
- $\Delta_{2}^{\varepsilon}: \mathcal{T}_{\varepsilon}$-property of recovered periodicity

■ $\Delta_{3}^{\varepsilon}: \quad \mathcal{T}_{\varepsilon} D_{2}^{\varepsilon} \rightarrow D_{2}$ pointwise and $F^{\varepsilon} \xrightarrow{2 \mathrm{~s}} F$ by assumption
2. Coupling with u_{ε}-equation

End of proof.

Corollary

\square We have $\nabla u_{\varepsilon} \xrightarrow{2 \mathrm{~s}} \nabla u+\nabla_{y} U$ and $\varepsilon \nabla v_{\varepsilon} \xrightarrow{2 \mathrm{~s}} \nabla_{y} V$ in $L^{2}\left(\Omega \times Y_{\text {per }}\right)$ a.e. in $[0, T]$.

- For $D_{i}, F_{i} \in C^{1}$ and $u, V \in C^{2}$, we have

$$
\max _{0 \leq t \leq T}\left\{\left\|\mathcal{T}_{\varepsilon} v_{\varepsilon}(t)-V(t)\right\|_{L^{2}\left(\Omega \times Y_{\mathrm{per}}\right)}+\left\|u_{\varepsilon}(t)-u(t)\right\|_{L^{2}(\Omega)}\right\} \leq \varepsilon^{1 / 2} C
$$

Possible generalizations:
■ Nonhomogenous Dirichlet/Neumann boundary conditions.
■ Indeed $D^{\varepsilon}=\mathcal{F}_{\varepsilon} D$ and $F^{\varepsilon}=\mathcal{F}_{\varepsilon} F$ (instead of Example on p. 4).

- Without improved time-regularity, i.e. $\left(\dot{u}_{\varepsilon}, \dot{v}_{\varepsilon}\right) \notin L^{2}(\Omega)$ (work in progress).

Thank you for your attention.

