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The Olsen Model - A 4D System in Nonstandard Form
(joint work with Peter Szmolyan, Vienna):

(1) Some Background on Multiple Time Scales

(2) Olsen Model - Transformation
(3) The Main Two Subsystems
(4) The Blow-Up Method
(5)

5) Non-Classical Relaxation Oscillations

Reference: preprint arXiv:1403.5658



Fast-Slow Systems - Standard Form

Fast variables x € R, slow variables y € R", time scale separation 0 < € < 1.

X' = flxy) =5 ex = f(x,y)
{y’ — eglxy) { y = glxy)
} e=0 } e=0
{x’ = f(x,y) {0 = f(x,y)
y' =0 y = glxy)
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Fast-Slow Systems - Standard Form

Fast variables x € R, slow variables y € R", time scale separation 0 < € < 1.

{ X, = f(X7.y) (dﬁ) { 65( - f(X7y)
y' = eglx,y) y o= gy
le=0 L e=0

y' =0 y = &lxy)
fast subsystem slow subsystem

{x' = f(x,y) {o = f(x,y)

> C:={f =0} = critical manifold = equil. of fast subsystem.
» C is normally hyperbolic if D,f has no zero-real-part eigenvalues.

> Fenichel’s Theorem: Normal hyperbolicity = “nice” perturbation.



A 4D System in Nonstandard Form

Olsen Model for peroxidase-oxidase reaction (Olsen 1979)

4 = —j3ABY + k7 — k_7A,
L = —k3ABY — kiBX + ks,
X = kiBX — 2koX? + 3ksABY — kaX + ke,
X = —kABY +2kX? — ksY.
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Figure : (a) MMOs for k; = 0.16, (b) chaotic/aperiodic oscillations for
ki = 0.35 and (c) periodic oscillations for k; = 0.41.



Change of variables (PhD thesis of A. Milik)

ki ks vV 2ko kg kg
= ———a, B= by, X =
k3\/2ko kg k1 2k

k1 ks

Y = E T=—"+——5
T k7Y T akev2koks
transforms the Olsen model into

d
B = p—aa— aby,
dby

= 1 — boxo — azxboy»)
Ols2 & el 7
(Ols2) 203;2 boxo —x22+382b2)/2 —&x2 £ 0,

2d
22 = k(X3 —y2 — axboys).



Change of variables (PhD thesis of A. Milik)

ki ks vV 2ko kg kg
= ———a, B= by, X =
k3\/2ko kg k1 2k

k1 ks

Y = E T=—"+——5
T k7Y T akev2koks
transforms the Olsen model into

92 = p—aa— by,
2 = ep(1— baxp — a2b2y2)
(Ols2) 2ocli>f 2 7
T = boxo— x5 +3abys —Exa + d,
6203/52 = H(X22 — Yo — axboyn).
7 Q@ €b €2 19 ) K
ki =0.16 | 0.97 | 0.15 | 0.0095 | 0.033 | 0.98 | 1.2-10~° | 3.93
ki =0.35 | 0.97 | 0.32 | 0.045 | 0.015 | 0.98 | 1.2-107> | 3.93
ki =0.41 | 0.97 | 0.37 | 0.062 | 0.013 | 0.98 | 1.2-107° | 3.93
Table : Standard parameter values for the Olsen model.




We need one more transformation:

a = ap, b= bg, X = €X2, y:62y2, 7'26_25
% = pu—aa— abys,
(O|S2) % = eb(l — b2X2 — azbzyz),

92 = by —x3 + 3axbyy, — Ex2+ 0,

2 = k(x4 —y2 — aboys).
j—z = €(u— aa)— aby,
d
2 = e(epe — epbx) — epaby,

= (Oks1) € = —x2+4e(b—&)x+ 3aby + €26,

L = kK(x?—y— aby).
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S
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We need one more transformation:

a = ap, b= bg, X = €X2, y:62y2, 7'26_25
% = p—aa— aby,
(O|S2) % = eb(l — b2X2 — 32b2y2),

L2 = byxy — xZ +3aboys — Ex0 46,
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j—z = €(u— aa)— aby,
d
2 = e(epe — epbx) — epaby,

= (Oks1) € = —x2+4e(b—&)x+ 3aby + €26,

% = r(x*> —y — aby).

Summary of major difficulties:

» nonstandard form,
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four-dimensional problem,

for (Ols2), €2 — 0 = two fast and two slow variables,

for (Ols2), €2 # 0 and ¢, — 0 = three fast and one slow,
for (Olsl), e — 0 and €, # 0 = one fast and three slow,
role of 6 — 0,

loss of normal hyperbolicity.



The “Fastest-Scale” Model

572 = ez(u—aa)—ab}/7

d

D = e(epe — epbx) — epaby,

= (Olsl) 6% = —x%2+e(b—&)x +3aby + €24,
@ = k(x® -y — aby).

For ¢ — 0, critical manifold

2
= R*: X .
CO {(Xa)/:a?b) € 3ab y}



The “Fastest-Scale” Model

572 = ez(u—aa)—ab}/7
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Theorem (K., Szmolyan 2012/2013)

» Canard case 0 < ¢ < 1 § = O(c2e ¥/ then nonclassical
relaxation oscillation has a canard segment.

» Jumpcase: 0 <e<kK1§= Kse2, Ky > 0 then nonclassical
relaxation oscillation jumps near transcritical bifurcation.
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> Blow-up method for folds {x =0 = y} of Cp.
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Theorem (K., Szmolyan 2012/2013)
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Canard case 0 < ¢ < 1 § = O(e2e ¥/ then nonclassical
relaxation oscillation has a canard segment.

Jumpcase: 0 <ex1d= Kse2, Ky > 0 then nonclassical
relaxation oscillation jumps near transcritical bifurcation.

Ideas of the proof:

>

>

>

Control of 'fast’ loops via explicit flow on Cq (Ols1).
Blow-up method for folds {x = 0 = y} of Cp.

Analysis of entrance and exit charts.

Dynamics in the main chart (Ols2).

Normal hyperbolicity — fast-slow reduction to 2D slow flow.
Normal form theory for transcritical singularity.

Requires center manifold reduction from 6D to 5D.

Way-in, way-out function for canards + exchange lemma.

Global return map analysis, explicit estimates.



The Blow-Up Method - An Example

% - _X2 + Y,
vector field X ¢ 2 = ¢,

& =0

dt

Blow-up map & : 52 x [0, ro] — R? = ¢.(X) = X.



The Blow-Up Method - An Example

d 2
(ch); = —Xx"+ Y,
; ly
vector field X ¢ % = ¢,
& =0
dt :

Blow-up map @ : 52 x [0, ] — R? = ¢*()_<) = X.
{(R+y+@ =1} x {7}

_ B=58%x]0,n
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Main Olsen Blow-Up

a = (u— aa)—eaby,
b = €*(epe — epbx) — eepaby,
(Ols1) ¢ x' = —x®+e(b—E&)x+ 3aby + €29,
y' = er(x?—y— aby),
!

¢ = 0.



Main Olsen Blow-Up

a

y
€ =

/
/
(Ols1) ¢ X’
!
!

Define the manifold

(u — aa) — eaby,

€2(epe — epbx) — cepaby,

—x% + €(b — &)x + 3aby + €24,
ew(x* —y — aby),

0.

D = [a*, 00) x [b%,00) x (S2)§ x [0, ro)-

Blow-up transformation ® : D — D defined via

a=a, b=bh,

x = TR, y = P2y,

€ =T€



Dynamics in the Classical / Rescaling Chart
System (Ols2) - nonclassical relaxation orbit, canard case.
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Figure : (a) Projection into (a2, bo, x2)-space. § = 0. Critical manifold in
blow-up (blue=repelling, red=attracting), transcritical (magenta) and
hyperplane {b, = £}. (b) Projection of the full periodic solution into
(a2, x2)-space. (c) Important curves in the (ap, by)-plane.



Dynamics in the Classical / Rescaling Chart

System (Ols2) - nonclassical relaxation orbit, canard case.
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Figure : (a) Projection into (a2, bo, x2)-space. § = 0. Critical manifold in
blow-up (blue=repelling, red=attracting), transcritical (magenta) and
hyperplane {b, = £}. (b) Projection of the full periodic solution into
(a2, x2)-space. (c) Important curves in the (ap, by)-plane.

Remark: Normal form unfolding for jumps across singularities at
infinity CK arXiv:1204.0947.



Case 2: Mixed-Mode Oscillations

€p — 0, three fast variables and one slow variable

a = é(u— aa)—ecaby,
b = €%(epe — epbx) — ecpaby,
x' = —x%+e(b—&)x + 3aby + €26,

y' = en(x®>—y — aby).



Case 2: Mixed-Mode Oscillations

€p — 0, three fast variables and one slow variable

a = é(u— aa)—ecaby,

b = €*(epe — epbx) — eepaby,

X' = —x%+¢€(b—&)x + 3aby + €6,
y' = en(x®>—y — aby).

G

;
/ A
Lo . a, b
(a) 7

Note: Delayed Hopf bifurcation is involved.




Case 3: A Chaos-Generating Mechanism

“Intermediate” between MMOs and Nonclassical Relaxation

X2, Y2

(b)

Conjectures:
1. Smale Horseshoe “splitting-streching-folding”.
2. Grazing-sliding nonsmooth limit scenario.



Other Topics

Remark: Multiscale Dynamics (almost) everywhere!

1. Critical transitions / tipping points in applications
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Large deviation principles in SIDE/SPDEs
Singular perturbations of PDE operators
Self-organized criticality in adaptive networks
Averaging / homogenization problems
Numerically challenging ( “multiscale methods™)
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Thank you for your attention.



