Weierstrass Institute for
Applied Analysis and Stochastics

String-representation of hysteresis operators acting on vector-valued, left-continuous and piecewise monotaffine and continuous functions

Olaf Klein

- Hysteresis operators as introduced in Krasnosel'skii-Pokrovskii 1983 can be considered as mathematical operators mapping time dependent functions to time dependent functions being causal and rate-independent, see Visintin 1994, Brokate-Sprekels 1996, Krejčí 1996, Mayergoyz 2003.
- Brokate-Sprekels 1996:
a representation result for hysteresis operators acting on scalar inputs input function
- Representation result applied in Brokate 1994, Brokate 2000, Ekanayake-lyer 2008, Gasiński 2004, 2008, Jais-2008, Kaltenbacher-Kaltenbacher-2007, Löschner-Brokate 2008, Löschner-Greenberg 2008, Miettinen-Panagiotopoulos 1998, Tan-Baras-Krishnaprasad 2005, Visone 2008

■ K. 2012 a,b, K. 2013:
extension of this representation result to hysteresis operators acting on vector-valued input functions.

■ This talk, K. 2013p (=WIAS Preprint No. 1912 (2013)):
extension of this representation to input functions with a finite number number of discontinuities

■ Let $T>0$ denote some final time.

- Let X be some topological vector space.

■ Let Y be some nonempty set, and let $\operatorname{Map}([0, T], Y):=\{v:[0, T] \rightarrow Y\}$.
■ Let $\mathrm{C}([0, T] ; X)$ denote the set of all continuous functions $u:[0, T] \rightarrow X$.
$\square \alpha:[0, T] \rightarrow[0, T]$ is an admissible time transformation $: \Longleftrightarrow \alpha$ is continuous and increasing (not necessary strictly increasing), $\alpha(0)=0$ and $\alpha(T)=T$.

Definition

Let $\mathcal{H}: D(\mathcal{H})(\subseteq \operatorname{Map}([0, T], X)) \rightarrow \operatorname{Map}([0, T], Y)$ with $D(\mathcal{H}) \neq \emptyset$ be given.
$\square \mathcal{H}$ a hysteresis operator $: \Longleftrightarrow \mathcal{H}$ is rate-independent and causal.

- \mathcal{H} is rate-independent $: \Longleftrightarrow \forall v \in D(\mathcal{H}), \forall$ admissible time transformation $\alpha:[0, T] \rightarrow[0, T]$ with $v \circ \alpha \in D(\mathcal{H}), \forall t \in[0, T]:$

$$
\mathcal{H}[v \circ \alpha](t)=\mathcal{H}[v](\alpha(t)) .
$$

■ \mathcal{H} is causal $: \Longleftrightarrow \forall v_{1}, v_{2} \in D(\mathcal{H}), \forall t \in[0, T]:$
If $v_{1}(\tau)=v_{2}(\tau) \quad \forall \tau \in[0, t]$ then $\mathcal{H}\left[v_{1}\right](t)=\mathcal{H}\left[v_{2}\right](t)$.

- Brokate-Sprekels 1996: Hysteresis operators act on the set of all continuous and piecewise monotone functions and the set of all piecewise monotone functions from $[0, T]$ to \mathbb{R}.
■ K. 2012a, K. 2012b, K. 2013: Hysteresis operators acting on continuous and piecewise monotaffine function from $[0, T]$ to X.
- Monotaffine function informal: composition of a monotone and an affine function, monotone functions being evaluated first
■ Monotaffine function precise: K. 2012a, b, K. 2013:
Let some function $u:[0, T] \rightarrow X$ be given Let some $t_{1}, t_{2} \in[0, T]$ with $t_{1}<t_{2}$ be given. u is monotaffine on $\left[t_{1}, t_{2}\right]: \Longleftrightarrow$ $\exists \beta:\left[t_{1}, t_{2}\right] \rightarrow[0,1]$ monotone increasing (not necessary strictly increasing) such that $\beta\left(t_{1}\right)=0, \beta\left(t_{2}\right)=1$ and

$$
u(t)=(1-\beta(t)) u\left(t_{1}\right)+\beta(t) u\left(t_{2}\right), \quad \forall t \in\left[t_{1}, t_{2}\right]
$$

$\square u:[0, T] \rightarrow X u$ is denoted as piecewise monotaffine $: \Longleftrightarrow$ there exists a decomposition $0=t_{0}<t_{1}<\cdots<t_{n}=T$ of $[0, T]$ such that for $\forall 1 \leq i \leq n$: u is monotaffine on $\left[t_{i-1}, t_{i}\right]$.

- Let Map pw.ma. . $[0, T] ; X)$ be the set of all piecewise monotaffine functions in $\operatorname{Map}([0, T],()[0, T] ; X)$.
■ Map pw.ma. $([0, T] ; \mathbb{R})$ is just the set of all piecewise monotone functions
■ Let $\mathrm{C}_{\mathrm{pw} . \mathrm{ma} .}([0, T] ; X):=\operatorname{Map}_{\mathrm{pw.ma} .}([0, T] ; X) \cap C([0, T] ; X)$.

Standard monotonicity/monotaffinicity partitions

- The standard monotonicity partition of $[0, T]$ for piecewise monotone, scalar input functions is introduced in Brokate-Sprekels 1996.
- In K. 2012a, K. 2012b, K. 2013 the standard monotaffinicity partition of $[0, T]$ for u with $u \in \operatorname{Map}_{\text {pw.ma. }}([0, T] ; X)$ being appropriate is defined.
- Now, this definition it extended to:

Let $u \in$ Map $_{\text {pw.ma. }}([0, T] ; X)$ be given.
The standard monotaffinicity partition of $[0, T]$ for $u:=$ uniquely defined decomposition $0=t_{0}<t_{1}<\cdots<t_{n}=T$ of $[0, T]$ such that for $1 \leq i \leq n$ holds:
$\left.t_{i}:=\sup \{t \in] t_{i-1}, T\right] \mid u$ is monotaffine on $\left.\left[t_{i-1}, t\right]\right\}$

Convexity triple free string of elements of X

K. 2012a,b; K. 2013:

■ $\left(v_{a}, v_{b}, v_{c}\right) \in X^{3}$ is denoted as convexity triple $\Longleftrightarrow v_{b} \in \operatorname{conv}\left(v_{a}, v_{c}\right)$ with $\operatorname{conv}\left(v_{a}, v_{c} j\right):=\left\{(1-\lambda) v_{a}+\lambda v_{c} \mid \lambda \in[0,1]\right\}$
\square A convexity triple free string of elements of X is any $\left(v_{0}, v_{1}\right) \in X^{2}$ and any $\left(v_{0}, \ldots, v_{n}\right) \in X^{n+1}$ with $1<n \in \mathbb{N}$ such that for all $i \in\{1, \ldots, n-1\}$ it holds that $\left(v_{i-1}, v_{i}, v_{i+1}\right)$ is no convexity triple.

- Let $S_{F}(X):=\left\{V \in X^{n+1} \mid n \in \mathbb{N}\right.$ and V is a convexity triple free string of elements of $X\}$.
- It holds $S_{F}(\mathbb{R})=S_{A}$ with S_{A} being the set of alternating strings: introduced in Brokate-Sprekels 1996, i.e.:

$$
\begin{aligned}
S_{A}=\{ & \left(v_{0}, v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n+1} \mid n \geq 1, \\
& \left.\left(v_{i}-v_{i-1}\right)\left(v_{i+1}-v_{i}\right)<0, \quad \forall 1 \leq i<n\right\} .
\end{aligned}
$$

Representation result 1/3

Lemma

Every function $G: S_{F}(X) \rightarrow Y$ generates a hysteresis operator $\mathcal{H}_{G}^{\text {Map }}: \operatorname{Map}_{\text {pw.ma. }}([0, T] ; X) \rightarrow \operatorname{Map}([0, T] ; Y)$ by mapping $u \in \operatorname{Map}_{\mathrm{pw} . \mathrm{ma} .}([0, T] ; X)$ to the function $\mathcal{H}_{G}^{\mathrm{Map}}[u]:[0, T] \rightarrow Y$ being defined by considering the standard monotaffinicity partition $0=t_{0}<t_{1}<\cdots<t_{n}=T$ of $[0, T]$ for u and defining

$$
\begin{aligned}
\mathcal{H}_{G}^{\mathrm{Map}}[u](t)= & G\left(u\left(t_{0}\right), u(t)\right), \forall t \in\left[t_{0}, t_{1}\right], \\
\mathcal{H}_{G}^{\mathrm{Map}}[u](t)= & \left.\left.G\left(u\left(t_{0}\right), u\left(t_{1}-\right), u(t)\right), \quad \forall t \in\right] t_{1}, t_{2}\right], \\
\mathcal{H}_{G}^{\mathrm{Map}}[u](t)= & G\left(u\left(t_{0}\right), u\left(t_{1}-\right), \ldots, u\left(t_{i-1}-\right), u(t)\right), \\
& \left.\forall t \in] t_{i-1}, t_{i}\right], \quad 3 \leq i \leq n .
\end{aligned}
$$

K. 2012a, K. 2012b, K. 2013:

Theorem

For every hysteresis operator $\mathcal{B}: \mathrm{C}_{\mathrm{pw} . \mathrm{ma}}([0, T] ; X) \rightarrow \operatorname{Map}([0, T] ; Y)$ there exists a unique function $G: S_{F}(X) \rightarrow Y$ such that $\mathcal{B}=\mathcal{H}_{G}^{C}$ with \mathcal{H}_{G}^{C} being the restriction of $\mathcal{H}_{G}^{\mathrm{Map}}$ to $\mathrm{C}_{\mathrm{pw} . \mathrm{ma} .}([0, T] ; X)$
(G can be determined by considering appropriate piecewise affine function representing the strings.)
(Result in Brokate-Sprekels 1996 for operators with scalar input and output: $X=\mathbb{R}, Y:=\mathbb{R}, S_{F}(X) \mapsto S_{A}, \mathrm{C}_{\mathrm{pw} . \mathrm{ma} .}([0, T] ; X) \mapsto \mathrm{C}_{\mathrm{pm}}([0, T])$, "monotaffinicity" \mapsto "monotonicity",

K. 2013:

Corollary

For every $G: S_{F}(X) \rightarrow Y$ is holds that $\mathcal{H}_{G}^{\mathrm{Map}}$ is the restriction to Map $_{\text {pw.ma. }}([0, T] ; X)$ of the arclength $B V$-extension (see Recupero 2011, talk Recupero) of \mathcal{H}_{G}^{C}.

Limits of representation result

For the hysteresis operator $\mathcal{A}: \operatorname{Map}([0, T] ; X) \rightarrow \operatorname{Map}([0, T] ; X)$ defined by

$$
\mathcal{A}[u](t):= \begin{cases}0_{X}, & \text { if } \quad \exists s \in[0, t]: u(s)=0_{X} \\ u(t), & \text { otherwise }\end{cases}
$$

it holds:
■ The restriction of \mathcal{A} to $\mathrm{C}_{\mathrm{pw} . \text { ma. }}([0, T] ; X)$ is equal to \mathcal{H}_{G}^{C} with

$$
G\left(v_{0}, \ldots, v_{n}\right)=\left\{\begin{array}{l}
v_{n}, \text { if } \forall i \in\{1, \ldots, n\}: \\
\quad\left(v_{i-1}, 0_{X}, v_{i}\right) \text { is no convexity triple }, \\
0_{X}, \text { otherwise }
\end{array}\right.
$$

■ but the restriction of \mathcal{A} to $\operatorname{Map}_{\mathrm{pw} . \mathrm{ma}}([0, T] ; X)$ is not equal to $\mathcal{H}_{G}^{\mathrm{Map}}$.

Definition

Let $\left(x_{a}, y_{a}, r_{a}\right),\left(x_{b}, y_{b}, r_{b}\right),\left(x_{c}, y_{c}, r_{c}\right) \in X^{2} \times\{0,1\}$ be given. $\left(x_{a}, y_{a}, r_{a}\right),\left(x_{b}, y_{b}, r_{b}\right),\left(x_{c}, y_{c}, r_{c}\right)$ is denoted as convexity triple containing triple of elements of $X^{2} \times\{0,1\}$ i.e. as CTC triple, if $x_{b}=y_{b}$ and $\left(y_{a}, x_{b}, x_{c}\right)$ is a convexity triple.

Definition

a) Let

$$
\begin{aligned}
& S^{2, b}(X) \\
&:=\left\{\left(\left(x_{0}, y_{0}, r_{0}\right), \ldots,\left(x_{n}, y_{n}, r_{n}\right)\right) \in\left(X^{2} \times\{0,1\}\right)^{n+1} \mid\right. \\
& n \in \mathbb{N}, x_{n}=y_{n}, r_{n}=1, \\
&\left.\forall i=1, \ldots, n:\left(y_{i-1}=x_{i} \Longrightarrow r_{i-1}=1\right)\right\} .
\end{aligned}
$$

b) $\left(\left(x_{0}, y_{0}, r_{0}\right), \ldots,\left(x_{n}, y_{n}, r_{n}\right)\right) \in S^{2 b}(X)$ is denoted as CTC triple free string if $n=1$ or if $n>1$ and it holds for all $i \in\{1, \ldots, n-1\}$ that .

$$
\left(\left(x_{i-1}, y_{i-1}, r\right),\left(x_{i}, y_{i}\right),\left(x_{i+1}, y_{i+1}\right)\right) \text { is no CTC triple. }
$$

Definition

Let some function $u:[0, T] \rightarrow X$ be given
Let some $t_{1}, t_{2} \in[0, T]$ with $t_{1}<t_{2}$ be given.
u is monotaffine on $\left.] t_{1}, t_{2}\right]: \Longleftrightarrow u\left(t_{1}+\right)$ exits and for $v:[0, T] \rightarrow X$ with $v(t)=u(t)$ for all $t \neq t_{1} v\left(t_{1}\right)=u\left(t_{1}+\right)$ if holds that v is monotaffine on $\left[t_{1}, t_{2}\right]$

Definition

a) A function $u:[0, T] \rightarrow X$ is denoted as piecewise left-open, right-closed monotaffine-continuous ($p w$. lo. rc. monotaffine-continuous) if there exists a decomposition $0=t_{0}<t_{1}<\cdots<t_{n}=T$ of $[0, T]$ such that u is monotaffine and continuous on $\left.] t_{i}, t_{i+1}\right]$ for all $i=0, \ldots, n-1$. In this case, the decomposition is denoted as lo. rc. monotaffinicity continuity decomposition of $[0, T]$ for u.
b) Let $\mathrm{Map}_{\mathrm{pw}, *}([0, T], X)$ be the set of all pw. lo. rc. monotaffine-continuous functions from $[0, T]$ to X.

Definition

For $u \in \operatorname{Map}_{\mathrm{pw}, *}([0, T], X)$ the standard lo. rc. monotaffinicity continuity decomposition of $[0, T]$ for u is the lo. rc. monotaffinicity continuity decomposition $0=t_{0}<t_{1}<\cdots<t_{n}=T$ of $[0, T]$ for u, such that for all for all $i=0, \ldots, n-1$, it holds

$$
\begin{equation*}
\left.\left.\left.\left.t_{i+1}=\max \{t \in] t_{i}, T\right] \mid u \text { is monotaffine and continuous on }\right] t_{i}, t\right]\right\} . \tag{1}
\end{equation*}
$$

Definition operator

Let $F: S_{F}^{2, b}(X) \rightarrow Y$ be some function. The hysteresis operator $\mathcal{H}_{F}^{*}: \operatorname{Map}_{\mathrm{pw}, *}([0, T], X) \rightarrow \operatorname{Map}\left([0, T], S_{F}^{2}(X)\right)$ generated by F is defined by mapping $u \in \operatorname{Map}_{\mathrm{pw}, *}([0, T], X)$ to $\mathcal{H}_{F}^{*}[u]:[0, T] \rightarrow S_{F}^{2}(X)$ according to: Let $0=t_{0}<t_{1}<\cdots<t_{n}=T$ be the standard lo. rc. monotaffinicity continuity decomposition of $[0, T]$ for u. Let $r_{0}, \ldots, r_{n-1} \in\{0,1\}$ be defined by
$r_{i}:= \begin{cases}1, & \text { if } u\left(t_{i-1}+\right) \in u(] t_{i-1}, t_{i}[), \quad \forall i \in\{1, \ldots, n\} \text {. Let } \\ 0, & \text { otherwise, }\end{cases}$
$\mathcal{H}_{F}^{*}[u]:[0, T] \rightarrow S_{F}^{2}(X)$ be defined by

$$
\begin{aligned}
\mathcal{H}_{F}^{*} & :=F((u(0), u(0), 1),(u(0), u(0), 1)), \\
\mathcal{H}_{F}^{*}[u](t): & \left.\left.=F\left(\left(u(0), u(0+), r_{0}\right),(u(t), u(t), 1)\right) \quad \forall t \in\right] t_{0}, t_{1}\right], \\
\mathcal{H}_{F}^{*}[u](t): & =F\left(\left(u\left(t_{0}\right), u\left(t_{0}+\right), r_{0}\right), \ldots,\left(u\left(t_{i-1}\right), u\left(t_{i-1}+\right), r_{i-1}\right),\right. \\
& \left.(u(t), u(t), 1) \quad \forall t \in] t_{i}, t_{i+1}\right], i \in\{2, \ldots, n\} .
\end{aligned}
$$

Theorem

a) Let $F: S_{F}^{2, b}(X) \rightarrow Y$ be some function. Then it follows that the operator $\mathcal{H}_{F}^{*}: \operatorname{Map}_{\mathrm{pw}, *}([0, T], X) \rightarrow \operatorname{Map}([0, T], Y)$ is a hysteresis operator.
b) For every hysteresis operator $\mathcal{B}: \operatorname{Map}_{\mathrm{pw}, *}([0, T], X) \rightarrow \operatorname{Map}([0, T], Y)$ there exists a unique function $F: S_{F}^{2, b}(X) \rightarrow Y$ such that $\mathcal{B}=F \circ \rho$.

■ For the hysteresis operator $\mathcal{A}: \operatorname{Map}([0, T] ; X) \rightarrow \operatorname{Map}([0, T] ; X)$ defined by

$$
\mathcal{A}[u](t):= \begin{cases}0_{X}, & \text { if } \quad \exists s \in[0, t]: u(s)=0_{X} \\ u(t), & \text { otherwise }\end{cases}
$$

it holds:
■ The restriction of \mathcal{A} to $\operatorname{Map}_{\mathrm{pw}, *}([0, T], X)$ is equal to \mathcal{H}_{G}^{*} with

$$
\begin{aligned}
& G\left(\left(x_{0}, y_{0}, r_{0}\right) \ldots,\left(x_{n}, y_{n}, r_{n}\right) \ldots,\right. \\
= & \left\{\begin{array}{c}
0_{X}, \text { if } \exists i \in\{1, \ldots, n\}: \\
y_{i-1} \neq 0_{X}, \quad\left(y_{i-1}, 0_{X}, x_{i}\right) \text { is a convexity triple, } \\
0_{X}, \text { if } \exists i \in\{1, \ldots, n\}: \\
y_{i-1}=0_{X}, r_{i}=1, \\
x_{n}, \text { otherwise },
\end{array}\right.
\end{aligned}
$$

Many thanks for your attention

