N -site phosphorylation systems with $2 \mathrm{~N}-1$ steady states

Dietrich Flockerzi
Katharina Holstein, Carsten Conradi
Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg - Germany

Berlin - April 2014

Contents

1 Introduction

- 1.1 The Origin (L. Wang \& E.D. Sontag)
- 1.2 The Network
- 1.3 The Mass Action ODE-System
- 1.4 Multistationarity General Reduction Results
- 2.1 Characterization of Multiststionarity
- 2.2 Scalar Determining Equation

3 Computational Aspects - Counterexamples

- 3.1 Triple phosphorylation $(n=3)$
- 3.2 The Case $n=4$

4 Geometry of Multistationarity

- 4.1 Relations to Sign Patterns/Orthants
- 4.2 Geometric Constraints and Reconstructions
-4. A Graphical Test
5 Literature

Introduction 1.1: The Origin

1. Introduction

1.1 The Origin: JMB-Paper by L. Wang \& E.D. Sontag

On the number of steady states in a multiple futile cycle

$$
\text { Journal of Math. Biology 57:29-52, } 2008
$$

For N -site phosphorylation systems, there are no more than $2 \mathrm{~N}-1$ steady states.
'We do not expect the number of steady states to exceed $N+1$ if N is even and N if N is odd.'
'So a natural conjecture would be that the number of steady states never exceeds $N+1$ under any condition.'

1.2 The Network

The network for the sequential distributive phosphorylation and dephosphorylation of protein A at n-sites by a kinase E_{1} a phosphatase E_{2}.
The phosphorylated forms of A are denoted by the subscript $n P$ denoting the number of phosphorylated sites $\left(A=A_{0 . P}\right)$.

$$
\begin{align*}
& E_{1}+A_{i-1 P} \stackrel{k_{3 i-2}}{\stackrel{k_{3 i-1}}{\rightleftharpoons}} A_{i-1 P} E_{1} \xrightarrow{k_{3 i}} E_{1}+A_{i P}, \quad i=1, \ldots, n \\
& E_{2}+A_{i P} \stackrel{I_{3 i-2}}{\rightleftharpoons} A_{i P} E_{2} \xrightarrow{l_{3 i-1}} E_{2}+A_{i-1 P}, \quad i=1, \ldots, n . \tag{1.1}
\end{align*}
$$

1.2 cont.

With

$$
\begin{array}{rll}
x_{1}=E_{1}, & x_{2}=A=A_{0 P}, & x_{3}=E_{2}, \tag{1.2}\\
x_{1+3 i}=A_{(i-1) P} E_{1}, & x_{2+3 i}=A_{i P}, & x_{3+3 i}=A_{i P} E_{2}
\end{array}
$$

The network

$$
\begin{align*}
& x_{1}+x_{3 i-1} \stackrel{k_{3 i-1}}{\stackrel{k_{3 i-2}}{\rightleftharpoons}} x_{3 i+1} \xrightarrow{k_{3 i}} x_{1}+x_{3 i+2}, \\
& x_{2}+x_{3 i+2} \stackrel{l_{3 i-2}}{\rightleftharpoons} \tag{1.3}\\
& l_{3 i-1}
\end{align*} x_{3 i+3} \xrightarrow{l_{3 i}} x_{2}+x_{3 i-1},
$$

for $i=1, \ldots, n$ and for $\kappa_{(i)}:=\left(k_{3 i-2}, k_{3 i-1}, k_{3 i}, l_{3 i-2}, l_{3 i-1}, l_{3 i}\right)^{T}$. Define

$$
\begin{equation*}
\kappa:=\operatorname{col}\left(\kappa_{(1)}, \ldots, \kappa_{(n)}\right) \in \mathbb{R}_{>0}^{6 n} . \tag{1.4}
\end{equation*}
$$

1.3 The Mass Action ODE-System

From (1.1), one can derive for every n the

- stoichiometric matrix $S \in \mathbb{R}^{(3+3 n) \times 6 n}$ and the
- rate exponent matrix $\mathcal{Y}=\left(y_{1}, \ldots, y_{6 n}\right) \in \mathbb{R}^{(3+3 n) \times 6 n}$.

These define two monomial functions $\Phi: \mathbb{R}^{3+3 n} \rightarrow \mathbb{R}^{6 n}$ and $R(\kappa, \cdot): \mathbb{R}^{3+3 n} \rightarrow \mathbb{R}^{6 n}$ via

$$
\begin{equation*}
\Phi(x):=x^{\mathcal{Y}^{\top}} \equiv \operatorname{col}\left(x^{y_{1}}, \ldots, x^{y_{6 n}}\right) \quad \text { and } \quad R(\kappa, x):=\operatorname{diag}(\kappa) \Phi(x) \tag{1.5}
\end{equation*}
$$

and the

Dynamical system with mass action kinetics

$$
\begin{equation*}
\dot{x}=S R(\kappa, x)=S \operatorname{diag}(\kappa) x^{\mathcal{Y}^{\boldsymbol{T}}} \tag{1.6}
\end{equation*}
$$

The $6 n$-dimensional vector $R(\kappa, x)$ is called the reaction rate vector.

$$
\begin{aligned}
& e^{\mu}=\operatorname{col}\left(e^{\mu_{\boldsymbol{i}}}\right), \ln (\mu)=\operatorname{col}\left(\ln \left(\mu_{i}\right)\right), \quad a^{\ell^{\boldsymbol{T}}}:=\prod_{i=1}^{m} a_{i}^{\ell_{\boldsymbol{i}}}=e^{\ell^{\boldsymbol{T}} \ln (a)}, \\
& g^{L}=\operatorname{col}\left(g^{\left.L_{\text {row } \mathbf{~}}\right) \text { for } g \in \mathbb{R}_{>0}^{m}, L \in \mathbb{Z}^{n \times m} .}\right.
\end{aligned}
$$

For $n=3$

The stoichiometric matrix S and the rate exponent matrix \mathcal{Y}^{T} :

$$
\mathcal{Y}^{\boldsymbol{T}}=\left[\begin{array}{lll|lll|lll|lll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

1.4 Multistationarity, e.g. for Switching

A matrix Z of conservation laws, providing a basis for the left kernel of S, is given by

$$
Z=\left[\begin{array}{rrr|lll}
1 & 0 & 0 \tag{1.7}\\
-1 & 1 & -1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1
\end{array}|\cdots| \begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \in \mathbb{R}^{3 \times(3+3 n)} .
$$

Definition of Multistationarity

The system $\dot{x}=S R(\kappa, x)$ from (1.6) is said to exhibit multistationarity if and only if there exist a positive vector $\kappa \in \mathbb{R}_{>0}^{6 n}$ and at least two distinct positive vectors a and b in $\mathbb{R}_{>0}^{3+3 n}$ with

$$
\begin{align*}
S R(\kappa, a) & =0, \tag{1.8a}\\
S R(\kappa, b) & =0, \tag{1.8b}\\
Z a & =Z b . \tag{1.8c}
\end{align*}
$$

(1.8a) and (1.8b) describe the steady state property of a and b whereas (1.8c) asks for these steady states to belong to the same coset of the stoichiometric matrix S.

2.1 Characterization (Generator matrix E)

2. General Reduction Results

Consider the

Mass Action Network

$$
\begin{equation*}
\dot{x}=S R(\kappa, x)=S \operatorname{diag}(\kappa) x^{\mathcal{Y}^{\mathrm{T}}} \tag{2.1}
\end{equation*}
$$

- with positive pointed polyhedral cone $\mathcal{C}=\operatorname{ker}(S) \bigcap \mathbb{R}_{>0}^{3 n+3}$ and its generator matrix $E \in \mathbb{R}_{>0}^{6 n \times 3 n}$ given below,
- and left kernel basis matrix Z (conservation laws, $Z S=0$).

$$
E:=\left[\begin{array}{lll}
E_{0} & & \tag{2.2}\\
& \ddots & \\
& & E_{0}
\end{array}\right] \in \mathbb{R}_{>0}^{6 n \times 3 n} \text { with } E_{0}:=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where that the columns of E also form a basis of ker (S).
The steady state relations for the cone \mathcal{C} are of the form

$$
\operatorname{diag}(\kappa) a^{\mathcal{Y}^{\mathrm{T}}}=E \lambda, \quad \operatorname{diag}(\kappa) b^{\mathcal{Y}^{\mathrm{T}}}=E \nu \quad \text { for } \lambda, \nu \in \mathbb{R}_{\geq 0}^{3 n} .
$$

2.1 Characterization (3D Reduction)

For a given positive steady state a one has the rate constant vector(s)

$$
\begin{equation*}
\kappa=\kappa(a, \lambda):=\operatorname{diag}\left(a^{-\mathcal{Y}^{\boldsymbol{T}}}\right) E \lambda . \tag{2.3}
\end{equation*}
$$

A further positive steady state b for this $\kappa=\kappa(a, \lambda)$ can be written as

$$
b=\operatorname{diag}\left(e^{\mu}\right) a=\operatorname{diag}\left(\frac{1}{\kappa(a, \lambda)}\right) E \nu \quad\left(\mu \in \mathbb{R}^{3 n+3}\right)
$$

with

$$
\begin{equation*}
\mathcal{Y}^{T} \mu=\ln \left[\frac{E \nu}{E \lambda}\right] . \tag{2.4}
\end{equation*}
$$

Two Facts

- The right hand side of (2.4) is in a 2-dimensional subspace (by Fredholm).
- The right kernel of \mathcal{Y}^{\top} is 1 -dimensional.

Consequence

$$
\begin{equation*}
\mu=L \ln (g) \text { for } g=\left(g_{1}, g_{2}, g_{3}\right)^{T} \in \mathbb{R}_{>0}^{3} \tag{2.5}
\end{equation*}
$$

for the matrix $L \in \mathbb{Z}^{(3+3 n) \times 3}$ given below and $b=\operatorname{diag}\left(e^{\mu}\right) a=\operatorname{diag}\left(g^{L}\right) a$.

2.1 Characterization (Matrix L)

We choose the matrix L in an (obviously) clever way as

$$
L \equiv\left(L_{1}, L_{2}, L_{3}\right):=\left[\begin{array}{c}
L(0) \tag{2.6a}\\
L(1) \\
\vdots \\
L(n)
\end{array}\right] \in \mathbb{Z}^{(3+3 n) \times 3}
$$

for

$$
L(0):=\left[\begin{array}{rcr}
1 & n-1 & -1 \tag{2.6b}\\
-1 & -n & 0 \\
1 & n-2 & -1
\end{array}\right], L(i):=\left[\begin{array}{rcr}
0 & i-2 & -1 \\
-1 & i-n & 0 \\
0 & i-2 & -1
\end{array}\right]
$$

In the expression $b=\operatorname{diag}\left(g^{L}\right) a$, the g_{1}-exponents are given by the 1 st column of L and hence ± 1 (or 0), the g_{3}-exponents are given by the 3 rd column of L and hence -1 (or 0), the g_{2}-exponents are given by the 2 nd column of L.

One has: $\operatorname{ker}\left(\mathcal{Y}^{T}\right)=\left[L_{1}\right]$.

2.1 Characterization (Coset Condition)

With the parameter $a \in \mathbb{R}_{>0}^{3 n+3}$:

3D Multistationarity Condition/Coset Condition

$$
\begin{gather*}
\Theta(g, a):=Z\left(\operatorname{diag}\left(g^{L}\right)-I d\right) a=0, \tag{2.7}\\
\Theta=\left(\Theta_{1}, \Theta_{2}, \Theta_{3}\right)^{T}, \quad g=\left(g_{1}, g_{2}, g_{3}\right)^{T} \in \mathbb{R}_{>0}^{3}
\end{gather*}
$$

3D Reduction

For $g \neq \underline{1}$ satisfying the rational 3×3-system (2.7), the steady states

$$
a \text { and } b:=\operatorname{diag}\left(g^{L}\right) a
$$

are distinct positive steady states for the network $\dot{x}=S R(\kappa(a, \lambda), x)$ within one coset of the stoichiometric matrix S.

2.2 Scalar Determinig Equation

Exploiting the properties of our choice of L and taking $g_{2} \equiv \xi$: The system

$$
\Theta_{1}=0, \quad \Theta_{3}=0
$$

is linear wrt. g_{1} and g_{3}. Suppressing the a-dependence:

$$
\begin{align*}
& g_{1}=g_{1}(\xi):=\quad \xi^{1-n} F_{1}(\xi) / \Delta(\xi) \stackrel{!}{>} 0 \tag{2.8a}\\
& g_{3}=g_{3}(\xi):=\quad \xi^{-1} F_{\mathbf{3}}(\xi) / \Delta(\xi) \stackrel{!}{>} 0 \tag{2.8b}
\end{align*}
$$

with linear

$$
\begin{equation*}
\Delta(\xi):=\frac{a_{1} \xi}{\omega_{1}}-\frac{a_{3}}{\omega_{3}}=\frac{a_{1}}{\omega_{1}}\left(\xi-\xi^{*}\right) \tag{2.8c}
\end{equation*}
$$

and with polynomials F_{1} and F_{3} in ξ of degree $n-1$ and n where F_{3} is affine in F_{1} :

$$
\begin{align*}
F_{\mathbf{3}}(\xi)=F_{\mathbf{3 1}}(\xi)+\frac{a_{\mathbf{1}} \xi}{\omega_{\mathbf{1}}} F_{1}(\xi)= & F_{\mathbf{3 3}}(\xi)+\frac{a_{3}}{\omega_{3}} F_{1}(\xi), \quad \omega:=Z a \tag{2.8d}\\
& \text { Like } \quad \xi \boldsymbol{u}-\mathbf{v}=\xi \mathbf{v}-\mathbf{v}+\xi(\boldsymbol{u}-\boldsymbol{v})=\xi \boldsymbol{u}-\boldsymbol{u}+(\boldsymbol{u}-\boldsymbol{v}) .
\end{align*}
$$

The resulting $\Theta_{2} \stackrel{!}{=} 0$ can be written in polynomial form as

$$
Q(\xi):=J_{0}(\xi) F_{3}(\xi)-J_{1}(\xi)\left[F_{1}(\xi)\right]^{2}-J_{2}(\xi) F_{1}(\xi) F_{3}(\xi) \stackrel{!}{=} 0
$$

2.2 cont.

The resulting $\Theta_{2} \stackrel{!}{=} 0$ can be written in polynomial form as

$$
Q(\xi) \equiv Q_{1}(\xi):=Q_{10}(\xi) \Delta^{2}(\xi)-Q_{11}(\xi) \Delta(\xi) F_{1}(\xi)+Q_{12}(\xi) F_{1}^{2}(\xi) \stackrel{!}{=} 0
$$

or equivalently as

$$
Q(\xi) \equiv Q_{3}(\xi):=Q_{30}(\xi) \Delta^{2}(\xi)-Q_{31}(\xi) \Delta(\xi) F_{1}(\xi)+Q_{32}(\xi) F_{1}^{2}(\xi) \stackrel{!}{=} 0
$$

We now take linear combinations with nonnegative h_{1} and $h_{3}, h:=\left(h_{1}, h_{3}\right) \neq(0,0)$, and define

$$
\begin{equation*}
P_{h}(\xi):=\omega_{2} h_{1} Q_{1}(\xi)+\omega_{2} h_{3} Q_{3}(\xi)=A_{h}(\xi) \Delta^{2}(\xi)+B_{h}(\xi) \Delta(\xi) F_{1}(\xi)-C_{h}(\xi) F_{1}^{2}(\xi) \tag{2.9}
\end{equation*}
$$

with certain polynomials $A_{h}(\xi), B_{h}(\xi)$ and $C_{h}(\xi)$. Note: P_{h} is of degree $2 n+1$.
A zero ξ_{0} of P_{h} will be called admissible if it satisfies

$$
\left.\xi_{0}>0, \quad g_{1}\left(\xi_{0}\right)>0 \quad \text { (i.e., } \Delta\left(\xi_{0}\right) F_{1}\left(\xi_{0}\right)>0\right)
$$

and hence automatically $g_{3}\left(\xi_{0}\right)>0$.
Note: nonlinear a-dependence!

2.2 cont.

In the 'symmetric' case $h=\left(\omega_{1}, \omega_{3}\right)$ one finds $A_{h}(\xi)>0$ and $C_{h}(\xi)>0$ for $\xi>0$ and thus

Scalar determining equation for $\xi>0, \xi \neq \xi^{*}$

The determining equation for admissible solutions $g \in \mathbb{R}_{>0}^{3}$ of the coset condition (2.7) is given by

$$
\begin{align*}
& \theta(\xi, a):= \\
& 2 C_{h}(\xi, a) F_{1}(\xi, a)-\Delta(\xi, a)\left[B_{h}(\xi, a)+\left(B_{h}^{2}(\xi, a)+4 A_{h}(\xi, a) C_{h}(\xi, a)\right)^{1 / 2}\right]=0 . \tag{2.10}
\end{align*}
$$

Any positive zero $\xi=\xi(a)$ of $\theta(\xi, a)$, different from $\xi^{*}(a)$, defines a positive steady state

$$
b=\operatorname{diag}\left(g^{L}\right) a \neq a
$$

of the network (1.6) for $g=\left(g_{1}(\xi(a), a), \xi(a), g_{3}(\xi(a), a)\right)^{T}$ from (2.8).
In the 'unsymmetric' cases $h=\left(0, \omega_{3}\right)$ or $h=\left(\omega_{1}, 0\right)$ one has to check whether $A_{h}(\xi)>0$ and $C_{h}(\xi)>0$ hold for $\xi>0$ in order to establish (2.10).

Remark: There are at most $2 n-1$ admissible zeros for P_{h}.

3.1 Computational Aspects for $n=3$

3. Computational Aspects - Counterexamples

In the 'unsymmetric' case $h=\left(0, \omega_{3}\right)$ we denote $A_{\left(0, \omega_{3}\right)}$ by A_{0} etc. A_{0} and C_{0} turn out to be positive for $\xi>0$ so that (2.10) applies. Recalling (2.8c),

$$
\Delta(\xi)=\frac{a_{1} \xi}{\omega_{1}}-\frac{a_{3}}{\omega_{3}}
$$

and suppressing the a-dependencies one has (2.10) in the form

$$
\begin{aligned}
2 C_{0}(\xi) F_{1}(\xi) & +a_{3} \omega_{1}\left[B_{0}(\xi)+\left(B_{0}^{2}(\xi)+4 A_{0}(\xi) C_{0}(\xi)\right)^{1 / 2}\right] \\
& =a_{1} \omega_{3} \xi\left[B_{0}(\xi)+\left(B_{0}^{2}(\xi)+4 A_{0}(\xi) C_{0}(\xi)\right)^{1 / 2}\right]
\end{aligned}
$$

where the n parameters

$$
a_{3 j+1} \quad \text { for } \quad j=1,2, \ldots, n
$$

appear just on the left-hand side and in a linear way. So they might be tuned to fulfill some prescribed constraints.

3.1 cont. $(n=3)$

For the triple phosphorylation $(n=3)$:

- We choose a positive $a \in \mathbb{R}_{>0}^{3 \cdot 3+3}$ and fix the rate constant vector

$$
\kappa=\kappa(a)=\operatorname{diag}\left(a^{-\mathcal{Y}^{\boldsymbol{T}}}\right) E \lambda \text { with } \lambda=\underline{1}
$$

so that a is a positive steady state of the network (1.6).

- Obviously, one has $\theta_{0}(1, a)=0$.
- In particular, we choose a of the form

$$
\begin{equation*}
a^{*}=\left(1,1,1\left|a_{4}, 1,1\right| a_{7}, 1,0.1 \mid a_{10}, 0.32,60\right)^{T} \in \mathbb{R}_{>0}^{12} \tag{3.1}
\end{equation*}
$$

and compute analytically the remaining $n=3$ parameters a_{4}, a_{7} and a_{10} so that $\theta_{0}\left(\xi, a^{*}\right)$ has the triple zero $\xi=1$ and a further zero $\xi=\frac{1}{2}$. The resulting numerical values (up to 4 decimals) are given by

$$
\begin{equation*}
a_{4}:=a_{4}^{*}=5.9026(84) \ldots, a_{7}:=a_{7}^{*}=2.1344(85) \ldots, a_{10}:=a_{10}^{*}=248.9413(34) \ldots . \tag{3.2}
\end{equation*}
$$

The rate constant vector $\kappa=\kappa\left(a^{*}\right)$ is positive.

- Finally, we vary the 10th component:

$$
a=a^{*}+\delta e_{10}, \quad-.05<\delta<.05
$$

in (3.1), leading to the bifurcation diagram in Figure 1 in the (δ, ξ)-plane.

3.1 Bifurcation diagram

Figure: 4.1 Numerical continuation of $\theta_{0}(\xi, a)=0$ from (2.10) with the data (3.1)\&(3.2).

Pitchfork bifurcation at $\left(\delta_{0}, \xi_{0}\right)=(0,1)(\mathrm{BP})$ and two saddle node bifurcations (LP) at $\left(\delta_{-}, \xi_{-}\right)=(-.04488 \ldots, .66691(4) \ldots)$ and $\left(\delta_{+}, \xi_{+}\right)=(.03352 \ldots, .41262(522) \ldots)$. For $\delta=0$ one encounters the prescribed triple zero $\xi=1$, the zero $\xi=\frac{1}{2}$ and an additional zero near .36222(562)....
Solid lines correspond to ξ 's yielding exponentially stable steady states, dashed lines to ξ 's yielding unstable steady states.

3.1 Numerical values

For $\delta=-.03$, the numerical values for the five admissible zeros $\xi^{(j)}$ of (2.10) and the five admissible steady states $b^{(j)}$ of (1.6) can be found below.

Phos. \#	$b^{(1)}$	$b^{(2)}$	$b^{(3)}$	$b^{(4)} \equiv a$	$b^{(5)}$
0	1.4730	1.2198	1.0793	1	0.9618
	4.7498	2.4000	1.4726	1	0.7700
	4.2424	2.1440	1.3722	1	0.8246
	41.3012	17.2813	9.3826	5.9026	4.3718
	1.6493	1.3655	1.1583	1	0.8980
	6.9970	2.9277	1.5895	1	0.7406
	5.1859	3.5554	2.6688	2.1344	1.8438
2	0.5726	0.7768	0.9112	1	1.0474
	0.2429	0.1665	0.1250	.1	0.0863
3	209.9882	235.8919	244.8175	248.9113	250.7710
	0.0636	0.1414	0.2293	.32	0.3909
	50.6175	56.8616	59.0132	60	60.4482
ξ	0.3472	0.5689	0.7866	1	1.1662

Table: The five admissible steady states $b^{(\boldsymbol{j})}$ of (1.6) for $\delta=-.03$ and the corresponding zeros $\xi^{(j)}$ of (2.10) up to 4 decimals: the numerical values of the rate constant vectors $\kappa=\kappa(a)$ and $\kappa\left(a^{*}\right)$ coincide up to the first 4 decimals, but $\kappa_{14}(a)=\kappa_{15}(a)=0.00401749 \ldots$ and $\kappa_{14}\left(a^{*}\right)=\kappa_{15}\left(a^{*}\right)=0.00401701 \ldots$. differ.

3.2 Case $n=4$

- For $n \geq 3$, the above argument can be applied to an n-site phosphorylation to create networks with $n+1$ steady states for (1.6) by tuning the n parameters $a_{3 j+1}$ so that

$$
n+1 \text { steady states may be prescribed. }
$$

- For odd n, one is then generically expecting $n+2$ such steady states.

Using this rationale for even $n=4$, we have constructed a phosphorylation network with a determining equation (2.10) with 5 prescribed zeros at $0.5,1,1.03,1.05$ and 1.07 by choosing $a \in \mathbb{R}_{>0}^{15}$ as

$$
\begin{array}{llllll}
a_{1}=1, & a_{2}=1, & a_{3}=1, & a_{4}=1.983448, & a_{5}=1, & a_{6}=1, \\
a_{7}=469.6162955, & a_{8}=1, & a_{9}=400, & a_{10}=73.8036, & a_{11}=.32, & a_{12}=60, \\
a_{13}=.5807998, & a_{14}=7, & a_{15}=1.8 . & & &
\end{array}
$$

As it turns out, this determining equation has two additional positive zeros, one near .59 and one near 51.07. By judicious guessing - see next figure.

3.2 cont. $(n=4)$

Figure: 4.2 Numerical continuation of $\theta_{0}(\xi, a)=0$ from (2.10) with the above data - zoom on the right

There are 6 zeros $0.5,0.5910929 \ldots, 1,1.03,1.05$ and 1.07 and there is a 7 th zero near $\xi=51.07286$.
Solid lines correspond to ξ 's yielding exponentially stable steady states, dashed lines to ξ 's yielding unstable steady states. The label LP denotes saddle-node bifurcation points, the label BP transcritical bifurcation points.

4.1 Relations to sign patterns/orthants

4. Geometry of Multistationarity

Relations to sign patterns/orthants

- For the steady states of the 3 -site phosphorylation system we observe that the sign vector for $\ln \left(b^{(j+1)} / b^{(j)}\right)$ is given by

$$
\operatorname{sign}\left(\ln \left(b^{(j+1)} / b^{(j)}\right)\right)=\left(-,-,-|-,-,-|-,+,-|+,+,+)^{T}=: s_{2}\right.
$$

for $j=1,2,3,4$ so that these steady states are ordered with respect to s_{2}.

- The steady states of our 4-site phosphorylation system are not ordered in such a way.

4.2 Geometric constraints on multistationarity

Let $\kappa \in \mathbb{R}_{>0}^{6 n}$ be given and assume network (1.1) admits two distinct positive vectors a and b with $S R(\kappa, a)=S R(\kappa, b)=0, Z(b-a)=0$.

Geometry and Reconstruction

Then the steady state concentrations a_{1} and b_{1} of the kinase together with the steady state concentrations a_{3} and b_{3} of the phosphatase and the steady state concentrations a_{2} and b_{2} of the unphosphorylated protein allow the reconstruction of the ratios

$$
\left(g^{L}\right)_{i}=\frac{b_{i}}{a_{i}}, \quad i=4, \ldots, 3+3 n
$$

in the following way:

$$
\Gamma_{(0)}^{T}=\left(\Gamma_{E_{1}}, \Gamma_{A}, \Gamma_{E_{2}}\right)=\left(\frac{b_{1}}{a_{1}}, \frac{b_{2}}{a_{2}}, \frac{b_{3}}{a_{3}}\right) \text { and } \xi=\frac{\Gamma_{E_{1}}}{\Gamma_{E_{2}}}=\frac{b_{1} / a_{1}}{b_{2} / a_{3}},
$$

with $\Gamma_{(\mathbf{1})}^{\boldsymbol{T}}=\left(\Gamma_{\mathbf{A}} \Gamma_{\boldsymbol{E}_{1}}, \xi \Gamma_{\mathbf{A}}, \xi \Gamma_{\mathbf{A}} \Gamma_{\mathbf{E}_{\mathbf{2}}}\right)=\left(\frac{\boldsymbol{b}_{\mathbf{4}}}{\mathbf{a}_{4}}, \frac{\boldsymbol{b}_{\mathbf{5}}}{\mathbf{a}_{5}}, \frac{\boldsymbol{b}_{6}}{\mathbf{a}_{6}}\right)$ and

$$
\Gamma_{(i)}^{T}=\left(\left\ulcorner_{A_{(i-1) P}} E_{1}, \Gamma_{A_{i P}}, \Gamma_{A_{i P} E_{2}}\right)=\xi^{i-1}\left(\frac{b_{4}}{a_{4}}, \frac{b_{5}}{a_{5}}, \frac{b_{6}}{a_{6}}\right)=\left(\frac{b_{1+3 i}}{a_{1+3 i}}, \frac{b_{2+3 i}}{a_{2+3 i}}, \frac{b_{3+3 i}}{a_{3+3 i}}\right)\right.
$$

for $\boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{n}$. In particular one has for $\boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{n}-1$

$$
\begin{equation*}
\xi=\frac{\Gamma_{E_{1}}}{\Gamma_{E_{2}}}=\frac{\Gamma_{\boldsymbol{A}_{P}}}{\Gamma_{\boldsymbol{A}}}=\frac{\Gamma_{\boldsymbol{A}_{(i+1) P}}}{\Gamma_{\boldsymbol{A}_{i P}}}=\frac{\Gamma_{\boldsymbol{A}_{i P} E_{1}}}{\Gamma_{\boldsymbol{A}_{(i-1) P}} E_{1}}=\frac{\Gamma_{\boldsymbol{A}_{(i+1) P}} \boldsymbol{E}_{\mathbf{2}}}{\Gamma_{\boldsymbol{A}_{i P} E_{2}}} . \tag{4.1}
\end{equation*}
$$

4.2 cont.

Consider the experimental investigation of a specific multisite phosphorylation system (1.1) whereby the rate constants κ and the total concentrations are fixed, but might not (all) be known. Suppose we know a priori that the system exhibits multistationarity.

Then steady state data of the concentration of kinase, phosphatase and protein in two different steady states a and b (for these total concentrations) are sufficient to reconstruct all fractions $\frac{b_{i}}{a_{i}}$ of the two steady states. That is:

Measurements and Reconstruction

It suffices to measure a_{1}, a_{2}, a_{3} and b_{1}, b_{2}, b_{3} to reconstruct all the ratios
$\frac{b_{i}}{a_{i}}, i=1, \ldots, 3+3 n$.

4.4 A graphical test to exclude multistationarity

Suppose for the phosphoforms A, A_{P}, \ldots, A_{n} two different sets of steady state values have been measured, i.e., there exists data for $a_{2}, a_{5}, \ldots, a_{2+3 n}$ and $b_{2}, b_{5}, \ldots, b_{2+3 n}$.

If these belong to two steady states within one and the same coset, then the points

$$
\alpha_{i}:=\frac{a_{3 i+2}}{a_{3 i-1}}, \quad \beta_{i}:=\frac{b_{3 i+2}}{b_{3 i-1}}, \quad i=1, \ldots, n,
$$

are collinear. Hence:

Exclusion of multistationarity

Measurement of two steady state values for $A, \ldots, A_{n} P$ suffices to exclude multistationarity in case the points $\left(\alpha_{i}, \beta_{i}\right)$ are not collinear.

Literature

- D. Flockerzi and C. Conradi: Subnetwork Analysis for Multistationarity in Mass Action Kinetics, Journal of Physics Conference Series 138, 012006, 2008.
- L. Wang and E. Sontag: On the number of steady states in a multiple futile cycle. Journal of Mathematical Biology, 57:29-52, 2008.
- C. Conradi and D. Flockerzi: Multistationarity in mass action networks with applications to ERK activation, Journal of Mathematical Biology 65, 1, 107-156, 2012.
- C. Conradi and D. Flockerzi: Switching in mass action networks based on linear inequalities, SIAM Journal on Applied Dynamical Systems 11, 1, 110-134, 2012.
- K. Holstein, D. Flockerzi, and C. Conradi: Multistationarity in sequential distributed multisite phosphorylation networks. Bulletin of Mathematical Biology, 75: 2028-2058, 2013.
- D. Flockerzi, K. Holstein and C. Conradi:

N -site phosphorylation systems with $2 \mathrm{~N}-1$ steady states, arXiv:1312.4774v1.

