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Introduction

Introduction 1.1: The Origin

1. Introduction

1.1 The Origin: JMB-Paper by L. Wang & E.D. Sontag

On the number of steady states in a multiple futile cycle

Journal of Math. Biology 57:29�52, 2008

For N-site phosphorylation systems, there are no more than 2N-1 steady states.

'We do not expect the number of steady states to exceed
N + 1 if N is even and N if N is odd.'

'So a natural conjecture would be that the number of steady states never exceeds
N + 1 under any condition.'
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Introduction 1.2 The Network

1.2 The Network

The network for the sequential distributive phosphorylation and dephosphorylation of
protein A at n-sites by a kinase E1 a phosphatase E2.
The phosphorylated forms of A are denoted by the subscript nP denoting the number
of phosphorylated sites (A = A0·P).

E1 + Ai−1P
k3i−2

GGGGGGGGGGBFGGGGGGGGGG

k3i−1
Ai−1P E1

k3i
GGGGAE1 + AiP , i = 1, . . . , n

E2 + AiP

l3i−2
GGGGGGGGGGBFGGGGGGGGGG

l3i−1
AiP E2

l3i
GGGGA E2 + Ai−1P , i = 1, . . . , n .

(1.1)
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Introduction 1.2 The Network

1.2 cont.

With

x1 = E1 , x2 = A = A0P , x3 = E2 ,

x1+3i = A(i−1)PE1 , x2+3i = AiP , x3+3i = AiPE2
(1.2)

The network

x1 + x3i−1
k3i−2

GGGGGGGGGGBFGGGGGGGGGG

k3i−1
x3i+1

k3i
GGGGAx1 + x3i+2,

x2 + x3i+2

l3i−2
GGGGGGGGGGBFGGGGGGGGGG

l3i−1
x3i+3

l3i
GGGGA x2 + x3i−1

(1.3)

for i = 1, . . . , n and for κ(i) := (k3i−2, k3i−1, k3i , l3i−2, l3i−1, l3i )
T . De�ne

κ := col
(
κ(1), . . . , κ(n)

)
∈ R6n

>0 . (1.4)

.
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Introduction 1.3 The Mass Action ODE-System

1.3 The Mass Action ODE-System

From (1.1), one can derive for every n the

� stoichiometric matrix S ∈ R(3+3n)×6n and the

� rate exponent matrix Y = (y1, ..., y6n) ∈ R(3+3n)×6n.

These de�ne two monomial functions Φ : R3+3n → R6n and R(κ, ·) : R3+3n → R6n via

Φ (x) := xY
T
≡ col (xy1 , . . . , xy6n ) and R(κ, x) := diag (κ) Φ (x) . (1.5)

and the

Dynamical system with mass action kinetics

ẋ = S R(κ, x) = S diag (κ) xY
T
. (1.6)

The 6n-dimensional vector R(κ, x) is called the reaction rate vector.

����

eµ = col
(
eµi
)
, ln(µ) = col

(
ln(µi )

)
, a`

T
:=
∏m

i=1
a
`i
i

= e`
T

ln(a) ,

gL = col
(
gLrow i

)
for g ∈ Rm

>0
, L ∈ Zn×m.
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Introduction 1.3 The Mass Action ODE-System

For n = 3

The stoichiometric matrix S and the rate exponent matrix YT :



−1 1 1 0 0 0 −1 1 1 0 0 0 −1 1 1 0 0 0
−1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 1 1 0 0 0 −1 1 1 0 0 0 −1 1 1
1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 1 0 −1 1 0 0 0 1 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 1 0 −1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1


,

YT =



1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1



.
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Introduction 1.4 Multistationarity

1.4 Multistationarity, e.g. for Switching

A matrix Z of conservation laws, providing a basis for the left kernel of S, is given by

Z =

 1 0 0
−1 1 −1
0 0 1

1 0 0 1 0 0
0 1 0 · · · 0 1 0
0 0 1 0 0 1

 ∈ R3×(3+3n).

(1.7)

De�nition of Multistationarity

The system ẋ = S R(κ, x) from (1.6) is said to exhibit multistationarity if and only if
there exist a positive vector κ ∈ R6n

>0
and at least two distinct positive vectors a and b

in R3+3n
>0

with

S R(κ, a) = 0 , (1.8a)

S R(κ, b) = 0 , (1.8b)

Z a = Z b. (1.8c)

(1.8a) and (1.8b) describe the steady state property of a and b whereas (1.8c) asks for
these steady states to belong to the same coset of the stoichiometric matrix S.
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General Reduction Results 2.1 Characterization of Multiststionarity

2.1 Characterization (Generator matrix E )

2. General Reduction Results

Consider the

Mass Action Network

ẋ = S R(κ, x) = S diag(κ) xY
T

(2.1)

with positive pointed polyhedral cone C = ker(S)
⋂

R3n+3

>0

and its generator matrix E ∈ R6n×3n
>0

given below,

and left kernel basis matrix Z (conservation laws, ZS = 0).

E :=

 E0
. . .

E0

 ∈ R6n×3n
>0

with E0 :=


1 0 1
1 0 0
0 0 1
0 1 1
0 1 0
0 0 1

 (2.2)

where that the columns of E also form a basis of ker (S).

The steady state relations for the cone C are of the form

diag(κ) aY
T

= Eλ , diag(κ) bY
T

= Eν for λ, ν ∈ R3n
≥0 .
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General Reduction Results 2.1 Characterization of Multiststionarity

2.1 Characterization (3D Reduction)
For a given positive steady state a one has the rate constant vector(s)

κ = κ(a, λ) := diag
(
a−Y

T
)
E λ . (2.3)

A further positive steady state b for this κ = κ(a, λ) can be written as

b = diag(eµ) a = diag
( 1

κ(a, λ)

)
E ν (µ ∈ R3n+3)

with

YT µ = ln
[Eν
Eλ

]
. (2.4)

Two Facts

The right hand side of (2.4) is in a 2-dimensional subspace (by Fredholm).

The right kernel of YT is 1-dimensional.

Consequence

µ = L ln (g) for g = (g1, g2, g3)T ∈ R3
>0 (2.5)

for the matrix L ∈ Z(3+3n)×3 given below and b = diag(eµ) a = diag(gL) a.
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General Reduction Results 2.1 Characterization of Multiststionarity

2.1 Characterization (Matrix L)

We choose the matrix L in an (obviously) clever way as

L ≡ (L1, L2, L3) :=


L (0)
L (1)
...

L (n)

 ∈ Z(3+3n)×3 (2.6a)

for

L (0) :=

 1 n − 1 −1
−1 −n 0
1 n − 2 −1

 , L (i) :=

 0 i − 2 −1
−1 i − n 0
0 i − 2 −1

 (2.6b)

In the expression b = diag(gL) a,

the g1-exponents are given by the 1st column of L and hence ±1 (or 0),

the g3-exponents are given by the 3rd column of L and hence −1 (or 0),

the g2-exponents are given by the 2nd column of L .

One has: ker
(
YT
)

= [L1].
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General Reduction Results 2.1 Characterization of Multiststionarity

2.1 Characterization (Coset Condition)

With the parameter a ∈ R3n+3

>0
:

3D Multistationarity Condition/Coset Condition

Θ(g , a) := Z
(
diag(gL)− Id

)
a = 0 , (2.7)

Θ = (Θ1,Θ2,Θ3)T , g = (g1, g2, g3)T ∈ R3
>0 .

3D Reduction

For g 6= 1 satisfying the rational 3× 3-system (2.7), the steady states

a and b := diag(gL) a

are distinct positive steady states for the network ẋ = S R(κ(a, λ), x)
within one coset of the stoichiometric matrix S.
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General Reduction Results 2.2 Scalar Determining Equation

2.2 Scalar Determinig Equation

Exploiting the properties of our choice of L and taking g2 ≡ ξ: The system

Θ1 = 0 , Θ3 = 0

is linear wrt. g1 and g3. Suppressing the a-dependence:

g1 = g1(ξ) := ξ1−nF1(ξ)/∆(ξ)
!
> 0, (2.8a)

g3 = g3(ξ) := ξ−1F3(ξ)/∆(ξ)
!
> 0 (2.8b)

with linear

∆(ξ) :=
a1ξ

ω1
−

a3

ω3
=

a1

ω1
(ξ − ξ∗) (2.8c)

and with polynomials F1 and F3 in ξ of degree n − 1 and n where F3 is a�ne in F1:

F3(ξ) = F31(ξ) +
a1ξ

ω1
F1(ξ) = F33(ξ) +

a3

ω3
F1(ξ) , ω := Z a . (2.8d)

Like ξu − v = ξv − v + ξ(u − v) = ξu − u + (u − v).

The resulting Θ2

!
= 0 can be written in polynomial form as

Q(ξ) := J0(ξ)F3(ξ) − J1(ξ)
[
F1(ξ)

]2 − J2(ξ)F1(ξ)F3(ξ)
!

= 0 .
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General Reduction Results 2.2 Scalar Determining Equation

2.2 cont.

The resulting Θ2

!
= 0 can be written in polynomial form as

Q(ξ) ≡ Q1(ξ) := Q10(ξ)∆2(ξ) − Q11(ξ) ∆(ξ)F1(ξ) + Q12(ξ)F 2
1 (ξ)

!
= 0 .

or equivalently as

Q(ξ) ≡ Q3(ξ) := Q30(ξ)∆2(ξ) − Q31(ξ) ∆(ξ)F1(ξ) + Q32(ξ)F 2
1 (ξ)

!
= 0 .

We now take linear combinations with nonnegative h1 and h3, h := (h1, h3) 6= (0, 0),
and de�ne

Ph(ξ) := ω2h1Q1(ξ) + ω2h3Q3(ξ) = Ah(ξ)∆2(ξ) + Bh(ξ)∆(ξ)F1(ξ)− Ch(ξ)F 2
1 (ξ)
(2.9)

with certain polynomials Ah(ξ), Bh(ξ) and Ch(ξ). Note: Ph is of degree 2n + 1.

A zero ξ0 of Ph will be called admissible if it satis�es

ξ0 > 0 , g1(ξ0) > 0 (i.e.,∆(ξ0)F1(ξ0) > 0)

and hence automatically g3(ξ0) > 0. Note: nonlinear a-dependence!
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General Reduction Results 2.2 Scalar Determining Equation

2.2 cont.

In the 'symmetric' case h = (ω1, ω3) one �nds Ah(ξ) > 0 and Ch(ξ) > 0 for ξ > 0 and
thus

Scalar determining equation for ξ > 0, ξ 6= ξ∗

The determining equation for admissible solutions g ∈ R3
>0

of the coset condition
(2.7) is given by

θ(ξ, a) :=

2Ch(ξ, a)F1(ξ, a)− ∆(ξ, a)
[
Bh(ξ, a) +

(
B2

h
(ξ, a) + 4Ah(ξ, a)Ch(ξ, a)

)1/2]
= 0 .

(2.10)
Any positive zero ξ = ξ(a) of θ(ξ, a), di�erent from ξ∗(a), de�nes a positive steady
state

b = diag
(
gL
)
a 6= a

of the network (1.6) for g = (g1(ξ(a), a), ξ(a), g3(ξ(a), a))T from (2.8).

In the 'unsymmetric' cases h = (0, ω3) or h = (ω1, 0) one has to check whether
Ah(ξ) > 0 and Ch(ξ) > 0 hold for ξ > 0 in order to establish (2.10).

Remark: There are at most 2n − 1 admissible zeros for Ph.
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Computational Aspects � Counterexamples 3.1 Triple phosphorylation (n = 3)

3.1 Computational Aspects for n = 3

3. Computational Aspects � Counterexamples

In the 'unsymmetric' case h = (0, ω3) we denote A(0,ω3) by A0 etc.
A0 and C0 turn out to be positive for ξ > 0 so that (2.10) applies.
Recalling (2.8c),

∆(ξ) =
a1ξ

ω1
−

a3

ω3
,

and suppressing the a-dependencies one has (2.10) in the form

2C0(ξ)F1(ξ) + a3ω1
[
B0(ξ) +

(
B2
0

(ξ) + 4A0(ξ)C0(ξ)
)1/2]

= a1ω3ξ
[
B0(ξ) +

(
B2
0

(ξ) + 4A0(ξ)C0(ξ)
)1/2]

where the n parameters
a3j+1 for j = 1, 2, ..., n

appear just on the left-hand side and in a linear way. So they might be tuned to ful�ll
some prescribed constraints.
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Computational Aspects � Counterexamples 3.1 Triple phosphorylation (n = 3)

3.1 cont.(n = 3)

For the triple phosphorylation (n = 3):

We choose a positive a ∈ R3·3+3

>0
and �x the rate constant vector

κ = κ(a) = diag
(
a−Y

T
)
E λ with λ = 1

so that a is a positive steady state of the network (1.6).

Obviously, one has θ0(1, a) = 0.

In particular, we choose a of the form

a∗ =
(
1, 1, 1|a4, 1, 1|a7, 1, 0.1|a10, 0.32, 60

)T ∈ R12
>0 (3.1)

and compute analytically the remaining n = 3 parameters a4, a7 and a10 so that
θ0(ξ, a∗) has the triple zero ξ = 1 and a further zero ξ = 1

2
. The resulting

numerical values (up to 4 decimals) are given by

a4 := a∗4 = 5.9026(84)... , a7 := a∗7 = 2.1344(85)... , a10 := a∗10 = 248.9413(34)... .
(3.2)

The rate constant vector κ = κ(a∗) is positive.

Finally, we vary the 10th component:

a = a∗ + δ e10 , −.05 < δ < .05 ,

in (3.1), leading to the bifurcation diagram in Figure 1 in the (δ, ξ)-plane.
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Computational Aspects � Counterexamples 3.1 Triple phosphorylation (n = 3)

3.1 Bifurcation diagram

Figure: 4.1 Numerical continuation of θ0(ξ, a) = 0 from (2.10) with the data (3.1)&(3.2).

Pitchfork bifurcation at (δ0, ξ0) = (0, 1) (BP) and two saddle node bifurcations (LP)
at (δ−, ξ−) = (−.04488..., .66691(4)...) and (δ+, ξ+) = (.03352..., .41262(522)...).
For δ = 0 one encounters the prescribed triple zero ξ = 1, the zero ξ = 1

2
and an

additional zero near .36222(562)....
Solid lines correspond to ξ's yielding exponentially stable steady states, dashed lines to
ξ's yielding unstable steady states.
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Computational Aspects � Counterexamples 3.1 Triple phosphorylation (n = 3)

3.1 Numerical values

For δ = −.03, the numerical values for the �ve admissible zeros ξ(j) of (2.10) and the
�ve admissible steady states b(j) of (1.6) can be found below.

Phos. # b(1) b(2) b(3) b(4) ≡ a b(5)

0
1.4730 1.2198 1.0793 1 0.9618
4.7498 2.4000 1.4726 1 0.7700
4.2424 2.1440 1.3722 1 0.8246

1
41.3012 17.2813 9.3826 5.9026 4.3718
1.6493 1.3655 1.1583 1 0.8980
6.9970 2.9277 1.5895 1 0.7406

2
5.1859 3.5554 2.6688 2.1344 1.8438
0.5726 0.7768 0.9112 1 1.0474
0.2429 0.1665 0.1250 .1 0.0863

3
209.9882 235.8919 244.8175 248.9113 250.7710
0.0636 0.1414 0.2293 .32 0.3909
50.6175 56.8616 59.0132 60 60.4482

ξ 0.3472 0.5689 0.7866 1 1.1662

Table: The �ve admissible steady states b(j) of (1.6) for δ = −.03 and the corresponding zeros

ξ(j) of (2.10) up to 4 decimals: the numerical values of the rate constant vectors κ = κ(a) and
κ(a∗) coincide up to the �rst 4 decimals, but κ14(a) = κ15(a) = 0.00401749.... and
κ14(a∗) = κ15(a∗) = 0.00401701.... di�er.
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Computational Aspects � Counterexamples 3.2 The Case n = 4

3.2 Case n = 4

For n ≥ 3, the above argument can be applied to an n-site phosphorylation to
create networks with n + 1 steady states for (1.6) by tuning the n parameters
a3j+1 so that

n + 1 steady states may be prescribed.

For odd n, one is then generically expecting n + 2 such steady states.

Using this rationale for even n = 4, we have constructed a phosphorylation network
with a determining equation (2.10) with 5 prescribed zeros at 0.5, 1, 1.03, 1.05 and
1.07 by choosing a ∈ R15

>0
as

a1 = 1 , a2 = 1 , a3 = 1 , a4 = 1.983448 , a5 = 1 , a6 = 1 ,

a7 = 469.6162955 , a8 = 1 , a9 = 400 , a10 = 73.8036 , a11 = .32 , a12 = 60 ,

a13 = .5807998 , a14 = 7 , a15 = 1.8 .

As it turns out, this determining equation has two additional positive zeros, one near
.59 and one near 51.07. By judicious guessing � see next �gure.
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Computational Aspects � Counterexamples 3.2 The Case n = 4

3.2 cont.(n = 4)

Figure: 4.2 Numerical continuation of θ0(ξ, a) = 0 from (2.10) with the above data � zoom on
the right

There are 6 zeros 0.5, 0.5910929..., 1, 1.03, 1.05 and 1.07 and there is a 7th zero near
ξ = 51.07286.
Solid lines correspond to ξ's yielding exponentially stable steady states, dashed lines to
ξ's yielding unstable steady states. The label LP denotes saddle-node bifurcation
points, the label BP transcritical bifurcation points.
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Geometry of Multistationarity 4.1 Relations to Sign Patterns/Orthants

4.1 Relations to sign patterns/orthants

4. Geometry of Multistationarity

Relations to sign patterns/orthants

For the steady states of the 3-site phosphorylation system
we observe that the sign vector for ln

(
b(j+1)/b(j)

)
is given by

sign
(
ln
(
b(j+1)/b(j)

))
= (−,−,−|−,−,−|−,+,−|+,+,+)T =: s2

for j = 1, 2, 3, 4 so that these steady states are ordered with respect to s2.

The steady states of our 4-site phosphorylation system are not ordered in such a
way.
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Geometry of Multistationarity 4.2 Geometric Constraints and Reconstructions

4.2 Geometric constraints on multistationarity

Let κ ∈ R6n
>0

be given and assume network (1.1) admits two distinct positive vectors
a and b with S R(κ, a) = S R(κ, b) = 0, Z (b − a) = 0.

Geometry and Reconstruction

Then the steady state concentrations a1 and b1 of the kinase together with
the steady state concentrations a3 and b3 of the phosphatase and
the steady state concentrations a2 and b2 of the unphosphorylated protein
allow the reconstruction of the ratios

(gL)i =
bi

ai
, i = 4, . . . , 3 + 3n,

in the following way:

ΓT(0) =
(

ΓE1
, ΓA, ΓE2

)
=
( b1
a1
,
b2

a2
,
b3

a3

)
and ξ =

ΓE1

ΓE2

=
b1/a1

b2/a3
,

with ΓT
(1)

=
(

ΓAΓE1
, ξΓA, ξΓAΓE2

)
=
( b4
a4
,
b5
a5
,
b6
a6

)
and

ΓT(i ) =
(

ΓA(i−1)PE1
, ΓAiP

, ΓAiPE2

)
= ξ

i−1( b4
a4
,
b5

a5
,
b6

a6

)
=
( b1+3i

a1+3i

,
b2+3i

a2+3i

,
b3+3i

a3+3i

)

for i = 1, ..., n. In particular one has for i = 1, ..., n − 1

ξ =
ΓE1

ΓE2

=
ΓAP

ΓA

=

ΓA(i+1)P

ΓAiP

=
ΓAiPE1

ΓA(i−1)PE1

=

ΓA(i+1)PE2

ΓAiPE2

. (4.1)
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Geometry of Multistationarity 4.2 Geometric Constraints and Reconstructions

4.2 cont.

Consider the experimental investigation of a speci�c multisite phosphorylation
system (1.1) whereby the rate constants κ and the total concentrations are �xed, but
might not (all) be known. Suppose we know a priori that the system exhibits
multistationarity.

Then steady state data of the concentration of kinase, phosphatase and protein in two
di�erent steady states a and b (for these total concentrations) are su�cient to

reconstruct all fractions
bi
ai

of the two steady states. That is:

Measurements and Reconstruction

It su�ces to measure a1, a2, a3 and b1, b2, b3 to reconstruct all the ratios

bi
ai
, i = 1, . . . , 3 + 3n.
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Geometry of Multistationarity 4. A Graphical Test

4.4 A graphical test to exclude multistationarity

Suppose for the phosphoforms A, AP , . . . , AnP two di�erent sets of steady state
values have been measured, i.e.,
there exists data for a2, a5, . . . , a2+3n and b2, b5, . . . , b2+3n.

If these belong to two steady states within one and the same coset, then the points

αi :=
a3i+2

a3i−1
, βi :=

b3i+2

b3i−1
, i = 1, . . . , n ,

are collinear. Hence:

Exclusion of multistationarity

Measurement of two steady state values for A, . . . , AnP su�ces to exclude
multistationarity in case the points (αi , βi ) are not collinear.
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