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In this talk we discuss the limit passage from reversible, time-continuous Markov chains
to the one-dimensional Fokker–Planck equation with linear drift. In [Mie11] and [Maa11]
it was shown that Markov chains satisfying the reversibility condition (also called detailed
balance condition) have entropic gradient structures. More precisely, the evolution of a
reversible Markov chain on the finite state space {1, . . . , n} and with intensity matrix An

can be written as

(1) u̇ = Anu = −Kn(u)DEn(u).

Here, the driving functional En is the relative entropy and Kn(u) = Gn(u)−1 denotes
the state-dependent, symmetric, and positive semi-definite Onsager matrix, which is the
inverse of the metric tensor Gn(u).

In particular, reversible Markov chains arise as finite volume discretizations of the
Fokker–Planck equation. Using the entropy/entropy-dissipation formulation of (1) we
show that solutions of (1) converge to a solution of the Wasserstein formulation of the
Fokker–Planck equation when the fineness of the partitions goes to zero. Here, we only
use the gradient structures of the systems and prove a Γ-convergence result for the relative
entropy and dissipation potentials. Finally, we address the question of a generalization
to higher dimenions.
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