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AbstractThe aim of this report is to describe the discretisation of the Maxwellequations on tetrahedral grids with corresponding dual Voronoi cells to explainthe resulting program. The symmetry of the coeÆcients of the matrix isproven. A small example shows an input �le and same other details.1 The Maxwell equations in the frequency rangeFor given material constants � and " the governing equations in the frequency rangeare rot� 1�B� = j!"Erot (E) = �j!Bdiv ("E) = 0divB = 0.Where E, B denote the electrical and magnetic �elds, respectively. From these thefollowing integrals can be derived:IC � 1�B� � ds = ZA j!"E � dAIC (E) � ds = ZA (�j!B) � dAIS ("E) � nSdS = 0IS (B) � nSdS = 0:Here, A is a �nite surface in R3 , bounded by a closed curve C,with the vector dA perpendicular to any point on it,while S denotes the surface of a bounded region with outer normal nS,with the vector increment ds following the course of the curve C in a mathematicallypositive sense. 1



2 The electromagnetic �eld on the gridFor the discretisation, the electrical �eld strength E in the centre of the edges andthe magnetic induction B in the circumcentres of the surfaces (triangles) are con-sidered.Since the �eld strength and induction only occur within dot products for the integralformulation, they can be restricted to the projection of the electrical �eld strengthto the pertinent edges and the magnetic induction to the pertinent surface-normal.These projections can be represented as follows:PK (E (SAB)) = nABEAB = nBAEBAPN (B (SABC)) = nABCBABC = nBCABBCA = nCABBCAB= nBACBBAC = nACBBACB = nCBABCBAwhere the following nomenclature has been introduced:PK (:) projection on the appropriate edgePN (:) projection on the appropriate surface-normalSAB centre of the edge ABSABC circumcentre of the triangle ABCE (SAB) electrical �eld strength (vector) in SABB (SABC) magnetic induction (vector) in SABCnXY unit vector in XY directionnXY Z normal vector on the triangle XY Z, which is perpendicularwith the mathematically positive sequence of nodes X; Y; ZEXY ; BXY Z real or complex numbers(XY or XY Z are permutations of AB or ABC)The vectors nXY and nXY Z clearly satisfy:nAB = �nBAnABC = nBCA = nCAB = �nBAC = �nACB = �nCBAwhile EAB = �EBA (1)BABC = BBCA = BCAB = �BBAC = �BACB = �BCBA (2)
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3 Discretisation of the �rst Maxwell equationIn the following discretisation of the Maxwell equations, only the favourable caseis regarded, all circumcentres of the tetrahedra are situated within the respectivetetrahedron.To discretise the equationIC � 1�B� � ds = ZA j!"E � dA;the binary grid (where the nodal points are the circumcentres of the tetrahedra ofthe primary grid) is employed.The Voronoi surface of the binary grid (over which one integrates), belongs to theinternal edge AB of the primary grid, and is a planar polygon, whose corner pointsare the circumcentres of all tetrahedra, which possess the common edge AB.The discretised equation takes the form:XCD 1�ABCD �lDABC �BABC + lCABD �BABD�= j! "XCD 12"ABCD �dCAB � lDABC + dDAB � lCABD�#EAB; (3)
where the sum is over these tetrahedra ABCD, which possess the common edge AB.�ABCD; "ABCD material constants in the tetrahedron ABCDlDABC distance of the circumcentre of the tetrahedron ABCDto the triangle ABCdCAB distance of the circumcentre of the triangle ABCto the side AB
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�g.1 Location of the tetrahedra with common edge AB.The number of tetrahedra must be at least three.

�����������@@@@@@ AAAAAAA
AAAA����������������

�����������
SAB

SABDSABC
MABCD

dDABdCAB
lDABC lCABD

�g.2 Part of the Voronoi surface through the edge AB, to which to the tetra-hedron ABCD belongs.MABCD circumcentre of the tetrahedron ABCD
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4 Discretisation of the second Maxwell equationTo discretise IC (E) � ds = ZA (�j!B) � dA;we have employ the primary grid (in contrast to the �rst Maxwell equation), andintegrate over a triangular surface.This yields the following form:lAB � EAB + lBC � EBC + lCA � ECA = �j!BABC � AABC ; (4)with the associated notation:lAB length of the distance ABAABC area of the triangle ABC5 Discretisation of the third Maxwell equationNow we address the �rst of the surface integralsIS ("E) � nSdS = 0;reverting again to the binary grid. It is integrated over the surface of an internalnode A of the primary grid to the Voronoi cell. The surface of the Voronoi cellconsists of Voronoi surfaces, which belong to edges, whose shared corner node is A.A discretisation formula, similar form to the right-hand side of (3) is obtained,i.e.XB  "XCD 12"ABCD �dCAB � lDABC + dDAB � lCABD�#EAB! = 0; (5)except now we have an additional outer summation taken over all the nodes of Bneighbouring A (in the primary grid). 5



The summation order in equation (5) can be swapped in the following manner.Within a tetrahedron the node A has exactly three nodes of neighbour. With thecalculation the sections which are situated in the tetrahedron ABCD are consideredby three di�erent Voronoi surfaces. For the simpli�cation of the representation theequation is multiplied by two.This leads to the alternative form:XBCD �"ABCD ��dCAB � lDABC + dDAB � lCABD�EAB+ (6)+ �dBAC � lDABC + dDAC � lBACD�EAC + �dCAD � lBACD + dBAD � lCABD�EAD�� = 0;where now, the summation is over all tetrahedra ABCD, which possess the commonnode A.
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�g.3 Tetrahedron with the proportions of the Voronoi surfaces to the node A
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6 Discretisation of the fourth Maxwell equationFor one �eld integral equation IS (B) � nSdS = 0;the primary grid is again used (as with the second integral equation), only now theintegration is over the surface of a tetrahedron.As a consequence, the discretisation form�AABC �BABC � AACD �BACD + AABD �BABD + ABCD �BBCD = 0 (7)can be deduced.7 Elimination of the magnetic inductionBy multipling equation (3) by �j! and substituting for the variables of type BXY Zin accordance with equation (4), we can deduce thatXCD 1�ABCD �� lDABCAABC + lCABDAABD� lAB �EAB + lDABC � lBCAABC �EBC ++ lDABC � lCAAABC �ECA + lCABD � lBDAABD � EBD + lCABD � lDAAABD � EDA�= 12!2 "XCD "ABCD �dCAB � lDABC + dDAB � lCABD�#EAB (8)
holds, for each internal edge AB of the primary grid. Again here, the summation istaken over those tetrahedra ABCD, possessing the common edge AB.We note that (8) contains only the electric �eld variables.
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8 Graph-theoretical view of the gridIn order to be able to make predictions about the number of variables and the num-ber of equations, the grid is regarded as a graph.The following notation is used to describe the various geometrical objects whichconstitute the grid:E : nodesK : edgesF : surfacesT : tetrahedraEi : internal nodesKi : internal edges (nodes may exist outside)Fi : internal surfaces (nodes and edges may exist outside)E0 : nodes of the surface networkK0 : edges of the surface networkF0 : surfaces of the surface networkA division of the T tetrahedra into Ti internal tetrahedra (all sides are internal sur-faces) and T0 tetrahedra of the surface network (tetrahedron, with which at leastone side belongs to the surface network) is not meaningful, since no unique divisiongenerally exists.The following relationships for the grid variables hold:E = Ei + E0 (9)K = Ki +K0 (10)F = Fi + F0 (11)E �K + F � T = 1 (12)E0 �K0 + F0 = 2 (13)2K0 = 3F0 (14)4T = 2Fi + F0 (15)The �rst set (9) - (11) clearly hold, while the two equations (12) and (13), stem fromthe Euler polyhedron law for the grid and the surface network. The two remainingequations arise from the following considerations:8



Firstly, the surface network is a triangle built from F0 triangles. These triangleshave a total of 3F0 edges, but with neighbouring triangles two common edges col-lapse. Since the network is closed and has no outer edges , equation (14) follows.Secondly, the T tetrahedra of the grid have 4T sides altogether. All inner surfacesbelong to exactly two tetrahedra, while each exterior surface belongs to exactly onetetrahedron. Hence, equation (15) holds.Since we have seven equations with ten variables, then the set of equations isuniquely solvable, providing three of the arguments are known.Three interesting special cases:A) The surface network is determined by providing a singlevalue (E0; K0 or F0), upon solving:(E0 �K0 + F0 = 2) 2K0 = 3F0 2E0 = 4 + F0B) Three values for the grid (three of E;K; F; T ) determine thevalues of the surface network and the internal grid, using:E �K + F � T = 1 F0 = 2F � 4T Fi = 4T � FK0 = 3F � 6T Ki =K � 3F + 6TE0 = 2 + F � 2T Ei = E � F + 2T � 2C) With the values for the internal grid (Ei; Ki; Fi) the surfacenetwork and the total grid can be deduced from:T = 1 + Ei � Ki + FiK= 6 + 6Ei � 5Ki + 3Fi K0 = 6 + 6Ei � 6Ki + 3FiF = 4 + 4Ei � 4Ki + 3Fi F0 = 4 + 4Ei � 4Ki + 2FiE = 4 + 3Ei � 2Ki + Fi E0 = 4 + 2Ei � 2Ki + Fi9 Reduction of the size of the geometrical con-stants stemming from the governing equationsThe quantities occurring in the discrete form of the Maxwell equations, dZXY andlWXY Z, are unfavourable for computationed purposes. They represent the magnitudesof certain of vector di�erences and require a square-root operations. This can beavoided however by elimination of the given quantities.We �rst de�ne the quantities V DABCM , V CDABSM as follows:9



V DABCM : Volume of the tetrahedron ABCM , whereby M is the circumcentreof the tetrahedron ABCDV CDABSM : Volume of the tetrahedron ABSM , whereby M is the circumcentreof the tetrahedron ABCD and S is the circumcenter of the surfaceABCFrom these de�nitions, we can infer thatV DABCM = 13 � lDABC � AABC (16)V CDABSM = 16 � lDABC � dCAB � lAB (17)hold, and can then use these to substitute for dZXY and lWXY Z in (3),(6) and (8), to get:XCD 1�ABCD �V DABCMAABC �BABC + V CABDMAABD �BABD�= j! "XCD "ABCD �V CDABSMlAB + V DCABSMlAB �#EAB (18)
XBCD�"ABCD ��V CDABSMlAB + V DCABSMlAB �EAB + �V BDACSMlAC + V DBACSMlAC �EAC++�V CBADSMlAD + V BCADSMlAD �EAD�� = 0 (19)XCD 1�ABCD ��V DABCMA2ABC + V CABDMA2ABD � lAB � EAB + V DABCM � lBCA2ABC �EBC ++ V DABCM � lCAA2ABC � ECA + V CABDM � lBDA2ABD � EBD + V CABDM � lDAA2ABD � EDA�= !2 "XCD "ABCD �V CDABSMlAB + V DCABSMlAB �#EAB (20)
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Consequently, to calculate the coeÆcients in the sets of equations (18), (4), (19), (7)and (20), only the following geometrical sizes of the grid are needed: the circumcen-tre, the lengths of the edges, the areas of the surfaces, the volume of the tetrahedra,whose nodes are nodes of the network, and the circumcentres of tetrahedra andtriangles.10 Introduction of new variablesIntroduction of the variables EAB = EAB � lAB (21)BABC = BABC � AABC (22)ensures that any "length\ or "surface\ terms of the coeÆcient of the set of equations(18), (4), (19), (7) and (20) occur only as squares, so that no calculation invokingroots or vector magnitudes is required.The discrete forms of the four Maxwell equations and the set of equations for theelectrical �eld strengths then be come:XCD 1�ABCD �V DABCMA2ABC � BABC + V CABDMA2ABD � BABD�= j! "XCD "ABCD � V CDABSM + V DCABSMl2AB # EAB (23)EAB + EBC + ECA = �j! � BABC (24)XBCD�"ABCD �V CDABSM + V DCABSMl2AB � EAB + V BDACSM + V DBACSMl2CA � EAC++V CBADSM + V BCADSMl2AD � EAD�� = 0 (25)�BABC � BACD + BABD + BBCD = 0 (26)XCD 1�ABCD ��V DABCMA2ABC + V CABDMA2ABD � EAB + V DABCMA2ABC � EBC +11



+ V DABCMA2ABC � ECA + V CABDMA2ABD � EBD + V CABDMA2ABD � EDA�= !2 "XCD "ABCD � V CDABSM + V DCABSMl2AB # EAB (27)
11 Calculation of the circumcentre of a tetrahe-dronThe nodes of a non-degenerate tetrahedron are given by the vectorspi = (xi; yi; zi)T ; i = 0; 1; 2; 3Also, referring to �g. 4, we de�neFi : the node pi opposite sideni : normal one at Fi, which is outward arranged concerning the tetrahedronhi : Height of the node pi over Fi
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For all points x in the plane of Fi, the scalar product with the surface-normalni is constant and has the value mi, i.e.ni � x = mi: (28)The value jmij is equal to the orthogonal distance of the plane, in which the triangleFi is situated to the origin.Furthermore, we note that ni � pi + hi = mi (29)holds, and hence, more generally, we haveni � pj + hi � Æij = mi: (30)With gi := �ni=hi and di := mi=hi, we rewrite this in the formgi � pj + di = Æij i; j = 0; 1; 2; 3 ; (31)which is equivalent to the single matrix equation0BB@ d0 gT0d1 gT1d2 gT2d3 gT3 1CCA� 1 1 1 1p0 p1 p2 p3 � = 0BB@ 1 0 0 00 1 0 00 0 1 00 0 0 1 1CCA (32)To describe further calculations, the following notation is introduced:M : circumcentre of the circumsphereR : radius of the circumsphereThe radius R of the circumsphere satis�esR2 = (M� pi) � (M� pi) = jMj2 � 2pi �M+ jpij2 i = 0; 1; 2; 3: (33)With � := (R2 � jMj2)=2 it follows thatpi �M+ � = 12 jpij2 (34)or, in matrix form, 0BB@ 1 pT01 pT11 pT21 pT3 1CCA� �M � = 120BB@ jp0j2jp1j2jp2j2jp3j2 1CCA (35)13



Since the tetrahedra are not degenerate, the matrices are regular in equation (39),and hence invertible, so that� �M � = 12 0BB@ 1 pT01 pT11 pT21 pT3 1CCA�10BB@ jp0j2jp1j2jp2j2jp3j2 1CCA = 12 � d0 d1 d2 d3g0 g1 g2 g3 �0BB@ jp0j2jp1j2jp2j2jp3j2 1CCA (36)holds.Thus, we have � = 12 3Xk=0 dkjpkj2 (37)M = 12 3Xk=0 gkjpkj2 (38)R2 = jMj2 + 2� = 14 3Xi;k=0gi � gkjpij2jpkj2 + 3Xk=0 dkjpkj2; (39)where, in particular g0 = �n0h0 = �n0 � A1233V : (40)
12 Calculation of the circumcentre of a triangleFor the calculation of the circumcentre, there are two basic options: It can eitherbe calculated from three vectors of the triangle, or from the projection of the cir-cumcentre of the circumsphere.In the tetrahedron 0123 g0 is located perpendicular to the triangle 123. The constant�, to be determined, is related to the circumcentre S123 byS123 =M+ �g0: (41)Since the vector S123 � pi is situated in the plane of the triangle 123 for i = 1; 2; 3it must follow that (S123 � pi) � g0 = 0; (42)for i = 1; 2; 3. Choosing i = 1, reveals that(M+ �g0 � p1) � g0 =M � g0 + �jg0j2 � p1 � g0 = 0; (43)14



so that � = p1 � g0 �M � g0jg0j2 = g0jg0j2 � (p1 �M) ; (44)and hence, S123 =M+ p1 � g0 �M � g0jg0j2 g0 =M+ g0jg0j2 [(p1 �M) � g0] : (45)From the equations (45) and (38) it then follows thatS123 = p1 � g0jg0j2 g0 + 12 3Xk=1 jpkj2�gk � g0jg0j2gk � g0� (46)S123 = 12 3Xk=0 �gkjpkj2 � g0jg0j2 (g0 � gk) jpk � p1j2� : (47)The term in the parentheses of equation (46) is a vector in the plane of the triangle123, thus S123 is in fact independent of p0.
13 A preconditioner with graddiv("E)From div ("E) = 0 (48)it follows trivially that graddiv ("E) = 0: (49)In order to calculate graddiv ("E), we proceed with the de�nitions of divergence andgradient: div ("E) = limV!0 HS ("E) � dSV (50)grad U = limV!0 HS UdSV (51)15



A discrete form of the divergence is obtained by dividing the appropriate discreteform of the third Maxwell equation with the volume of the pertinent Voronoi cell.The volume VA for the Voronoi cell surrounding the node A is determined by:VA = XB  13 � lAB2 "XCD 12 �dCAB � lDABC + dDAB � lCABD�#! (52)= 12XB "XCD �V CDABSM + V DCABSM�# : (53)Here the �rst summation is over all neighbouring nodes B of A (in the primary grid)and the second summation is over all tetrahedra, which have the common edge AB.Also, from equation (6), we haveVA = 112 XBCD ��dCAB � lDABC + dDAB � lCABD� lAB++ �dBAC � lDABC + dDAC � lBACD� lAC + �dCAD � lBACD + dBAD � lCABD� lAD� (54)VA = 12 XBCD �V CDABSM + V DCABSM + V BDACSM + V DBACSM + V BCADSM + V CBADSM� : (55)From equations (19) (divided by two) and (55), we can then deduce a form for thediscrete divergence, i.e.div ("E) = P "ABCD h�V CDABSM + V DCABSM� EABlAB + �V BDACSM + V DBACSM� EAClAC iP (V CDABSM + V DCABSM + V BDACSM + V DBACSM + V BCADSM + V CBADSM)+ P "ABCD h�V CBADSM + V BCADSM� EADlAD iP (V CDABSM + V DCABSM + V BDACSM + V DBACSM + V BCADSM + V CBADSM) (56)In equations (54) to (56), the summation is over all tetrahedra ABCD, possessingthe common node A, the divergence of "E in the last equation is over all internalnodes of the primary grid.For the gradient along the edge AB, we have16



graddiv ("E) � nAB = div ("E)B � div ("E)Aj (pB � pA) j (57)
14 General formula for giIn accordance with equation (47), gi is the surface vector located inside the tetrahe-dron of the surface Fi divided by the volume of the tetrahedron , i.e. the quotientfrom a suitable cross product and a related triple product.g0 = (p1 � p3)� (p2 � p3)(p0 � p3) � [(p1 � p3)� (p2 � p3)] (58)This formula applies to all tetrahedra.The formulae for gi with i = 1; 2; 3 follow from cyclic permutation of the indices.
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15 Calculation of the coeÆcient matrixwithout neighbourhood "knowledge\From the equationXCD 1�ABCD ��V DABCMA2ABC + V CABDMA2ABD � EAB + V DABCMA2ABC � EBC ++ V DABCMA2ABC � ECA + V CABDMA2ABD � EBD + V CABDMA2ABD � EDA�= !2 "XCD "ABCD � V CDABSM + V DCABSMl2AB # EAB; (59)we can write M � E = 0 (60)where:M = (mij) coeÆcient matrix of the type (Ki; K �K00)E = (Ei) variable matrix (column vector) of the type (Ki; 1)Here, the following applies for the variables Ei,Ei = EXY = lXY � EXY ; (61)where the node number of node Y is greater than that of the node X, and the indexi is uniquely assigned to the edges XY of the grid:i = k(X; Y ): (62)Now it is possible to calculate the entries in the coeÆcient matrix M without theknowledge of neighbourhood connectivity between the individual tetrahedra.Furthermore, the tetrahedra of the grid are treated in sequence.In general, (K0; K1; K2; K3) is a non-degenerate tetrahedron of the grid with ascend-ing node number Ki; corresponding vectors are p0;p1;p2;p3.The triple product SP = (p1 � p0) � [(p2 � p0)� (p3 � p0)] (63)is �rst formed.As a function of the sign on SP , we apply the following convention:SP > 0 : o = +1 A = K0 B = K1 C = K2 D = K3 (64)18



SP < 0 : o = �1 A = K0 B = K1 C = K3 D = K2: (65)Hence, for the vectors, we haveSP > 0 : pA = p0 pB = p1 pC = p2 pD = p3 (66)SP < 0 : pA = p0 pB = p1 pC = p3 pD = p2 (67)In both cases ABCD is a right tetrahedron.
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�g.6 Right tetrahedron ABCDImportant measures of the tetrahedron can now be categorised.The edge vectors arepAB = pB � pA pAC = pC � pA pAD = pD � pA (68)pBC = pC � pB pBD = pD � pB pCD = pD � pC (69)The surface vectors (directed inwards) areABCD = 12 � (pBD � pBC) (70)AACD = 12 � (pAC � pAD) (71)AABD = 12 � (pAD � pAB) (72)AABC = 12 � (pAB � pAC) (73)19



The volume is V = 13 � (pAB �AACD) (74)The vectors gX are gA = ABCD3V (75)gB = AACD3V (76)gC = AABD3V (77)gD = AABC3V (78)The circumcentre of the circumsphere isM = 12 � �gAjpAj2 + gBjpBj2 + gC jpC j2 + gDjpDj2� (79)The circumcentres of the triangles areSBCD =M+ gAjgAj2 [(pB �M) � gA] (80)SACD =M+ gBjgBj2 [(pA �M) � gB] (81)SABD =M+ gCjgC j2 [(pA �M) � gC ] (82)SABC =M+ gDjgDj2 [(pA �M) � gD] (83)The volumes of the tetrahedra, based on one side and the circumcentre of the cir-cumsphere, are V DABCM = VABCM = 13 � [AABC � (M� pA)] (84)V CABDM = VABDM = 13 � [AABD � (M� pA)] (85)V BACDM = VACDM = 13 � [AACD � (M� pA)] (86)V ABCDM = VBCDM = 13 � [ABCD � (M� pB)] (87)20



The volumes of the tetrahedra, based on an edge, a circumcentre of a triangle andthe circumcentre of the circumsphere, areV CDABSM = VABSABCM = 16 � pAB � [(SABC � pA)� (M� pA)] (88)V DCABSM = VABSABDM = �16 � pAB � [(SABD � pA)� (M� pA)] (89)V BDACSM = VACSABCM = �16 � pAC � [(SABC � pA)� (M� pA)] (90)V DBACSM = VACSACDM = 16 � pAC � [(SACD � pA)� (M� pA)] (91)V BCADSM = VADSABDM = 16 � pAD � [(SABD � pA)� (M� pA)] (92)V CBADSM = VADSACDM = �16 � pAD � [(SACD � pA)� (M� pA)] (93)V ADBCSM = VBCSABCM = 16 � pBC � [(SABC � pB)� (M� pB)] (94)V DABCSM = VBCSBCDM = �16 � pBC � [(SBCD � pB)� (M� pB)] (95)V ACBDSM = VBDSABDM = �16 � pBD � [(SABD � pB)� (M� pB)] (96)V CABDSM = VBDSBCDM = 16 � pBD � [(SBCD � pB)� (M� pB)] (97)V ABCDSM = VCDSACDM = 16 � pCD � [(SACD � pC)� (M� pC)] (98)V BACDSM = VCDSBCDM = �16 � pCD � [(SBCD � pC)� (M� pC)] (99)Now we have the required information to solve equation (59) for all six (arranged)edges of the tetrahedron provided they are inner edges of the grid:XCD 1�ABCD ��V DABCMA2ABC + V CABDMA2ABD � EAB + V DABCMA2ABC � EBC �� V DABCMA2ABC � EAC + V CABDMA2ABD � EBD � V CABDMA2ABD � EAD�= !2 "XCD "ABCD � V CDABSM + V DCABSMl2AB # EAB (100)21



XDB 1�ABCD ��V BACDMA2ACD + V DABCMA2ABC � EAC + V BACDMA2ACD � ECD �� V BACDMA2ACD � EAD � V DABCMA2ABC � EBC � V DABCMA2ABC � EAB�= !2 "XDB "ABCD � V DBACSM + V BDACSMl2AC # EAC (101)XBC 1�ABCD ��V CABDMA2ABD + V BACDMA2ACD � EAD � V CABDMA2ABD � EBD �� V CABDMA2ABD � EAB � V BACDMA2ACD � ECD � V BACDMA2ACD � EAC�= !2 "XBC "ABCD � V BCADSM + V CBADSMl2AD # EAD (102)XAD 1�ABCD ��V DABCMA2ABC + V ABCDMA2BCD � EBC � V DABCMA2ABC � EAC ++ V DABCMA2ABC � EAB + V ABCDMA2BCD � ECD � V ABCDMA2BCD � EBD�= !2 "XAD "ABCD � V ADBCSM + V DABCSMl2BC # EBC (103)XCA 1�ABCD ��V ABCDMA2BCD + V CABDMA2ABD � EBD � V ABCDMA2BCD � ECD �� V ABCDMA2BCD � EBC � V CABDMA2ABD � EAD + V CABDMA2ABD � EAB�
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= !2 "XCA "ABCD � V CABDSM + V ACBDSMl2BD # EBD (104)XAB o�ABCD ��V BACDMA2ACD + V ABCDMA2BCD � ECD � V BACDMA2ACD � EAD ++ V BACDMA2ACD � EAC � V ABCDMA2BCD � EBD + V ABCDMA2BCD � EBC�= !2 "XAB "ABCD � V ABCDSM + V BACDSMl2CD # ECD � o (105)From these equations, the respective proportions of the tetrahedron ABCD for thecoeÆcient matrix M can be ascertained.(Each equation is set up for an inner edge of the grid and corresponds thus to a lineof the matrix M .)If A2XY Z is replaced by A2XY Z and l2XY by p2XY , then these proportions are de-pendent on known quantities alone; for the entries in the main diagonals of M , thefollowing can be derived:i = k(A;B)mii = 1�ABCD �V DABCMA2ABC + V CABDMA2ABD �� !2 � "ABCD � V CDABSM + V DCABSMp2AB (106)i = k(A;C)mii = 1�ABCD �V BACDMA2ACD + V DABCMA2ABC �� !2 � "ABCD � V DBACSM + V BDACSMp2AC (107)i = k(A;D)mii = 1�ABCD �V CABDMA2ABD + V BACDMA2ACD �� !2 � "ABCD � V BCADSM + V CBADSMp2AD (108)i = k(B;C)mii = 1�ABCD �V DABCMA2ABC + V ABCDMA2BCD �� !2 � "ABCD � V ADBCSM + V DABCSMp2BC (109)23



i = k(B;D)mii = 1�ABCD �V ABCDMA2BCD + V CABDMA2ABD �� !2 � "ABCD � V CABDSM + V ACBDSMp2BD (110)Finally, by considering left and right tetrahedra, we havei = k(C;D)mii = 1�ABCD �V BACDMA2ACD + V ABCDMA2BCD �� !2 � "ABCD � V ABCDSM + V BACDSMp2CD (111)For non-diagonal entries, we obtain:i = k(A;B) j = k(B;C) mij = + 1�ABCD V DABCMA2ABC (112)j = k(A;C) mij = � 1�ABCD V DABCMA2ABC (113)j = k(B;D) mij = + 1�ABCD V CABDMA2ABD (114)j = k(A;D) mij = � 1�ABCD V CABDMA2ABD (115)i = k(A;C) j = k(C;D) mij = + 1�ABCD V BACDMA2ACD � o (116)j = k(A;D) mij = � 1�ABCD V BACDMA2ACD (117)j = k(B;C) mij = � 1�ABCD V DABCMA2ABC (118)j = k(A;B) mij = � 1�ABCD V DABCMA2ABC (119)
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i = k(A;D) j = k(B;D) mij = � 1�ABCD V CABDMA2ABD (120)j = k(A;B) mij = � 1�ABCD V CABDMA2ABD (121)j = k(C;D) mij = � 1�ABCD V BACDMA2ACD � o (122)j = k(A;C) mij = � 1�ABCD V BACDMA2ACD (123)i = k(B;C) j = k(A;C) mij = � 1�ABCD V DABCMA2ABC (124)j = k(A;B) mij = + 1�ABCD V DABCMA2ABC (125)j = k(C;D) mij = + 1�ABCD V ABCDMA2BCD � o (126)j = k(B;D) mij = � 1�ABCD V ABCDMA2BCD (127)i = k(B;D) j = k(C;D) mij = � 1�ABCD V ABCDMA2BCD � o (128)j = k(B;C) mij = � 1�ABCD V ABCDMA2BCD (129)j = k(A;D) mij = � 1�ABCD V CABDMA2ABD (130)j = k(A;B) mij = + 1�ABCD V CABDMA2ABD (131)
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i = k(C;D) j = k(A;D) mij = � 1�ABCD V BACDMA2ACD � o (132)j = k(A;C) mij = + 1�ABCD V BACDMA2ACD � o (133)j = k(B;D) mij = � 1�ABCD V ABCDMA2BCD � o (134)j = k(B;C) mij = + 1�ABCD V ABCDMA2BCD � o (135)
16 Further simpli�cationsFor the above non-diagonal entries of the coeÆcient matrix (112) - (135) only fourdi�erent values occur (up to the sign), namelyQA = 1�ABCD V ABCDMA2BCD (136)QB = 1�ABCD V BACDMA2ACD (137)QC = 1�ABCD V CABDMA2ABD (138)QD = 1�ABCD V DABCMA2ABC (139)If we further set RAB = !2 � "ABCD � V CDABSM + V DCABSMp2AB (140)RAC = !2 � "ABCD � V DBACSM + V BDACSMp2AC (141)26



RAD = !2 � "ABCD � V BCADSM + V CBADSMp2AD (142)RBC = !2 � "ABCD � V ADBCSM + V DABCSMp2BC (143)RBD = !2 � "ABCD � V CABDSM + V ACBDSMp2BD (144)RCD = !2 � "ABCD � V ABCDSM + V BACDSMp2CD (145)we have the following expressions for the diagonal entries of M :i = k(A;B) mii = QC +QD �RAB (146)i = k(A;C) mii = QB +QD � RAC (147)i = k(A;D) mii = QB +QC �RAD (148)i = k(B;C) mii = QA +QD � RBC (149)i = k(B;D) mii = QA +QC � RBD (150)and, by considering right and left tetrahedra,i = k(C;D) mii = QA +QB �RCD (151)For the non-diagonal entries, we havei = k(A;B) j = k(B;C) mij = +QD (152)j = k(A;C) mij = �QD (153)j = k(B;D) mij = +QC (154)j = k(A;D) mij = �QC (155)i = k(A;C) j = k(C;D) mij = +QB � o (156)j = k(A;D) mij = �QB (157)j = k(B;C) mij = �QD (158)j = k(A;B) mij = �QD (159)27



i = k(A;D) j = k(B;D) mij = �QC (160)j = k(A;B) mij = �QC (161)j = k(C;D) mij = �QB � o (162)j = k(A;C) mij = �QB (163)i = k(B;C) j = k(A;C) mij = �QD (164)j = k(A;B) mij = +QD (165)j = k(C;D) mij = +QA � o (166)j = k(B;D) mij = �QA (167)i = k(B;D) j = k(C;D) mij = �QA � o (168)j = k(B;C) mij = �QA (169)j = k(A;D) mij = �QC (170)j = k(A;B) mij = +QC (171)i = k(C;D) j = k(A;D) mij = �QB � o (172)j = k(A;C) mij = +QB � o (173)j = k(B;D) mij = �QA � o (174)j = k(B;C) mij = +QA � o (175)The remaining six entries of the matrix M , belonging to this tetrahedron, have thevalue zero: i = k(A;B) j = k(C;D) mij = mji = 0 (176)i = k(A;C) j = k(B;D) mij = mji = 0 (177)i = k(A;D) j = k(B;C) mij = mji = 0 (178)
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17 Symmetry of the coeÆcient matrixFrom Section 16 above, it follows thatmij = mji (179)for each entry in M , belonging to a tetrahedron ABCD, whose edges are all inneredges.Since the �rst index of mij always belongs to an inner edge , this equation does notapply, if the second index belongs to the outside edge the entry mji does not exist,in this case (there is no equation for the outside edges).If Ki denotes the number of inner edges, then:AB is inner edge: k(A;B) � Ki (180)AB is outside edge: k(A;B) > Ki (181)Now for tetrahedra with at least one inner edge (there can be tetrahedra, whichpossess only outside edges) all entries mij in the matrix M can be calculated. Herei � Ki always applies.If j belongs to an inner edge, then likewise j � Ki applies, and the entry mji exists.Since mij = mji, the �rst KixKi block of the matrix M is symmetrical.If j belongs to the outside edge, then j > Ki applies and the entry mji does notexist. The entry mij is outside of the �rst Ki columns of M .The columns of the matrix M for which j > Ki, belong to the outside edges andthus relate to the boundary conditions of the problem.The actual coeÆcient matrix for the calculation of the modi�ed electrical �eldstrengths on the edges (multiplied by the length consists of the �rst Ki columnsof M , is square and from the above considerations, symmetric.18 Demands on the grid generatorIn order to generate a tetrahedral grid, in with which all the circumcentres of thetetrahedra lie within the respective tetrahedra, and for which any connecting line(Voronoi edge) of two circumcentres of neighbouring tetrahedra lead to no furthertetrahedra, two conditions must be ful�lled:1. No surface is an blunt-angled triangle.2. The smallest ball around a surface does not contain further nodes.
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19 Calculation of the coeÆcient matrix over theinner surfacesIn Section 15 we calculated the coeÆcient matrix by regarding all tetrahedra insequence.It can also be calculated by regarding all inner surfaces in sequence.If ABC is an inner surface of the grid, then it is a common surface of two neigh-bouring tetrahedra. The peaks of these tetrahedra are D1 and D2.To each combination of two edges of the surface ABC, whereby the �rst of theedges should be an inner edge of the grid, we compute the corresponding entry inthe coeÆcient matrix, as follows:jmijj = QD1 +QD2 = 1�ABCD1 V D1ABCMA2ABC + 1�ABCD2 V D2ABCMA2ABC (182)Thus jmijj = 1A2ABC � V D1ABCM�ABCD1 + V D2ABCM�ABCD2 � (183)and for the same material in both tetrahedrajmijj = V D1ABCM + V D2ABCM�ABCD1 �A2ABC (184)The sign of mij is determined by edge orientation, based on the direction fromsmaller to the larger node number.The following outline shows, the various possible combinations of edge orientations,and the corresponding signs in each case:6 6 6 6���7 ���/ ���/ ���7�� + + ��g.7: Sign of the coeÆcient according to edge orientation
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20 Matrix representationThe �rst two Maxwell equations can be represented (after multiplication with �0)as follows: ~CD~s=~�Bi = j!�0"0D ~A~"Ei (185)CDsE = �j!DABi (186)Here, we have:E vector of the electrical �eld strengths on all edgesEi vector of the electrical �eld strengths on all inner edgesBi vector of the magnetic induction on the inner surfacesC discrete operator of the line integral of the second Maxwell equation~C discrete operator of the line integral of the �rst Maxwell equationDs diagonal matrix of the edge lengthsDA diagonal matrix of the tetrahedron surfacesD~s=~� diagonal matrix of the (length proportion/material size) values of the Voronoi edgesD ~A~" diagonal matrix of the (surface portion*material size) values of the Voronoi surfacesFrom these equations, we �rst write�j! ~CD~s=~�Bi = !2�0"0D ~A~"Ei (187)�j!Bi = D�1A CDsE; (188)and then eleminate the Bi, to get~CD~s=~�D�1A CDsE = !2�0"0D ~A~"Ei: (189)With k20 = !2�0"0 (190)we can further write ~CD~s=~�D�1A CDsE� k20D ~A~"Ei = 0 (191)Since the boundary values on the outside edges are given, the matrices C,Ds,E,which belong to the �rst term of the equation, can be split into two parts: one forthe outside edges ( �C, �Ds,Ea) and one for the inner edges (Ĉ,D̂s,Ei).The known values are now moved to the right-hand side:~CD~s=~�D�1A ĈD̂sEi � k20D ~A~"Ei = � ~CD~s=~�D�1A �C �DsEa (192)Here again, we have introduced new notation:31



Ea vector of the electrical �eld strengths on the outside edges (boundary values)�C proportion of C for the outside edges�Ds proportion of Ds for the outside edgesĈ proportion of C for the inner edgesD̂s proportion of Ds for the inner edgesNow the equation can be expressed as� ~CD~s=~�D�1A Ĉ� k20D ~A~"D̂�1s ��D̂sEi� = � ~CD~s=~�D�1A �C �DsEa (193)The product D̂sEi corresponds to the variable E . The symmetry of the �rst brack-eted term has been proven in the Section 17 and we also note that:ĈT = ~C (194)The order of magnitude of the matrix entries in the �rst bracketed term roughlyamounts to length/surface, thus 1/length. The term remains symmetrical after pre-and post-multiplication by the same diagonal matrix. If the diagonal matrix is basedon the square roots of the lengths, then the resulting matrix has entries of O(1).This is achieved by pre-multiplying equation (193) by D̂1=2s :D̂1=2s ~CD~s=~�D�1A ĈD̂sEi � k20D̂1=2s D ~A~"Ei = �D̂1=2s ~CD~s=~�D�1A �C �DsEa (195)or �D̂1=2s ~CD~s=~�D�1A ĈD̂1=2s � k20D ~A~"��D̂1=2s Ei� = �D̂1=2s ~CD~s=~�D�1A �C �DsEa (196)The quantity D̂1=2s Ei is taken as a new variable. The �rst bracketed term is then asymmetrical coeÆcient matrix.This equation is the basis for the program efm.The third Maxwell equation can be expressed in the form~SiD ~A~"Ei = 0 (197)The divergence at an internal node is obtained by dividing this equation by thevolume of the appropriate Voronoi cell, i.e.div ("E) = D̂�1~V ~SiD ~A~"Ei = 0 (198)Here, we have: 32



~Si discrete divergence operator on the binary grid for the inner nodesD̂ ~V diagonal matrix of the volumes of the Voronoi - cells around internal nodeswhere �~Si�ij = 8<: 1 if edge j is directed away from node i�1 if edge j is directed towards node i0 otherwise (199)applies.For the normal derivative component, we haven � grad U = @U(r)@n = lim4t!0 U(r +4t n)� U(r)4t (200)For an edge from node i to node j, we have in the discrete case:grad U � nij = Uj � Uilij (201)For all inner edges it thereby follows thatgrad U � n = �D̂�1s SU (202)with:S discrete gradients of the edge directionsU amount of a scalar �eld in all nodesand where Sij = 8<: 1 if edge i is directed away from node j�1 if edge i is directed towards node j0 otherwise (203)applies.For the outer nodes, div ("E) = 0, but no Voronoi cells exist. We setdiv ("E) = D�1~V ~SD ~A~"Ei (204)whereD�1~V modi�cation to D̂ ~V , by setting a zero into the main diagonalon the place of outside edges~S extension of ~Si on the outside edges according to the condition for Sij33



Setting U = div ("E), we getgraddiv ("E) � n = �D̂�1s SD�1~V ~SD ~A~"Ei = 0 (205)From the de�nitions of S and ~S it follows immediately thatST = ~S: (206)To similarly obtain a symmetrical coeÆcient matrix with entries of O(1), from equa-tion (205), we pre-multiply this two diagonal matrices:�D̂1=2s D ~A~"D̂�1s SD�1~V ~SD ~A~"Ei = 0; (207)i.e. ��D̂�1=2s D ~A~"SD�1~V ~SD ~A~"D̂�1=2s ��D̂1=2s Ei� = 0 (208)It is favourable, to express the equation indepedently of ", i.e. to regions considerswith only one material. This can be achieved, not by dividing by the volumes ofthe Voronoi - cells, but by dividing by the multiples of the volumes proportionatelyand by the square of the appropriate ":��D̂�1=2s D ~A~"SD�1~V ~"~"~SD ~A~"D̂�1=2s ��D̂1=2s Ei� = 0 (209)
D�1~V ~"~" similarly to D�1~V , volume proportions are multiplied by "2Equation (209) possesses a symmetrical coeÆcient matrix and likewise the variableD̂1=2s Ei; in the program efm it is used for preconditioning.

34



21 Documentation for the program efm1. GeneralWith the program efm (electric �eld matrix), we assemble the coeÆcient matrix onthe right-hand side of a set of linear equations for the calculation of an electric �eldon a tetrahedral grid.The starting point is an input �le, which consists of the geometrical sizes of thetetrahedral grid, the material sizes, the considered frequency and the values at thegates, which are calculated from an eigenvalue problem.In order that the developing coeÆcient matrix remains symmetric, the variables ofthe electrical �eld strengths on edges are multiplied by the roots of the respectiveedge lengths.Apart from the log �le, the formatted and the unformatted �les of the set of equa-tions (coeÆcient matrix and right-hand side) and some further �les, used for checkingpurposes, the remainder are output �les.2. The input �leThe input �le datei contains no keywords and no separating blank lines. Real andcomplex numbers are inputted with double precision.The fundamental structure is:frequencymaterialnodesx y ztetrahedran1 n2 n3 n4 matoutside edges boundary valuesn1 n2 E0By frequency, we mean here the rotational frequency ! = ak0 � c.Under material �rstly the number of di�erent materials is indicated, then all relativevalues � (real) and �nally all relative values " (complex).Following the entry for the number of nodes, the x, y, z coordinates are written,line by line.The number of tetrahedra comes next, followed by a 5-number set for each te-trahedron; the �rst four numbers are the node numbers of the corner nodes and the�fth number indicates the material of the tetrahedron.Finally, the number of the outside edges and the number of the boundary values are35



written. Among these, in each case, are the starting node and the end node and theboundary value belonging to this edge, which can only be non-zero at the gates.The outside edges require a boundary value, so that the set of equations becomesuniquely solvable. Further boundary values can be obtained by noting that all edgesof the electrical conductor take the boundary value zero.( If the electrical conductoris not discretised, but is regard as a hole, then only the appropriate outside edgesare to be set zero).3. The program efmThe program efm is written in FORTRAN90. After starting the program with"efm\, the input �le datei is selected and afterwards the output �les for the coeÆ-cient matrix datei1 and the right-hand side datei2, as well as the type of output,either as a �le or as �les IA, JA and AA for the coeÆcients matrix.Further, the preconditioner graddiv may be selected (or not), and the minimumvalues (MinVoro, MinVol) for the Voronoi surface and the volume of a tetrahedronare selected.The program �rst reads in the input values.There is no internal check, to see whether the tetrahedral grid satis�es the Delaunaycriterion.Circumcentres of circumspheres located outside of the given tetrahedron are consid-ered within the calculation.The di�erent stages of the program can be followed interactively.These are written also into a log �le, which carries the same name as the input �leand carries the suÆx ".prt\.4. The output �lesdatei.prt : This �le includes information to the given minimum values, the de-tails barring date and time of day of the calculation, whether or not graddiv wasimplemented and the names of the input and output �les. Also some informationconcerning the tetrahedral grid and the set of equations, along with the computingtimes required for reading the input �le, for the calculation and for the output in�les; the edge numbers, the entry numbers and the values for the maximum andthe minimum entries (absolute values) of the right-hand side (b) and the coeÆcientmatrix (A).IAdatei1.fmt, JAdatei1.fmt, AAdatei1.fmt, datei1.fmt : Formattedoutput of the coeÆcient matrix.Since the coeÆcient matrix is symmetric, only the right upper triangular part isstored here.Since the matrix is sparse, it is stored in the form IA, JA, AA. These are threelists or column vectors with only one entry for each line. If dim is the dimension ofthe matrix and eintr the number of non-zero entries (NNE) in the matrix, then thelength of the list IA is dim+ 1 and of the lists JA and AA is eintr.36



In the list IA the number of the �rst NNE of the ith line of the matrix is located inthe ith line. In the (dim + 1)th line is the increased (by an amount 1) number ofthe NNE of the matrix.The column numbers of the NNE are located in the list JA, while the NNE itselfare found in the list AA.The lists IA, JA and AA are stored in the �les IAdatei1.fmt, JAdatei1.fmt andAAdatei1.fmt or in the separate �le datei1.fmt, where in the latter case, �rst thedimension of the matrix and then the lists IA,JA,AA are stored.IAdatei1.unf, JAdatei1.unf, AAdatei1.unf, datei1.unf : Appropriate unfor-matted output of the coeÆcient matrixdatei2.fmt : Formatted output of the right-hand sides of the equationsdatei2.unf : Unformatted output of the right-hand sides of the equationsvanish : File of the edges with disappearing Voronoi surfaces.During the generation of grid edges, it is possible that the circumcentres of the cir-cumspheres of the surrounding tetrahedra can collapse to one point, i.e. the Voronoisurface can disappear. In the coeÆcient matrix, only zeros are located in the ap-propriate line and the �eld strength on the edges cannot be calculated. So that theset of equations remains solvable, a "1\ is inserted on the main diagonal, wherebythe electrical �eld strength on this edge acquires a (false) value of zero.In the �le, the edge numbers are stored line by line from start to end node.edges : The edge list KantList(i,1:2) is stored as a two-dimensional �eld for theindex i.If Nodes is the number of the nodes and Edges the number of edges of the grid(Edges = dim), then the index i runs from �Nodes to Edges.Each edge is determined by its start and end node, whereby the end node has alarger node number than the starting node.A is the node number of any node. Kantlist (-A,1) indicates the number of edgeswith the starting node A. If this value is non-zero, then KantList (-A,2) shows apositive index. This index is the edge number of the edge with the starting node Aand the end node KantL (i1,1). If there are further edges with the starting node A,then KantList (i1,2) points to the next edging number, etc.. For the last edge withstarting node A, the index 0 is shown.edgenodes : In this �le, the edges are stored with their start and end nodes.length : In this �le, the edge lengths are stored.sqrtl : In this �le, the square roots of the edge lengths are stored. After solv-ing the set of equations, we can get the electric �eld strengths on grid edges bydividing the solution by these square roots.37



22 A small exampleAs an example we have simulated a rectangular microwave structure. The structureis subdivided in 3x3x2 equidistant rectangular three-dimensional elementary cells.The two cells in the middle of the structure are the electrical conductor. Further-more every rectangular elementary cell is subdivided in six tetrahedra.
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�g.8: The subdivided structureThe material constants of the electrical conductor do not in
uence the computa-tion, because all edges of the conductor take the boundary value zero.The only gate is in front of the structure. The other sides are electric walls.One get the following input �le: 38



599584916.D021.0D01.0D0(1.0D0,-0.1D0)(1.0D0,0.0D0)480.000000000000000D+000 0.000000000000000D+000 0.000000000000000D+0004.000000000000000D�001 0.000000000000000D+000 0.000000000000000D+0008.000000000000000D�001 0.000000000000000D+000 0.000000000000000D+0001.200000000000000D+000 0.000000000000000D+000 0.000000000000000D+0000.000000000000000D+000 0.000000000000000D+000 3.000000000000000D�0014.000000000000000D�001 0.000000000000000D+000 3.000000000000000D�001...0.000000000000000D+000 0.000000000000000D+000 6.000000000000000D�001...0.000000000000000D+000 0.000000000000000D+000 9.000000000000000D�001...0.000000000000000D+000 2.500000000000000D�001 0.000000000000000D+0004.000000000000000D�001 2.500000000000000D�001 0.000000000000000D+000...0.000000000000000D+000 2.500000000000000D�001 3.000000000000000D�001...1.200000000000000D+000 5.000000000000000D�001 9.000000000000000D�0011081 5 2 21 15 6 2 21 16 22 2 21 122 18 2 21 118 17 2 21 117 1 2 21 12 6 3 22 1...27 31 28 47 131 32 28 47 132 48 28 47 148 44 28 47 144 43 28 47 143 27 28 47 1126 1491 5 0.0D02 6 (8.210000000000000D-001,4.109000000000000D-002)3 7 (8.210000000000000D-001,4.109000000000000D-002)4 8 0.0D05 9 0.0D0 39



6 10 0.0D07 11 0.0D08 12 0.0D09 13 0.0D010 14 (8.210000000000000D-001,4.109000000000000D-002)11 15 (8.210000000000000D-001,4.109000000000000D-002)12 16 0.0D033 37 0.0D0...1 2 0.0D02 3 0.0D03 4 0.0D05 6 (1.134000000000000D+000,4.692000000000000D-001)6 7 0.0D07 8 (1.134000000000000D+000,4.692000000000000D-001)9 10 (1.134000000000000D+000,4.692000000000000D-001)10 11 0.0D011 12 (1.134000000000000D+000,4.692000000000000D-001)13 14 0.0D014 15 0.0D015 16 0.0D0...1 17 0.0D017 33 0.0D02 18 0.0D0...2 5 (-2.073000000000000D-001,-1.753530000000000D-001)3 6 (4.926000000000000D-001,2.465400000000000D-002)4 7 (-2.073000000000000D-001,-1.753530000000000D-001)6 9 (9.072000000000000D-001,3.753600000000000D-001)7 10 0.0D08 11 (9.072000000000000D-001,3.753600000000000D-001)10 13 (-2.073000000000000D-001,-1.753530000000000D-001)11 14 (4.926000000000000D-001,2.465400000000000D-002)12 15 (-2.073000000000000D-001,-1.753530000000000D-001)34 37 0.0D0...1 21 0.0D017 37 0.0D0...2 17 0.0D03 18 0.0D04 19 0.0D0...6 22 0.0D0 40



22 38 0.0D07 23 0.0D0...22 23 0.0D026 27 0.0D022 26 0.0D023 27 0.0D023 26 0.0D06 26 0.0D0...7 22 0.0D0...7 26 0.0D023 42 0.0D0There are 197 variables, but 149 variables are boundary values.After the computation there are 16 variables in the �le vanish. These variablesbelong to the diagonals of the rectangular cells (without the two rectangular cellsof the electrical conductor), because the circumcentres of the circumspheres of thesurrounding tetrahedra collapse to one point, i.e. the Voronoi surfaces disappear.The belonging edges are stored from start to end node.2 213 224 236 258 2710 2911 3012 3118 3719 3820 3922 4124 4326 4527 4628 47In the resulting matrix there are 231 entries.The structure was computed for the tetrahedral grid on the one hand and for rect-angular cells on the other hand. The values on the edges of the rectangular cells donot di�er in the two cases.
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23 ConclusionsThe test calculations showed that good results can be achieved with the programefm on tetrahedron grids and that by the use of graddiv as preconditioner, a fasterconvergence is attained.Further tests and investigations are useful in order to �nd criteria (dependent onthe grid) for the parameters MinVoro, MinVol and Minzei, which on the one handshould serve to prevent unreasonably small entries in the matrix, but on the otherhand can also set relevant entries to zero.A further step would be to integrate the various components, ranging from the gridgenerator to the calculation of the scattering matrix, into a large program.
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24 NomenclatureAABC inwardly-arranged surface vector of the triangle ABCAABC surface of the triangle ABCBi vector of the magnetic induction on the inner surfacesB (SABC) magnetic induction (vector) in SABCBABC real or complex number (magnetic induction)C discrete operator of the line integral of the second Maxwell equation~C discrete operator of the line integral of the �rst Maxwell equationĈ proportion of C for the inner edges�C proportion of C for the outside edgesDA diagonal matrix of the tetrahedron surfacesD ~A~" diagonal matrix of the (surface portion*material size) values of theVoronoi surfacesDs diagonal matrix of the edge lengthsD~s=~� diagonal matrix of the (length proportion/material size) values of theVoronoi edgesD ~V modi�cation to D̂ ~V , by setting a zero into the main diagonalon the place of outside edgesD ~V ~"~" similarly to D ~V , volume proportions are multiplied by "2D̂s proportion of Ds for the inner edges�Ds proportion of Ds for the outside edgesD̂ ~V diagonal matrix of the volumes of the Voronoi - cells around internal nodesdCAB distance of the circumcenter of the triangle ABCto the side ABE vector of the electrical �eld strengths on all edgesEa vector of the electrical �eld strengths on the outside edges (boundary values)Ei vector of the electrical �eld strengths on all inner edgesE (SAB) electrical �eld strength (vector) in SABE number of nodesE0 number of nodes of the surface networkEA nodes of the polyhedron around node AEAB real or complex number (electrical �eld strength)Ei number of internal nodesE variable vector of the electrical �eldEAB modi�ed electrical �eld strength on the edge ABEi variable of the electrical �eldF number of surfacesF0 number of surfaces of the surface networkFi number of internal surfaces (nodes, edges may be situated outside)Fi the side opposite node pigi surface vector of Fi directed towards the inside of the tetrahedrondivided by the threefold volume of the tetrahedronhi height of the point pi over Fi43



K number of edgesK0 number of edges of the surface networkk(A;B) index assigned to the edge ABKi number of internal edges (nodes may be situated outside)lAB length of side ABlDABC distance of the circumcentre of the tetrahedron ABCDto the side ABCM circumcentre of the sphereM coeÆcient matrixMABCD circumcentre of the tetrahedron ABCDmij coeÆcient matrix entryN number of nodesnAB unit vector in AB directionnABC normal vector, which is perpendicular to the triangle ABC,(with a mathematically positive arrangement of the nodes A;B;C)ni normal to Fi, which is belonging directed away from the tetrahedron interiorpA vector to the node APK (:) projection onto the appropriate edgePN (:) projection onto the appropriate surface-normalQA simpli�cation of an entry in MR radius of the sphereRAB simpli�cation of an entry in the main diagonal of MS discrete gradients of the edge directionsSAB center of the edge ABSABC circumcentre of the triangle ABCSABC vector for the circumcentre of the triangle ABC~S extension of ~Si on the outside edges according to the condition for Sij~Si discrete divergence operator on the binary grid for the inner nodesSP double product of the vectors (lowest node �rst)T number of tetrahedraU amount of a scalar �eld in all nodesVA volume of the Voronoi cell around the node AVABCD volume of the tetrahedron ABCDV DABCM volume of the tetrahedron ABCM , whereby M isthe circumcentre of the tetrahedron ABCDV CDABSM Volume of the tetrahedron ABSM , whereby M is the circumcentreof the tetrahedron ABCD and S is the circumcenter of the surface ABCxA x component of the vector pAyA y component of the vector pAzA z component of the vector pA"ABCD; �ABCD material constants in the tetrahedron ABCD! rotational frequency
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