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Abstract

The aim of this report is to describe the discretisation of the Maxwell
equations on tetrahedral grids with corresponding dual Voronoi cells to explain
the resulting program. The symmetry of the coefficients of the matrix is
proven. A small example shows an input file and same other details.

1 The Maxwell equations in the frequency range

For given material constants p and € the governing equations in the frequency range
are

rot %B) = jwekE
rot (E) = —jwB
div(eE) =0
divB = 0.

Where E, B denote the electrical and magnetic fields, respectively. From these the
following integrals can be derived:

1

f(—B)-ds = /jwaE-dA
7

c

A

]{(E)-ds —/(ij)-dA

A

(EE)’I’Lst = 0

Here, A is a finite surface in R*, bounded by a closed curve C,

with the vector d A perpendicular to any point on it,

while S denotes the surface of a bounded region with outer normal ng,

with the vector increment ds following the course of the curve C' in a mathematically
positive sense.



2 The electromagnetic field on the grid

For the discretisation, the electrical field strength E in the centre of the edges and
the magnetic induction B in the circumcentres of the surfaces (triangles) are con-
sidered.

Since the field strength and induction only occur within dot products for the integral
formulation, they can be restricted to the projection of the electrical field strength
to the pertinent edges and the magnetic induction to the pertinent surface-normal.

These projections can be represented as follows:
P (E(SAB)) = napbap = npaFpa

Py (B (SABC')) = napcBapc = NpcaBpca = ncapBeoas

= npacBpac = naceBacs = ncpaBepa

where the following nomenclature has been introduced:

Pk (1) projection on the appropriate edge

Py (.) projection on the appropriate surface-normal

Sap centre of the edge AB

Sapc circumcentre of the triangle ABC

E(Sag) electrical field strength (vector) in Sap

B (Sapc) magnetic induction (vector) in Sapc

nxy unit vector in XY direction

nxyz normal vector on the triangle XY Z, which is perpendicular
with the mathematically positive sequence of nodes X, Y, Z

Exv,Bxyz real or complex numbers

(XY or XY Z are permutations of AB or ABC)

The vectors nyxy and nyxyz clearly satisfy:

Napap = —Npa
Napc = NpcA = NcaAB = —MNpac = —NacB = —NcBA
while
Esp = —Epa (1)
Bspc = Bpca = Becap = —Bpac = —Bacs = —Bcpa (2)



3 Discretisation of the first Maxwell equation

In the following discretisation of the Maxwell equations, only the favourable case
is regarded, all circumcentres of the tetrahedra are situated within the respective
tetrahedron.

To discretise the equation
1 .
f(—B) -ds = /jwsE-dA,
c a A

the binary grid (where the nodal points are the circumcentres of the tetrahedra of
the primary grid) is employed.

The Voronoi surface of the binary grid (over which one integrates), belongs to the
internal edge AB of the primary grid, and is a planar polygon, whose corner points
are the circumcentres of all tetrahedra, which possess the common edge AB.

The discretised equation takes the form:

1
> Lanch [lZ5c - Base +Gpp - Basp)
CD

, 1
—Jv Z 9&ABCD (ng Uipe +dip - lgBD) Eap, (3)

where the sum is over these tetrahedra ABC D, which possess the common edge AB.

WABCD, EABCD material constants in the tetrahedron ABC D
1Bsc distance of the circumcentre of the tetrahedron ABC'D

to the triangle ABC

dSg distance of the circumcentre of the triangle ABC
to the side AB



i

C D

fig.1 Location of the tetrahedra with common edge AB.
The number of tetrahedra must be at least three.

SABC’ SABD

MABC’D

fig.2 Part of the Voronoi surface through the edge AB, to which to the tetra-
hedron ABCD belongs.

Magcep circumcentre of the tetrahedron ABC D



4 Discretisation of the second Maxwell equation

§B)-ds= [ (-joB)-da

C A

To discretise

we have employ the primary grid (in contrast to the first Maxwell equation), and
integrate over a triangular surface.
This yields the following form:

lap - Eap +1lpc - Epc +loca- Fca = —jwBapce - Aasc, (4)

with the associated notation:
laB length of the distance AB

Aspc area of the triangle ABC

5 Discretisation of the third Maxwell equation

Now we address the first of the surface integrals

f(aE) -ngdS = 0,

S

reverting again to the binary grid. It is integrated over the surface of an internal
node A of the primary grid to the Voronoi cell. The surface of the Voronoi cell
consists of Voronoi surfaces, which belong to edges, whose shared corner node is A.
A discretisation formula, similar form to the right-hand side of (3) is obtained,i.e.

1
Z ( [Z 5EABCD (d55 - 125 + dis - 19pD)

B CD

EAB> =0, (5)

except now we have an additional outer summation taken over all the nodes of B
neighbouring A (in the primary grid).



The summation order in equation (5) can be swapped in the following manner.
Within a tetrahedron the node A has exactly three nodes of neighbour. With the
calculation the sections which are situated in the tetrahedron ABC'D are considered
by three different Voronoi surfaces. For the simplification of the representation the
equation is multiplied by two.

This leads to the alternative form:

Z (EABCD [(ng : lch + ng : ZSBD) Eap+ (6)
BCD

+ (dﬁc ) lch + dgc ) ZECD) Eac + (ng ) licr) + dﬁD ) lgBD) EAD]) =0,

where now, the summation is over all tetrahedra ABC D, which possess the common
node A.

D

fig.3 Tetrahedron with the proportions of the Voronoi surfaces to the node A



6 Discretisation of the fourth Maxwell equation

For one field integral equation

§ (B)-nsds o

S

the primary grid is again used (as with the second integral equation), only now the
integration is over the surface of a tetrahedron.
As a consequence, the discretisation form

*AABC’ ' BABC’ - AAC’D ' BAC’D + AABD ' BABD + ABC’D ' BBC’D =0 (7)

can be deduced.

7 Elimination of the magnetic induction

By multipling equation (3) by —jw and substituting for the variables of type Bxy
in accordance with equation (4), we can deduce that

1 ZEBC’ lgBD ZEBC’ “lpc
Z + lap - Eap+——— Epc +
CD HaBcD Aapc Aapp Aape

lch ) lCA lgBD ) lBD lgBD ) lDA ]
=== - Eos+—"—— -Epp+ —=——"-Epa

AABC AABD AABD

EAB (8)

1
= §w2 [Z eascp (d5p - Uise + 435 - 19pp)
cD

holds, for each internal edge AB of the primary grid. Again here, the summation is
taken over those tetrahedra ABC D, possessing the common edge AB.
We note that (8) contains only the electric field variables.



8 Graph-theoretical view of the grid

In order to be able to make predictions about the number of variables and the num-
ber of equations, the grid is regarded as a graph.

The following notation is used to describe the various geometrical objects which
constitute the grid:

E : nodes

K : edges

F : surfaces

T : tetrahedra

E; : internal nodes

K; : internal edges (nodes may exist outside)

F; internal surfaces (nodes and edges may exist outside)
Ey :  nodes of the surface network

Ky : edges of the surface network

Fy :  surfaces of the surface network

A division of the T tetrahedra into 7T; internal tetrahedra (all sides are internal sur-
faces) and Tj tetrahedra of the surface network (tetrahedron, with which at least
one side belongs to the surface network) is not meaningful, since no unique division
generally exists.

The following relationships for the grid variables hold:

K = K;+K, (10)

F = F,+F (11)
E-K+F-T =1 (12)
EO - K() + Fg = 2 (13)
AT = 2F,+ F, (15)

The first set (9) - (11) clearly hold, while the two equations (12) and (13), stem from
the Euler polyhedron law for the grid and the surface network. The two remaining
equations arise from the following considerations:

8



Firstly, the surface network is a triangle built from F{, triangles. These triangles
have a total of 3Fj edges, but with neighbouring triangles two common edges col-
lapse. Since the network is closed and has no outer edges , equation (14) follows.

Secondly, the T tetrahedra of the grid have 4T sides altogether. All inner surfaces
belong to exactly two tetrahedra, while each exterior surface belongs to exactly one
tetrahedron. Hence, equation (15) holds.

Since we have seven equations with ten variables, then the set of equations is
uniquely solvable, providing three of the arguments are known.
Three interesting special cases:

A) The surface network is determined by providing a single
value (FEy, Ky or Fy), upon solving:

(EO—KU+F0:2) 2KU:3FU 2E0:4+F0

B) Three values for the grid (three of E, K, F,T) determine the
values of the surface network and the internal grid, using:

E - K+F T=1  Fy=2F AT F, =4T — F
Ky, =3F — 6T K, =K —3F + 6T
Ey =2+ F—2T E, =E—F+2T —2

C) With the values for the internal grid (E;, K;, F;) the surface
network and the total grid can be deduced from:

T'=1+ Ei—- Ki+ F

9 Reduction of the size of the geometrical con-
stants stemming from the governing equations

The quantities occurring in the discrete form of the Maxwell equations, d%, and
1%, ,, are unfavourable for computationed purposes. They represent the magnitudes
of certain of vector differences and require a square-root operations. This can be
avoided however by elimination of the given quantities.
We first define the quantities V550, V g5y, as follows:



VEon . Volume of the tetrahedron ABC M, whereby M is the circumcentre
of the tetrahedron ABCD

VEP. .+ Volume of the tetrahedron ABSM, whereby M is the circumcentre
of the tetrahedron ABC'D and S is the circumcenter of the surface
ABC

From these definitions, we can infer that

VADBC'M = 5 ’ lfl)BC’ - AaBe (16)

VACBDSM = ’ lch ’ ng lam (17)

hold, and can then use these to substitute for d%, and I%; , in (3),(6) and (8), to get:

1 vb %%
Z [ XBCM - Bape + XBDM 'BABD:|
Ch HaBcD ABC ABD

. Vissm | Vissum E
= jw | Y eanco + 4B (18)

l l
oD AB AB

VCD VDC VBD VDB
Z <5ABCD |:< ABSM + ABSM> EAB+< ACSM + AC’SM> EAC+

s lap lap lac lac
VCB VBC
+< ADSM | ADSM) Eﬂ)]) —0 (19)
lap lap
1 4% Ve 74 -1
(e T a0 i
cp HABCD ABC ABD ABC
Vb - Ve -l Ve -
ABXZM cA - Eoa ABZM BD - Epp ABjM DA - Epa
ABC ABD ABD
VC’D VDC’
= w? [Z EABCD ( ?BSM + ?BSM> Eap (20)
BT AB AB

10



Consequently, to calculate the coefficients in the sets of equations (18), (4), (19), (7)
and (20), only the following geometrical sizes of the grid are needed: the circumcen-
tre, the lengths of the edges, the areas of the surfaces, the volume of the tetrahedra,
whose nodes are nodes of the network, and the circumcentres of tetrahedra and
triangles.

10 Introduction of new variables

Introduction of the variables

Eap = PEap-lap (21)

Bapc = Bapc-Aasc (22)

ensures that any ,,length® or , surface” terms of the coefficient of the set of equations
(18), (4), (19), (7) and (20) occur only as squares, so that no calculation invoking
roots or vector magnitudes is required.

The discrete forms of the four Maxwell equations and the set of equations for the
electrical field strengths then be come:

1 [V Ve
Z [ AZBCM Bapc + AZBDM : BABD:|
£~ wascp | Adpe A%dpp
. Vs + Vare
= juw [Z EABCD - ABSMl2 ABSM | g (23)
CD AB
(C,'AB—FSBC—FSCA:*jQ)'BABC (24)

VC’D + VDC’ VBD + VDB
Z <5ABC'D |: ABSM ABSM 'SAB + ACSM ACSM 'SAC+

I2 12
BCD AB CA

VCB VBC
+ ADSMl:‘ ADSM '&10}) —0 (25)
ap
—Bapc — Bacp + Bapp + Bpep =0 (26)
1 %% Ve vEh
Z [( ABCM 4 AZBDM> Eap+ LABCM g |
cp MABCD Alse Ausp Alse

11



— w2 ZEABCD . VABSM ABSM 5AB (27)

l2
cD AB

11 Calculation of the circumcentre of a tetrahe-
dron

The nodes of a non-degenerate tetrahedron are given by the vectors

D; = (xi)yi;zi)Ta 2.2051)253

Also, referring to fig. 4, we define

F; : the node p, opposite side
n; : normal one at Fj;, which is outward arranged concerning the tetrahedron
h; : Height of the node p; over F;

O

fig. 4 Designations for index 2

12



For all points « in the plane of Fj, the scalar product with the surface-normal
n; is constant and has the value m;, i.e.

n; - T=m,. (28)

The value |m;| is equal to the orthogonal distance of the plane, in which the triangle
F; is situated to the origin.
Furthermore, we note that

holds, and hence, more generally, we have

With g, := —n;/h; and d; := m;/h;, we rewrite this in the form

which is equivalent to the single matrix equation

dy gt 1 000
d g& 11 1 1 01 0O
T = (32)
dy g by P1 P2 D3 0010
ds gb 0 0 01
To describe further calculations, the following notation is introduced:
M : circumcentre of the circumsphere
R : radius of the circumsphere
The radius R of the circumsphere satisfies
RZZ(M*Pi)'(M*Pi):‘M|2*2Pi'M+‘Pi|2 1=0,1,2,3. (33)
With p := (R? — |M]?)/2 it follows that
Lo
Pi'M+P:§|Pi| (34)
or, in matrix form,
1 P§ |P0|z
I p; ( p ) 1 Py |
= - 35
1 p; M) 2| |pf (33)
1 P; |P3|2



Since the tetrahedra are not degenerate, the matrices are regular in equation (39),
and hence invertible, so that

-1
1 Pg ‘po‘Z ‘PO‘Z
( p >:1 1 p] P/ :l(do d dy d3> P/ (36)
M) 21 p5 Do 2\ 9% 9 9% 9 P
1 Pg: ‘P3‘2 ‘P3‘2
holds.
Thus, we have
1o )
p = Ezdﬂpﬂ (37)
k=0
i )
M = Ezgk‘l’ﬂ (38)
k=0
13 3
B = (MP+20= ) g alpllp+ Y dilpil? (39)
ik=0 k=0
where, in particular
— Ty —ng - Az
9 he 3V ( )

12 Calculation of the circumcentre of a triangle

For the calculation of the circumcentre, there are two basic options: It can either
be calculated from three vectors of the triangle, or from the projection of the cir-
cumcentre of the circumsphere.

In the tetrahedron 0123 g, is located perpendicular to the triangle 123. The constant
a, to be determined, is related to the circumcentre Sis3 by

S123 = M + ag,. (41)

Since the vector Sjo3 — p; is situated in the plane of the triangle 123 for ¢ = 1,2,3
it must follow that

(5123 - Pi) 9o =0, (42)
for ¢ = 1,2,3. Choosing ¢ = 1, reveals that
(M+ag,—p,)-go=M- g, +alg|*—p, - g,=0, (43)

14



so that

_ P9 M-g_ g

o = (py — M), (44)
|90/ |90/? '
and hence,
P1-9g—M-g g
Sigz = M+ = O‘g E OQUZM“‘ |go|2 (P — M) - gy]. (45)
o o

From the equations (45) and (38) it then follows that

S123 = ‘2 9t 5 Z|Pk|2 (gk P |29k go) (46)

Si93 = Z <Qk|Pk2 g| (Qo gk) ‘Pk P1|2>- (47)
o

k

The term in the parentheses of equation (46) is a vector in the plane of the triangle
123, thus Si93 is in fact independent of p,.

13 A preconditioner with graddiv(e E)

From

div(eE) =0 (48)
it follows trivially that
graddiv (e E) = 0. (49)

In order to calculate graddiv (¢ E), we proceed with the definitions of divergence and
gradient:

E)-dS
div(eE) = ‘1113% s (e V) (50)
UdS
grad U = ‘l/lmo fsv (51)
%



A discrete form of the divergence is obtained by dividing the appropriate discrete
form of the third Maxwell equation with the volume of the pertinent Voronoi cell.
The volume V, for the Voronoi cell surrounding the node A is determined by:

11 1
Va = Z (g ) % [Z 5 (ng ) lch + dg lABD)]) (52)
B

CD

= _Z Z ABSM VABSM)]' (53)

Here the first summation is over all neighbouring nodes B of A (in the primary grid)
and the second summation is over all tetrahedra, which have the common edge AB.

Also, from equation (6), we have

1
Va=15 Z [(dSB A3pe +dip lSBD) lap+

12
BCD
(dAC lABC + dAC lAC'D) lAC + (diD ’ ZECD + diD ’ lgBD) lAD] (54)
1
Va= 9 Z (Vissa + Vassn + Vicsu + Vaosu + Vavsu + Vasu) - (55)
BCD

From equations (19) (divided by two) and (55), we can then deduce a form for the
discrete divergence, i.e.

>_€4BCD {(VACBDSM + Vo) lEflf + (ViGsu + Vidsu) Ifjg]

div (eE) =
S (VEism + Vissu + Viacsu + Vivsu T Vivsu + Vibsu)

Y. €aBcD {(VACDBSM + Vilsu) %]

_|_
S (Vi + Vs + Vitsu + Vidsu + VaSsu + Vibsu)

(56)

In equations (54) to (56), the summation is over all tetrahedra ABC' D, possessing
the common node A, the divergence of ¢ F in the last equation is over all internal
nodes of the primary grid.

For the gradient along the edge AB, we have

16



div (eE), — div (¢E) ,

s 2| (57)

graddiv (eE) -nap =

14 General formula for g,

In accordance with equation (47), g; is the surface vector located inside the tetrahe-
dron of the surface F; divided by the volume of the tetrahedron , i.e. the quotient
from a suitable cross product and a related triple product.

(p1 — p3) X (Py — P3) (58)

B by = py) - [(Pr — P3) % (P2 — P3)]

This formula applies to all tetrahedra.
The formulae for g; with i = 1,2, 3 follow from cyclic permutation of the indices.

0

fig.5 Tetrahedron 0123 with vector g,

17



15 Calculation of the coefficient matrix

without neighbourhood ,,knowledge*

From the equation

we can write

where:

M = (m;;)
E =(&)

cD DC

2 Vassu + Vassu £

w €ABCD * 2 AB;
cD AB

M-£=0

coefficient matrix of the type (K;, K — Ky)
variable matrix (column vector) of the type (K;, 1)

Here, the following applies for the variables &;,

51’ - EXY - lXY ' EXY;

(61)

where the node number of node Y is greater than that of the node X, and the index
1 is uniquely assigned to the edges XY of the grid:

i=k(X,Y).

(62)

Now it is possible to calculate the entries in the coefficient matrix M without the

knowledge of neighbourhood connectivity between the individual tetrahedra.
Furthermore,

the tetrahedra of the grid are treated in sequence.

In general, (Ko, K, Ks, K3) is a non-degenerate tetrahedron of the grid with ascend-
ing node number Kj;; corresponding vectors are p,, p;, Py, Ps-
The triple product

SP = (p, — py) - (P2 — Py) X (P35 — Py)]

is first formed.
As a function of the sign on SP, we apply the following convention:

SP

>0: O:—|—1 A:KU B:Kl C:Kg D:K3

18
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(64)



SP <0: o= —1 A:KO B:Kl C:K3 D:K2

Hence, for the vectors, we have
SP>0: P4=Py Pp=P1 Pc=Py Pp=D";

SP<0: Pa=Py Pp=P1 Pc=Py Pp=p
In both cases ABC'D is a right tetrahedron.

D

B
fig.6 Right tetrahedron ABCD
Important measures of the tetrahedron can now be categorised.
The edge vectors are
Pap =P~ Pa Pac = Pc — Pa Pap =Pp— Pa
Ppc = Pc — PB Ppp = Pp — PB Pcp = Pp — Pc

The surface vectors (directed inwards) are

1
Apcp = 5 (PBp X PBC)

Auscp = 5 (Pac X Pap)
Aupp = = (Pap X Pap)

Aspe = 5 (PaB X Pac)

19
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(66)

(67)

(71)

(72)

(73)



The volume is

The vectors gy are

The circumcentre of the circumsphere is

M—

The circumcentres of the triangles are

V=2 (Pap Aucp) (74)
Apcp
= 75
9a 3V (75)
A scp
= 76
9B 3V (76)
ABp
= 77
9dc 3V (77)
A sBc
= 78
dp 3V (78)
1
5" (941Pa + 95lP5 1" + golPc” + gplPp[*) (79)
g
Spep = M + A2 (P — M) - g4] (80)
194
g
Sacp = M + B2 [(ps — M) - g (81)
95|
g
Sipp = M+ 02 [(ps— M) - gc] (82)
96|
g
Sapc = M+ |gD‘2 (s — M) - gp] (83)
D

The volumes of the tetrahedra, based on one side and the circumcentre of the cir-

cumsphere, are

1
Vom = Vasem = 3 [Aapc -
c 1
Vispm = Vappu = 3 [AapD -
B 1
Vaicou = Vacom = 3 [Aach -
A 1
Vecom = Veepm = 3 [Apcp -

(M —p,)] (84)
(M —p,)] (85)
(M —p,)] (86)
(M — pp)] (87)



The volumes of the tetrahedra, based on an edge, a circumcentre of a triangle and
the circumcentre of the circumsphere, are

1

VACBDSM = VABSABCM = g *PaB - [(SABC - PA) X (M* PA)] (88)
1

V14DB%M = VaBs ppm = 6 “Pap - [(SaBp — Pa) X (M —p,)] (89)
1

VABC%M = VACSABCM = *6 "Pac [(SABC - PA) X (M* PA)] (90)
1

Vfcl?sM = VACSACDM = 6 "Pac [(SAC'D - PA) X (M* PA)} (91)
1

VfDCSM = VADSABDM = 6 "Pap - [(SABD - PA) X (M_ PA)] (92)
1

VACDBSM = VADSACDM = _6 “Pap - [(SACD - PA) X (M— PA)] (93)
1

V)?(?SM = VBCSABCM = g "Ppc [(SABC - PB) X (M_ PB)] (94)
1

VBDc{lSM = VBCSBCDM = _g "PBc [(SBCD - PB) X (M_ PBN (95)
1

VéngM = VBDSABDM = _6 "PBp - [(SABD - PB) X (M_ PBN (96)
1

Vihsu = VeDsgopm = g Psp [((SBep — Pg) X (M — pp)] (97)
1

VCI?DBSM = Vepsaepm = 6 Pep - [(Saco — pe) X (M — pe)] (98)
1

V591345M = VepspopM = 6 "Pcp - [(SBC'D - Pc) X (M* Pc)} (99)

Now we have the required information to solve equation (59) for all six (arranged)
edges of the tetrahedron provided they are inner edges of the grid:

1 Viboum i V.iapM £t Visoum Ea
E 12 12 aB+ —5——¢nc
cp MABCD ‘ABC ABD ABC

D C
VABC’M VABDM

- ~Eac + Epp — Vinou : SAD:|
Alpo A’sp A’sp
VC’D VDC’
2 [Z e ABCD - ABSMl:‘ ABSM | g (100)
CcD AB

21



5 HABCD 4cD A% oo A2
Vicou Eap — Viscu £y Vibom £ B}
AilC’D A?‘lBC A?‘lBC
= w? [Z € ABCD - ACSMl2 ACSM | o (101)
DB AC

1 |:<VACBDM 4 VABC’DM> Eap — Vispu

- Epp —

“= wapco [\ A%sp  Alep A2

Vaspum £ Viepum ¢ Ve our P

AZ "CAB T A2 rC¢CD — A2 *CAC

ABD ACD ACD
VBC 4 VCB
= w? ZEABCD . ADSMl2 ADSM | o (102)
BC AD

Z : [(VfBCM + V§CDM> Epc — Vibcu ~Eac +

2 2
5 MaBcD A% e A%op

VADBCM Vé40DM
+ -Eap +
A124BC' AZBCD

VA
'gCD __ "BCDM 'SBD:|

2
ABC’D

AD DA
— 2 VBC’SM + VBCSM
=w EABCD *

2 Epc (103)
AD BC

1 Vl?CDM VACBDM B Vl?CDM B
Z 2 + ED > -&cp
~~ pascp [\ Apep A% A2

A C c
Vieou Vispum £ Vispm
A2 TUBC T o “&ap +
BCD ABD

e

2
AABD

22



CA AC
2 VBDSM + VBDSM
=w €ABCD *

] Erp

l2
CA BD
B A B
0 Vieouw | Vaepu Vicou
Ve + A2 Ecp — A2 -Eap +
ap MABCD ACD BCD ACD
B A A
Vicom £ Vieoum £ Vieoum £
+ A2 TCAC T A2 " CBD + A2 " CBC
ACD BCD BCD
AB BA
9 Vébsu + Vs £
= w €ABCD * 2 cD "0
AB CD

(104)

(105)

From these equations, the respective proportions of the tetrahedron ABC D for the
coefficient matrix M can be ascertained.
(Each equation is set up for an inner edge of the grid and corresponds thus to a line

of the matrix M.)

If A%, is replaced by A%y, and 1%, by p%y, then these proportions are de-
pendent on known quantities alone; for the entries in the main diagonals of M, the

following can be derived:

i =k(A, B)
e — 1 <V£BCM VACBDM> L2
27 T 2 2
pascp \ Aapc Aupp
i=k(A,C)
1 VE vp
My — ( AZC'DM AZBC'M> W2
pascp \ Acp Alpe
i=k(A,D)
1 (VACBDM VfC'DM> 2
mi; = 5 5 w
paseop \ Aapp Alcp
i=k(B,C)
1 <VADBC’M Vé40DM> 2
mMy; = 2 + > w
paBep \ Aupe Agep
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*€ABCD

*EABCD

*E€ABCD *

*E€ABCD *

cD DC
Vigsu + Vapsu

2
DPug

DB BD
Vicsu + Vicsu

2
Pic

BC CB
VADSM + VADSM

2
Pup

AD DA
VBC’SM + VBC’SM

2
DPsc

(106)

(107)

(108)

(109)



CA AC
VBDSM + VBDSM

1 Vi VE
My = < BZC’DM A2BDM> —W? Eapep - A (110)
HABCD ABC’D AABD pBD
Finally, by considering left and right tetrahedra, we have
i=k(C,D)
tascp \ Alep A%ep Pcop
For non-diagonal entries, we obtain:
. . 1 Visoum
i =k(A, B) j=k(B,C) m;; = + 5 (112)
kaBcD AABC
1 VP
j=k(A,QO) mi; = — ABCM (113)
UABCD AABC’
1 Vg
j=k(B,D) mij = + SODA (114)
“AaBCcD AABD
1 Vg
j=k(A,D) mij = — ABDM (115)
kaBcD AABD
) . 1 VABCDM
i=k(A,C) j=k(C,D) mi; = + 0 (116)
“aBcD AAC’D
1 VE
j = ]C(A, D) mi; = — AchM (117)
“aBcD AACD
1 VP
j=k(B,C) mij = — AZOM (118)
“aBcD AABC’
1 VP
j=k(A, B) mij = — o (119)

2
KaBcD AABC’
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i = k(A, D)
i = k(B,C)
i = k(B, D)

j = k(B,D)
J = k(4,B)
j=k(C,D)
J=k(4,0)
J=k(A,C)
j = k(4,B)
j=k(C,D)
j=k(B,D)
j=k(C,D)
j=k(B,C)
J = k(4,D)
j =k(A, B)

1 Vispu

mij = — 2
KHaBCD AABD
c
M — — 1 VABDM
ij — )
KaBcD AABD
B
Mes = — 1 VAC’DM .
1] T 2
kaBcD AAC’D
B
M — — 1 VACDM
ij — )
KHaBCD AAC’D
D
Mis = — 1 VABC’M
1] 2
tascp Aupe
D
M = + 1 VABC’M
ij — )
kaBcD AABC’
A
M, = + 1 VBC’DM .
ij — 2
“aBcD ABC’D
A
Mes = — 1 VBC’DM
1] T 2
kaBcD ABCD
A
M — — 1 VBCDM .
ij — 2
KHaBcD ABC’D
A
Mes = — 1 VBC’DM
1] T 2
kaBcD ABC’D
9
M — — 1 VABDM
ij — )
kaBcD AABD
1V
ABDM
m,-j = 4

2
“AaBCcD AABD
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(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)



i = k(C, D)

1 Vitou )

i = k(A, D mis — —
! ( ) ! UaBCD A,chD
1 VB
j=k(A,C) mi; = + ACDM
tasep Ascp
1 va
j=k(B,D) mi; = — BODM
tascp Agxep
1 vAa
]:k(B,C) mz’j:+ BCDM

2
kaBcD ABCD

16 Further simplifications

(132)

(133)

(134)

(135)

For the above non-diagonal entries of the coefficient matrix (112) - (135) only four
different values occur (up to the sign), namely

If we further set

Q4= 1 Viepu
pascp A%op

QB — 1 VABCDM
UABCD A124C'D

QC — 1 VACBDM
“ABCD A124BD

Op = 1 Vikou
pascp A’ pe

cD fote;
Vissu + Vapsu

2
Dyp

2
Rip = w” - €aBep -

DB BD
Vicsu + Vacsu

2
Duc

2
Ryc = w” - €apep -
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(136)

(137)

(138)

(139)

(140)

(141)



VBC + VCB
Pap

VAD + VDA
Psc

cA AC
Vebsmu + Viosu

Rpp = w’ - €apcp - 5 (144)
PBp
VAB VBA
Rep — w2 ancp CDSM;" CDSM (145)
Pcop
we have the following expressions for the diagonal entries of M:
i = k(A, B) mi; = Qc + @p — Rap (146)

) mi; = Qp + @p — Rac (147)
) mi; = Qp + Qc — Rap (148)
) mi; = Qa+ Qp — Rpc (149)
) mi = Qa4+ Qc — Rpp (150)

and, by considering right and left tetrahedra,
i = k(C, D) mi = Qa+Qp — Rep (151)

For the non-diagonal entries, we have

i=k(A,B) j=k(B,O0) mi; = +Qp (152)
] = k(A, C) mz-j = *QD (153)
j = k(B,D) mi; = +Qo (154)
] = ]C(A, D) mz-j = *Qc (155)
j=k(A,D) m;; = —Qp (157)
j=k(B,C) mi;j = —Qp (158)
j=k(A,B) m;; = —Qp (159)
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(160)
(161)
(162)
(163)

mi; = —Qc

j =k(B,D)
j =k(A, B)
j = k(C,D)
j = k(4,0)

i = k(A, D)

mi; = —Qc

mi; = ~@p-o0
mi; = —Qp

(164)
(165)
(166)
(167)

mij = —Qp

J=k(4,0)
j = k(4,B)
j = k(C,D)
j=k(B,D)

i=k(B,C)

mi; = +Q@p

=+Qa-o0
mij = —Qa

mz-j

(168)
(169)
(170)
(171)

mi; — Qa0
mij = —Qa
mi; = —Qc

j=k(C,D)

i = k(B, D)

k(B,C)
j=k(A, D)
J= k(AaB)

J

m;; = +Qc¢

(172)
(173)
(174)
(175)

m;; = ~Qp-o

Jj = k(4,D)
J=k(4,0)
j = k(B,D)
j=k(B,C)

i = k(C, D)

=+QB-0
mij = —Qa -0

mz-j

mij = +Qa -0

The remaining six entries of the matrix M, belonging to this tetrahedron, have the

value zero:

(176)

mz-j

j:k(C,D)

i = k(A, B)

(177)
(178)

mz-j = m]’i =0

j:k(BaD)

J= k(B,C)

i = k(A,C)
i = k(A, D)

mz-j = m]’i =0
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17 Symmetry of the coefficient matrix

From Section 16 above, it follows that

for each entry in M, belonging to a tetrahedron ABC' D, whose edges are all inner
edges.

Since the first index of m;; always belongs to an inner edge , this equation does not
apply, if the second index belongs to the outside edge the entry m;; does not exist,
in this case (there is no equation for the outside edges).

If K; denotes the number of inner edges, then:

AB is inner edge: k(A, B) < K; (180)
AB is outside edge: k(A,B) > K; (181)

Now for tetrahedra with at least one inner edge (there can be tetrahedra, which
possess only outside edges) all entries m;; in the matrix M can be calculated. Here
1 < K; always applies.

If j belongs to an inner edge, then likewise j < K, applies, and the entry m;; exists.
Since m;; = m;, the first K;zK; block of the matrix M is symmetrical.

If j belongs to the outside edge, then j > K; applies and the entry m;; does not
exist. The entry m;; is outside of the first K; columns of M.

The columns of the matrix M for which j > Kj;, belong to the outside edges and
thus relate to the boundary conditions of the problem.

The actual coefficient matrix for the calculation of the modified electrical field
strengths on the edges (multiplied by the length consists of the first K; columns
of M, is square and from the above considerations, symmetric.

18 Demands on the grid generator

In order to generate a tetrahedral grid, in with which all the circumcentres of the
tetrahedra lie within the respective tetrahedra, and for which any connecting line
(Voronoi edge) of two circumcentres of neighbouring tetrahedra lead to no further
tetrahedra, two conditions must be fulfilled:

1. No surface is an blunt-angled triangle.

2. The smallest ball around a surface does not contain further nodes.
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19 Calculation of the coefficient matrix over the
inner surfaces

In Section 15 we calculated the coefficient matrix by regarding all tetrahedra in
sequence.
It can also be calculated by regarding all inner surfaces in sequence.

If ABC is an inner surface of the grid, then it is a common surface of two neigh-
bouring tetrahedra. The peaks of these tetrahedra are D; and Ds.

To each combination of two edges of the surface ABC, whereby the first of the
edges should be an inner edge of the grid, we compute the corresponding entry in
the coefficient matrix, as follows:

1 vh 1 VP
mi;| = Qp, + Qp, — ABCM ABCM 189
™| ' * pascp, A?ﬁlBC HABCD, A?ﬁlBC (182
Thus b o
1 V.2 V2
|mz'j| — A2 ABCM + ABCM (183)
ABC LMABCD, HABCD,
and for the same material in both tetrahedra
vh v P2
‘mz’j‘ — ABCM + ABCM (184)

The sign of m;; is determined by edge orientation, based on the direction from
smaller to the larger node number.

The following outline shows, the various possible combinations of edge orientations,
and the corresponding signs in each case:

A

fig.7: Sign of the coeflicient according to edge orientation
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20 Matrix representation

The first two Maxwell equations can be represented (after multiplication with pu)

as follows:

CD;;;B; = jwueoD ;. E; (185)
CD,E = —jwD,B; (186)

Here, we have:

NES

.

S

A

oo aQaQ

5/p
Dfié

vector of the electrical field strengths on all edges

vector of the electrical field strengths on all inner edges

vector of the magnetic induction on the inner surfaces

discrete operator of the line integral of the second Maxwell equation

discrete operator of the line integral of the first Maxwell equation

diagonal matrix of the edge lengths

diagonal matrix of the tetrahedron surfaces

diagonal matrix of the (length proportion/material size) values of the Voronoi edges
diagonal matrix of the (surface portion*material size) values of the Voronoi surfaces

From these equations, we first write

—jw(:'Dg/ﬁB,- = CL)Z/,L()EUDAgEi (187)
—jwB; = D,'CD,E, (188)

and then eleminate the B;, to get

With

we can further write

CD;;,D,' CD,E = w*ue, D ;. E;. (189)
k(Z) = WZMOEO (190)
CD;;;D,'CD,E — kD ;.E; =0 (191)

Since the boundary values on the outside edges are given, the matrices C,D,,E,
which belong to the first term of the equation, can be split into two parts: one for
the outside edges (C,D,,E,) and one for the inner edges (C,D,,E;).

The known values are now moved to the right-hand side:

CD;;;D,'CD,E; — k!D;.E; = —CD;;;D,' CD,E, (192)

Here again, we have introduced new notation:
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E, vector of the electrical field strengths on the outside edges (boundary values)
C proportion of C for the outside edges

D, proportion of D, for the outside edges

c proportion of C for the inner edges

D, proportion of D, for the inner edges

Now the equation can be expressed as

(éDE/ﬁDZIé_ ngAEﬁgl) (ﬁSE,> = —éDg/ﬂD;‘l C’ﬁsEa (193)

The product D,E; corresponds to the variable £. The symmetry of the first brack-
eted term has been proven in the Section 17 and we also note that:

¢ =¢ (194)

The order of magnitude of the matrix entries in the first bracketed term roughly
amounts to length /surface, thus 1/length. The term remains symmetrical after pre-
and post-multiplication by the same diagonal matrix. If the diagonal matrix is based

on the square roots of the lengths, then the resulting matrix has entries of O(1).
A1/2

s .

This is achieved by pre-multiplying equation (193) by

p,” CD;;;,D,'CD,E; — ®D,"D;.E = -D," CD;;;D,' CD,E, (195)

or

(13?2 ¢D;,D; CDY - kgpfié) (ﬁi/in) = -D’€D;,;D;'CD,E, (196)

A1/2
The quantity Ds/ E; is taken as a new variable. The first bracketed term is then a
symmetrical coefficient matrix.

This equation is the basis for the program efm.

The third Maxwell equation can be expressed in the form

SiD;.E; =0 (197)

The divergence at an internal node is obtained by dividing this equation by the

volume of the appropriate Voronoi cell, i.e.
a1l ~

Here, we have:
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S, discrete divergence operator on the binary grid for the inner nodes
ljf, diagonal matrix of the volumes of the Voronoi - cells around internal nodes
where
B 1 if edge j is directed away from node i
(S,-) =4 —1 ifedge ] is directed towards node i (199)
“ 0 otherwise
applies.
For the normal derivative component, we have
oU (r) U(r+ At n) —U(r)
. = = li 2
n-grad U 5 Jim Az (200)
For an edge from node i to node j, we have in the discrete case:
U; — U;
grad U - n;; = ]li (201)
ij
For all inner edges it thereby follows that
grad U -n = —Ij_:ISU (202)
with:
S discrete gradients of the edge directions
U amount of a scalar field in all nodes
and where
1 if edge i is directed away from node j
S;; =4 —1 ifedgeiis directed towards node j (203)
0 otherwise
applies.
For the outer nodes, div (¢E) = 0, but no Voronoi cells exist. We set
div (eE) = D' SD ;. E, (204)
where
D‘T/1 modification to 13;,, by setting a zero into the main diagonal
on the place of outside edges
S extension of S; on the outside edges according to the condition for §;;
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Setting U = div (e E), we get

graddiv (eE) - n= —ﬁ;lsD‘f]I SD;.E; =0 (205)

From the definitions of S and § it follows immediately that

sT=8. (206)

To similarly obtain a symmetrical coefficient matrix with entries of O(1), from equa-
tion (205), we pre-multiply this two diagonal matrices:
A1/2 P
—D, D;.D, SD, SD;.E; =0, (207)
e —1/2 ~ —1/2 1/2
(—Ds D;.SD;'$D;.D, ) (Ds E) =0 (208)

It is favourable, to express the equation indepedently of €, i.e. to regions considers
with only one material. This can be achieved, not by dividing by the volumes of
the Voronoi - cells, but by dividing by the multiples of the volumes proportionately
and by the square of the appropriate &:

(-B,"Ds8D;!,8D,D,") (B)"E) =0 (209)

similarly to D‘fll, volume proportions are multiplied by &2

Equation (209) possesses a symmetrical coefficient matrix and likewise the variable

Al/2
Ds/ E;; in the program efm it is used for preconditioning.
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21 Documentation for the program efm

1. General

With the program efm (electric field matrix), we assemble the coefficient matrix on
the right-hand side of a set of linear equations for the calculation of an electric field
on a tetrahedral grid.

The starting point is an input file, which consists of the geometrical sizes of the
tetrahedral grid, the material sizes, the considered frequency and the values at the
gates, which are calculated from an eigenvalue problem.

In order that the developing coefficient matrix remains symmetric, the variables of
the electrical field strengths on edges are multiplied by the roots of the respective
edge lengths.

Apart from the log file, the formatted and the unformatted files of the set of equa-
tions (coefficient matrix and right-hand side) and some further files, used for checking
purposes, the remainder are output files.

2. The input file

The input file datei contains no keywords and no separating blank lines. Real and
complex numbers are inputted with double precision.

The fundamental structure is:

frequency

material

nodes

Ty z

tetrahedra

nl n2 n3 nd mat

outside edges boundary values
nl n2 KO

By frequency, we mean here the rotational frequency w = ak0 - c.

Under material firstly the number of different materials is indicated, then all relative
values p (real) and finally all relative values € (complex).

Following the entry for the number of nodes, the x, y, z coordinates are written,
line by line.

The number of tetrahedra comes next, followed by a 5-number set for each te-
trahedron; the first four numbers are the node numbers of the corner nodes and the

fifth number indicates the material of the tetrahedron.

Finally, the number of the outside edges and the number of the boundary values are
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written. Among these, in each case, are the starting node and the end node and the
boundary value belonging to this edge, which can only be non-zero at the gates.
The outside edges require a boundary value, so that the set of equations becomes
uniquely solvable. Further boundary values can be obtained by noting that all edges
of the electrical conductor take the boundary value zero.( If the electrical conductor
is not discretised, but is regard as a hole, then only the appropriate outside edges
are to be set zero).

3. The program efm

The program efm is written in FORTRAN90. After starting the program with
»,efm“, the input file datei is selected and afterwards the output files for the coeffi-
cient matrix dateil and the right-hand side datei2, as well as the type of output,
either as a file or as files IA, JA and AA for the coefficients matrix.

Further, the preconditioner graddiv may be selected (or not), and the minimum
values (MinVoro, MinVol) for the Voronoi surface and the volume of a tetrahedron
are selected.

The program first reads in the input values.

There is no internal check, to see whether the tetrahedral grid satisfies the Delaunay
criterion.

Circumcentres of circumspheres located outside of the given tetrahedron are consid-
ered within the calculation.

The different stages of the program can be followed interactively.

These are written also into a log file, which carries the same name as the input file
and carries the suffix ,,.prt“.

4. The output files

datei.prt : This file includes information to the given minimum values, the de-
tails barring date and time of day of the calculation, whether or not graddiv was
implemented and the names of the input and output files. Also some information
concerning the tetrahedral grid and the set of equations, along with the computing
times required for reading the input file, for the calculation and for the output in
files; the edge numbers, the entry numbers and the values for the maximum and
the minimum entries (absolute values) of the right-hand side (b) and the coefficient
matrix (A).

TAdateil.fmt, JAdateil.fmt, A Adateil.fmt, dateil.fmt : Formatted

output of the coefficient matrix.

Since the coefficient matrix is symmetric, only the right upper triangular part is
stored here.

Since the matrix is sparse, it is stored in the form TA, JA, AA. These are three
lists or column vectors with only one entry for each line. If dim is the dimension of
the matrix and eintr the number of non-zero entries (NNE) in the matrix, then the
length of the list A is dim + 1 and of the lists JA and AA is eintr.
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In the list TA the number of the first NNE of the ith line of the matrix is located in
the ith line. In the (dim + 1)th line is the increased (by an amount 1) number of
the NNE of the matrix.

The column numbers of the NNE are located in the list JA, while the NNE itself
are found in the list AA.

The lists TA, JA and AA are stored in the files IAdateil.fmt, JAdateil.fmt and
A Adateil.fmt or in the separate file dateil.fmt, where in the latter case, first the
dimension of the matrix and then the lists IA,JA,AA are stored.

IAdateil.unf, JAdateil.unf, A Adateil.unf, dateil.unf : Appropriate unfor-
matted output of the coefficient matrix

datei2.fmt : Formatted output of the right-hand sides of the equations
datei2.unf : Unformatted output of the right-hand sides of the equations

vanish : File of the edges with disappearing Voronoi surfaces.

During the generation of grid edges, it is possible that the circumcentres of the cir-
cumspheres of the surrounding tetrahedra can collapse to one point, i.e. the Voronoi
surface can disappear. In the coefficient matrix, only zeros are located in the ap-
propriate line and the field strength on the edges cannot be calculated. So that the
set of equations remains solvable, a ,,1“ is inserted on the main diagonal, whereby
the electrical field strength on this edge acquires a (false) value of zero.

In the file, the edge numbers are stored line by line from start to end node.

edges : The edge list KantList(i,1:2) is stored as a two-dimensional field for the
index i.

If Nodes is the number of the nodes and Fdges the number of edges of the grid
(Edges = dim), then the index i runs from —Nodes to Fdges.

Each edge is determined by its start and end node, whereby the end node has a
larger node number than the starting node.

A is the node number of any node. Kantlist (-A,1) indicates the number of edges
with the starting node A. If this value is non-zero, then KantList (-A,2) shows a
positive index. This index is the edge number of the edge with the starting node A
and the end node KantL (i1,1). If there are further edges with the starting node A,
then KantList (i1,2) points to the next edging number, etc.. For the last edge with
starting node A, the index 0 is shown.

edgenodes : In this file, the edges are stored with their start and end nodes.
length : In this file, the edge lengths are stored.
sqrtl : In this file, the square roots of the edge lengths are stored. After solv-

ing the set of equations, we can get the electric field strengths on grid edges by
dividing the solution by these square roots.
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22 A small example

As an example we have simulated a rectangular microwave structure. The structure
is subdivided in 3x3x2 equidistant rectangular three-dimensional elementary cells.
The two cells in the middle of the structure are the electrical conductor. Further-
more every rectangular elementary cell is subdivided in six tetrahedra.

45 46 47 48
29
30 31 39
44
13 14 15 16
28
40
9 10 11 12
24
36
5 6 7 8
20
1 9 3 4

fig.8: The subdivided structure

The material constants of the electrical conductor do not influence the computa-
tion, because all edges of the conductor take the boundary value zero.

The only gate is in front of the structure. The other sides are electric walls.

One get the following input file:

38



599584916.D0

2

1.0D0

1.0D0

(1.0D0,-0.1D0)

(1.0D0,0.0D0)

48

0.000000000000000D+000 0.000000000000000D+000 0.000000000000000D~000
4.000000000000000D—001 0.000000000000000D+4-000 0.000000000000000D+000
8.000000000000000D—001 0.000000000000000D-+000 0.000000000000000D~000
1.200000000000000D~000 0.000000000000000D+000 0.000000000000000D+000
0.000000000000000D+000 0.000000000000000D~+000 3.000000000000000D—001
4.000000000000000D—001 0.000000000000000D+000 3.000000000000000D—001

0.000000000000000D+-000 0.000000000000000D—+000 6.000000000000000D—001
0.000000000000000D+-000 0.000000000000000D+000 9.000000000000000D—001

0.000000000000000D+-000 2.500000000000000D—001 0.000000000000000D+000
4.000000000000000D—001 2.500000000000000D—001 0.000000000000000D+000

0.000000000000000D+-000 2.500000000000000D—-001 3.000000000000000D—001

1.200000000000000D-+000 5.000000000000000D—001 9.000000000000000D—001
108

152211

562211

6222211

22182211

18172211

1712211

263221

27312847 1

313228471

3248 28 47 1

48 44 28 47 1

44 43 28 47 1

43 27 28 47 1

126 149

15 0.0DO0

2 6 (8.210000000000000D-001,4.109000000000000D-002)
3 7 (8.210000000000000D-001,4.109000000000000D-002)
4 8 0.0D0

59 0.0D0
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6 10 0.0DO

711 0.0DO0

8 12 0.0DO

9 13 0.0DO

10 14 (8.210000000000000D-001,4.109000000000000D-002)
11 15 (8.210000000000000D-001,4.109000000000000D-002)
12 16 0.0DO

33 37 0.0D0

12 0.0DO

2 3 0.0D0

34 0.0D0

5 6 (1.134000000000000D+000,4.692000000000000D-001)
6 7 0.0D0

7 8 (1.134000000000000D+000,4.692000000000000D-001)
9 10 (1.134000000000000D+-000,4.692000000000000D-001)
10 11 0.0DO

11 12 (1.134000000000000D+000,4.692000000000000D-001)
13 14 0.0DO

14 15 0.0DO

15 16 0.0DO

117 0.0DO
17 33 0.0DO
2 18 0.0DO0

25
36

-2.073000000000000D-001,-1.753530000000000D-001)
4.926000000000000D-001,2.465400000000000D-002)

4 7 (-2.073000000000000D-001,-1.753530000000000D-001)

6 9 (9.072000000000000D-001,3.753600000000000D-001)
710 0.0DO

8 11 (9.072000000000000D-001,3.753600000000000D-001)
10 13 (-2.073000000000000D-001,-1.753530000000000D-001)
11 14 (4.926000000000000D-001,2.465400000000000D-002)
12 15 (-2.073000000000000D-001,-1.753530000000000D-001)
34 37 0.0DO

N AN N /N

121 0.0DO
17 37 0.0DO

217 0.0DO
3 18 0.0DO
4 19 0.0D0O

6 22 0.0DO0
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22 38 0.0DO
723 0.0DO

22 23 0.0DO
26 27 0.0DO
22 26 0.0DO0
23 27 0.0DO
23 26 0.0DO
6 26 0.0DO

722 0.0DO0

726 0.0DO0
23 42 0.0DO

There are 197 variables, but 149 variables are boundary values.

After the computation there are 16 variables in the file vanish. These variables
belong to the diagonals of the rectangular cells (without the two rectangular cells
of the electrical conductor), because the circumcentres of the circumspheres of the
surrounding tetrahedra collapse to one point, i.e. the Voronoi surfaces disappear.
The belonging edges are stored from start to end node.

2 21
3 22
4 23
6 25
8 27
10 29
11 30
12 31
18 37
19 38
20 39
22 41
24 43
26 45
27 46
28 47

In the resulting matrix there are 231 entries.

The structure was computed for the tetrahedral grid on the one hand and for rect-
angular cells on the other hand. The values on the edges of the rectangular cells do
not differ in the two cases.
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23 Conclusions

The test calculations showed that good results can be achieved with the program
efm on tetrahedron grids and that by the use of graddiv as preconditioner, a faster
convergence is attained.

Further tests and investigations are useful in order to find criteria (dependent on
the grid) for the parameters MinVoro, MinVol and Minzei, which on the one hand
should serve to prevent unreasonably small entries in the matrix, but on the other
hand can also set relevant entries to zero.

A further step would be to integrate the various components, ranging from the grid
generator to the calculation of the scattering matrix, into a large program.
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24 Nomenclature

A spc
Auapc

B;

B (Sapc)
Bapc

O QD Q

-
SN

(L)

w

el
< <t K
m; =

»

l

SPESY 5

S)

SESHCESES

inwardly-arranged surface vector of the triangle ABC

surface of the triangle ABC

vector of the magnetic induction on the inner surfaces

magnetic induction (vector) in Sapc

real or complex number (magnetic induction)

discrete operator of the line integral of the second Maxwell equation
discrete operator of the line integral of the first Maxwell equation
proportion of C for the inner edges

proportion of C for the outside edges

diagonal matrix of the tetrahedron surfaces

diagonal matrix of the (surface portion*material size) values of the
Voronoi surfaces

diagonal matrix of the edge lengths

diagonal matrix of the (length proportion/material size) values of the
Voronoi edges

modification to 13‘7, by setting a zero into the main diagonal

on the place of outside edges

similarly to Dy, volume proportions are multiplied by g2
proportion of D, for the inner edges

proportion of D, for the outside edges

diagonal matrix of the volumes of the Voronoi - cells around internal nodes
distance of the circumcenter of the triangle ABC

to the side AB

vector of the electrical field strengths on all edges

vector of the electrical field strengths on the outside edges (boundary values)
vector of the electrical field strengths on all inner edges

electrical field strength (vector) in Sap

number of nodes

number of nodes of the surface network

nodes of the polyhedron around node A

real or complex number (electrical field strength)

number of internal nodes

variable vector of the electrical field

modified electrical field strength on the edge AB

variable of the electrical field

number of surfaces

number of surfaces of the surface network

number of internal surfaces (nodes, edges may be situated outside)
the side opposite node p;

surface vector of F; directed towards the inside of the tetrahedron
divided by the threefold volume of the tetrahedron

height of the point p; over F;
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K number of edges

Ky number of edges of the surface network
k(A, B) index assigned to the edge AB
K; number of internal edges (nodes may be situated outside)
laB length of side AB
1Bpc distance of the circumcentre of the tetrahedron ABC'D
to the side ABC
M circumcentre of the sphere
M coefficient matrix
Magcp circumcentre of the tetrahedron ABC' D
uor coefficient matrix entry
N number of nodes
Nap unit vector in AB direction
NABC normal vector, which is perpendicular to the triangle ABC,
(with a mathematically positive arrangement of the nodes A, B, C)
n; normal to Fj, which is belonging directed away from the tetrahedron interior
Pa vector to the node A
Pk () projection onto the appropriate edge
Py (.) projection onto the appropriate surface-normal
Qa simplification of an entry in M
R radius of the sphere
Rag simplification of an entry in the main diagonal of M
S discrete gradients of the edge directions
SaB center of the edge AB
Sapc circumcentre of the triangle ABC
Sinc vector for the circumcentre of the triangle ABC
S extension of S; on the outside edges according to the condition for §;;
S, discrete divergence operator on the binary grid for the inner nodes
SP double product of the vectors (lowest node first)
T number of tetrahedra
U amount of a scalar field in all nodes
Va volume of the Voronoi cell around the node A
Vasep volume of the tetrahedron ABC D
VEou volume of the tetrahedron ABC M, whereby M is
the circumcentre of the tetrahedron ABC' D
Vb Volume of the tetrahedron ABSM, whereby M is the circumcentre
of the tetrahedron ABCD and S is the circumcenter of the surface ABC
T z component of the vector p,
Ya y component of the vector p,
Z4 z component of the vector p,
€4aBCD, Mapcp Mmaterial constants in the tetrahedron ABCD
w rotational frequency
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