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Abstract

Starting from well-known model-based clustering models equivalent for-
mulations for some special models based on pairwise distances are presented.
Moreover, these models can be generalized in order to taking into account
both weights of observations and weights of variables. Well-known cluster
analysis techniques like the iterative partitional K-means or the agglomera-
tive hierarchical Ward are useful for discovering partitions or hierarchies in
the underlying data. Here these methods are generalised in two ways, firstly
by using weighted observations and secondly by allowing different volumes of
clusters. Then a more general K-means approach based on pair-wise distances
is recommended. Simulation studies are carried out in order to compare the
new clustering techniques with the well-known ones.

Afterwards a successful application in the field of freshwater ecology is
presented. As an example, the cluster analysis of a snapshot from monitoring
of phytoplankton (algae) is considered in more detail. Indeed, monitoring by
microscope is very time- and work-consuming. Flow cytometry provides the
opportunity to investigate algae communities in a semiautomatic way (Hofs-
traat et al. 1994). Statistical data analysis and cluster analysis can at least
support the investigations. Here a combination of agglomerative hierarchical
clustering and iterative clustering is recommended. In data mining, such a
similar combination was proposed by Faber et al. (1994) in the field of image
segmentation of Landsat data. In order to give some insight into the data un-
der investigation several univariate, bivariate and multivariate visualizations
are proposed.
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1 Introduction

Cluster analysis aims at finding interesting partitions or hierarchies directly from
the data without using any background knowledge. Here a partition P(7,K) is
an exhaustive subdivision of the set of I objects (observations) into K non-empty
clusters (subsets, groups) Cy that are pair-wise disjoint. On the other hand a hier-
archy is a sequence of nested partitions. There are model-based as well as heuristic
clustering techniques. At most one will set up new hypotheses about the data.
At least clustering should result in practical useful partitions or hierarchies. More
details and many more references can be found, for example, in the monographs
of Bock (1974), Spéath (1985), Jain and Dubes (1988), Kaufman and Rousseeuw
(1990), Mucha (1992), and Gordon (1999). Concerning model-based clustering the
papers of Banfield and Raftery (1993), Fraley (1996) as well as Fraley and Raftery
(2002) are a good introduction. Successful application of model-based clustering are
known, for example, from image processing (analysis of computed-tomography scans
or Landsat images (see for instance, Faber et al. (1994)), and color image quantiza-
tion (Murtagh, Raftery, and Starck (2001)), and from archaeometry (Mucha, Bartel,
and Dolata (2002)).

Beside the most general Gaussian model for clustering two simple models will be
considered here in a generalised form using weighted observations. They lead to
the sum-of-squares and logarithmic sum-of-squares criterion. Both criteria can be
formulated in an equivalent fashion using pair-wise distances between observations.
The principle of weighting of observations is a key idea in data mining for handling
cores (representatives of dense regions) and outliers. In the case of outliers one has
to downweight them in order to reduce their influence. A first important attempt
at downweighting of the observations goes back to Hampel (1968). Based on the
theory of median absolute deviation (MAD) clear outliers in single coordinates can
be downweighted and rejected. Below only a simple multivariate empirical approach
of downweighting will be investigated.

As an application in the field of freshwater ecology, clustering data from a snapshot
of monitoring of phytoplankton of lake Miiggelsee (Berlin) is considered here. In-
deed, monitoring by microscope is very time- and work-consuming. Flow cytometry
provides the opportunity to investigate algae communities in a semiautomatic way
followed by statistical data analysis and cluster analysis.

2 Model-based Gaussian clustering

Generally, the population of interest consists of K different subpopulations (clusters)
with densities fi(x;0), & = 1,2, ..., K, for some unknown vector of parameters 6.
Here x is a J-dimensional observation. Let v = (v1,...,77) be a set of identifying
labels of I observations so that v; = k if x; comes from the k-th cluster. In the most
general classification likelihood approach, the identifying labels are chosen so as to



maximize the likelihood

L(x;0,7) = Hﬁ,xﬁ (1)

In the following, the focus is on the assumption that fi(x;#) is multivariate normal

with the special parameters 6, consisting of mean vector u; and covariance matrix
Yk The density fr(x;0) has the form

(3 i, Ti) = (27) 77 [T |2 exp{ (x — ) "S5t (x — )} (2)

Here J is the number of dimensions (variables). Banfield and Raftery (1993) de-
veloped a model-based framework for clustering by parameterizing the covariance
matrix in terms of its eigenvalue decomposition. Mardia et al. (1979) described
in detail the classification likelihood approach to model-based Gaussian clustering.
The alternative to the classification likelihood is the mixture likelihood approach,
which is recently favoured by Fraley and Raftery (2002). One reason for this is that
outliers and noisy data can be handled more easily within a mixture context. In the
following the focus is on two special assumptions about the covariance structure (for
further reading see Fraley (1996)). Let X be the (I x J)-data matrix under investi-
gation consisting of I observations (objects) and J variables. When the covariance
matrix is constrained to be diagonal and uniform across all groups, the well-known
sum-of-squares criterion

Vi =3 tr(W), (3)

has to be minimized. Herein Wy, = 3. . (%; — X)(x; — Xi)" is the sample cross-
product matrix for the k-th cluster Cj, and X; is the usual maximum likelihood
estimate of expectation values in cluster Cy.

It is well known that criterion (3) can be written in the following equivalent form
without explicit specification of cluster centres (centroids) X

vK_Zl/nkZ > da, (4)

1€CYE lECy,I>1

where ny, is the cardinality of cluster C%, and
di = d(x4, %) = (% — XZ)T(Xz’ —xq) = ||xi — Xl||2

is the pair-wise squared Fuclidean distance between two observations ¢ and [. It
is also well known that this criterion is dependent on the scales of the variables.
Different scales can be formalized by introducing weights of variables. Taking into
account weights of the variables the sample cross-product matrices can be composed
of two parts, and in (4), equivalently, the squared weighted Euclidean distance

dg (xi,%1) = (xi — x1)" Q(x: — x1), (5)
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Figure 1: Fingerprint of a distance matrix (excerpt) suggesting several clusters (data:
chemical compositions of Roman tiles coming from the Rhine area).



is used, where here Q is restricted to be diagonal. In doing so, at least scaling
problems can be handled fashionable without any data preprocessing step for stan-
dardization of variables. Moreover adaptive weights of variables can be used that are
estimated during the iteration process of clustering. (For details, also in the frame
of principal components analysis (PCA), see Mucha (1992, 1994, 1995).) Another
approach of assigning weights to variables is clustering observations an subsets of
variables (Friedman and Meulman (2002)). Of course, the statistical distance (5) can
be generalized to cluster specific statistical distances, where instead of Q a matrix
Qg equals to the inverse within-cluster covariance matrix is used (Spath (1985)).

There are at least two well-known clustering techniques for minimizing the sum-of-
squares criterion: the partitional K-means (MacQueen (1967), Bock (1974), Mucha
(1992)) minimizes criterion (3) for a single partition P(7,K) by exchanging obser-
vations between clusters, and the hierarchical Ward (Ward (1963), Spath (1980),
Mucha (1992)) minimizing (4) in a stepwise manner by agglomerative hierarchical
clustering. For illustration purposes here only, Figure 1 shows a so-called fingerprint
of a distance matrix. It expresses one adavantage of clustering based on pairwise
distances, namely the visualization of arbitrary high dimensional data in only two
dimensions usually (see Figure 2 below for another visualization technique). Here
the color expresses the level of distance between a pair of observations (see the leg-
end at the upper right hand corner of the picture). An intuitive impression of this
figure suggests that there are several well separated clusters. The data under in-
vestigation, and thus this example of a distance matrix, accrues from archaeometry,
where chemical compositions of 613 Roman tiles coming from the Rhine area are
measured by X-Ray Fluorescence Analysis (RFA). Each tile is characterized by 19
variables (chemical trace elements and oxides). For further details concerning this
application, see Mucha et al. (2002).

Figure 2 shows an estimated density of pairwise Euclidean distances that is a typical
one in the case of several well separated clusters (top of the picture). Here the
Epanechnikov kernel with the bandwidth 0.2 is applied to a randomly drawn sample
from the data of the application below (data: phytoplankton data, see Section 6).
Concerning nonparametric density estimation the monograph of Hardle (1990) is
recommended. For reason of comparability at the bottom of Figure 2 a density
estimate of pairwise Euclidean distances is given that is a typical one in the case
of a randomly generated multivariate spherical Gaussian distribution without any
cluster structure.

When the covariance matrix of each cluster is constrained to be diagonal, but oth-
erwise allowed to vary between groups, the logarithmic sum-of-squares criterion
K

Uk = an logtr(Wg/ny), (6)

k=1
has to be minimized. Once again the following equivalent formulation can be derived

U =Y mlog(}" 3 ) (1)

i€C), I€Cy,I>i  *
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Another adavantage of clustering based on pairwise distances over clustering based
directly on the (I x J)-data matrix X is the more general meaning of distances. For
example, going via distances allows cluster analysis of mixed data (quantitative and
qualitative data). In that way usually at least practical useful exploratory results
can be obtained.

The most general model-based Gaussian clustering is when the covariance matrix
W, of each cluster k is allowed to vary completely. Then the log-likelihood is
maximized whenever the partition P(/,K) minimizes

K
W
YK:anlog|n—:|. (8)
k=1

This criterion is obtained by taking advantage of the monotone log-function with
regard to the densities (2) that are used in the general equation (1).

3 Model-based clustering using weighted observa-
tions

Usually, all observations have the same weight. The principle of weighting the
observations is a key idea for handling cores (representatives) and outliers. In the
case of outliers one has to downweight them in some way in order to reduce their
influence. In the case of representatives of cores, one has to weight them, for example,
proportional to the cardinality of the cores.

The above given formulae (4) can be generalized by using positive weights of obser-

vations to «
Z Ck Z Z m; Z mldil7 (9)
k=1 ZECk 1eCy >

where M, = Zieck m,; and m; denote the mass of cluster C} and the mass of

observation i, respectively. Furthermore, v(Cy) denotes the within-cluster variance
of cluster k. Of course, such a generalisation can also be formulated based on
formulae (3) by using a weighted sample cross product matrix.

Concerning the K-means algorithm based on exchanging observations between clus-
ters in order to minimize (9) the following condition of exchange of an observation
¢ from cluster k into cluster g has to be fulfilled

v(Ce\{i}) + v(Cy U {7}) <v(Ch) +v(Cy),

where
v(C\}) = ——0 " ) mumudn — ) mimudin)
m; 1€Cy, heC ,h>1 heCy,
and
v(Cy U {i}) = M T Z Z mympdin, + Z mimpdip).
1€C, heCy,h>1 heC,
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Considering formulae (7) (and (6) in the case of formulation with sample cross
product matrices, respectively) the generalized logarithmic sum-of-squares criterion
can be derived as follows

K
Ue = Milog(y" Y %dn), (10)
k=1

i€Cy 1€Cy I>i k

According to this logarithmic sum-of-squares criterion the partitional K-means-like
clustering algorithm is denoted here Log-K-means and the hierarchical Ward-like
agglomerative method is denoted LogWard. Concerning the hierarchical algorithms
there are special treatments of observations with low weights in use (see, for example,
Mucha et al. (2002)). Because Ward’s hierarchical agglomerative clustering is based
on minimum incremental of sum of squares, all observations with zero (or quasi-zero)
weight would be merged together into one cluster, whatever the level of distance
values may be. By the way, K-means and Log-K-means based on pair-wise distances
are also more general because they never require an (/ x J)-data matrix X.

These more general algorithms, as the original K-means and Ward, are part of our
prototype-software ClusCorr9gH using the Excel spreadsheet environment and its
data base connectivity. ClusCorr98D contains a set of statistical tools for data ex-
ploration with emphasis on (adaptive) clustering and multivariate graphical visual-
izations. The programming language is Visual Basic for Applications (VBA). Almost

all numerical and graphical results presented here are made by using ClusCorr9st .

4 Core-based clustering

In the following simple techniques of clustering based on cores are proposed. Gen-
erally, a core is a dense region in the high-dimensional space that, for example,
can be represented by its most typical observation, its centroid or, more generally,
by assigning weight functions to the observations. There are at least two reasons
for dealing with weighted observations or representatives of cores. First, a huge
amount of data has to be clustered efficiently and a hierarchical clustering in a di-
rect way is possible often not till then at all. Second, the problem of outliers in
high-dimensional spaces has to be solved in an at least pragmatic way. Concerning
these tasks there are, for example, some interesting proposals from Zhang et al.
(1996) and Guha et al. (1998). The first one, called BIRCH (Balanced Iterative
Reducing and Clustering using Hierarchies), performs preclustering and then uses
a centroid-based hierarchical clustering algorithm. The second one, called CURE
(Clustering Using REpresentatives), identifies clusters having non-spherical shapes
and wide variances in size. CURE seems to be more robust against outliers than
BIRCH.

Here sum-of-squares and logarithmic sum-of-squares clustering based on cores is a
little bit investigated, respectively. There are many ways to deal with cores. Two
of them, which are considered here, use the fast K-means as a preclustering step

11
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in order to get so-called micro-clusters that form afterwards cores by applying an
appropriate threshold value for minimum size of cores. In the first way, the per-
formance and stability of partitional clustering based on weighted observations is
investigated in a simulation study. In the other way, a successful application of
hierarchical clustering based on representatives of cores is given in Figure 3. This
figure is also for illustration purposes here only. It shows an example of a result
of agglomerative hierarchical clustering of cores by the method LogWard (criterion
(10)) projected into the plane of the first two principal components. Here the size of
a bubble (that is, one bubble is one core) is proportional to the value of the logarith-
mic sum of squares within the corresponding core. Moreover the color of a bubble
expresses the final clustering into 8 classes. Figure 3 suggests that there are several
well separated clusters. As already mentioned above, the original data consists of
613 observations and comes from archaeometry, where 19 chemical components of
Roman tiles coming from the Rhine area are measured by RFA. In Figure 3, all
observations are projected into the plane of the first two principal components ad-
ditionally. The same data was used for preparing Figure 1 above. PCA is a suitable
multivariate visualization technique if the variance or log-variance criterion in clus-
tering is used. A generalised PCA based on covariances can take into consideration
both weights of observations and weights of variables (Mucha (1992)).

5 Simulation studies

Here the aim is to examine if core-based cluster analysis performs nearly as or better
than clustering the original data set. It should be mentioned that the following small
samples are drawn from a quite high-dimensional data in respect to the number of
observations. Two simple examples of two class data will be investigated here. The
number of variables J always equals 20. Generally for each of the examples, 200
artificially generated Gaussian samples of size I = 300 are drawn with equal class
probabilities. They are analysed in a parallel fashion by traditional and core-based
cluster analysis methods. The following simple algorithm has been applied in the
case of the latter ones:

1. Preclustering of all I = 300 observations by K-means into L = 50 micro-
clusters Ay,

2. Setting up the set of cores B,
{Bl,Bg, ...,BQ} = {Al . #Al Z t,l = 1, 2, ...,L},

where t is a threshold for the minimum cardinality of a core. Here in the
simulation studies below, for example, a threshold parameter t = 2 is used.

3. Model-based clustering (K-means: sum-of-squares criterion (7), and Log-K-
means: logarithmic sum-of-squares criterion (10) with taking into account the

14
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weights

1 ifx; € By,g=1,2,...,Q
m; = .
e otherwise

Herein € > 0 is usually nearly 0 (quasi-zero). That is, observations out of cores
are downweighted (or can be even discarded by setting € = 0).

Indeed, this is a hard rejection of outlying observations. Because of computational
simplicity € is chosen to be a quite small positive value (for instance, e = 1.E—15) in
order to assign the outlying observations to their nearest distance cluster. However,
these outliers with a quasi-zero weight don’t affect the clustering result. The mis-
classification rate measures the performance of the clustering methods. In practical
applications however, where usually nothing about the supposed classes are known
beforehand, other measures for performance and stability of clustering methods have
to be used (Rand (1971), Hubert and Arabie (1985), and Mucha (1992, 1995)).

Example RingNorm (after Breiman (1996))

As already mentioned above, clustering of two class data will be investigated. Class
1 is multivariate normal with mean zero and covariance matrix 4 times the identity.
Class 2 has unit covariance matrix and mean (a,a, ...,a) with @ = (1/J)'/2. The
appropriate clustering method for this kind of data is Log-K-means which minimizes
criterion (6). Clustering of this kind of data is a hard problem for K-means, which
minimizes criterion (3).

Figure 4 shows both the most important numerical results concerning the misclassi-
fication rate (in percentages) and a corresponding graphical representation of these
univariate statistics. The reading of this figure is as follows. The axis at the left hand
side and the bars in the graphic are assigned to the standard deviation of errors,
whereas the axis at the right hand side and the box-whisker-plots are linked to all
other statistics. One can see that the core-based clustering methods K-meansCore
and Log-K-meansCore perform similar as the traditional ones.

Example TwoNorm

This two class data is also taken from Breiman (1996), but it is slightly changed.
Each class is drawn from a multivariate normal distribution with unit covariance
matrix. Class 1 has mean (a,a,...,a) and class 2 has mean (—a, —a, ..., —a) with
a = (2/J)2. In order to investigate the influence of outliers modifications of the
original TwoNorm data model are made. One out of the 150 observations of each
class is randomly generated with 4 times standard deviation. As a consequence
there is a high probability that the data contains at least one outlier. The most
appropriate clustering method is K-means. For this kind of data however, the more
general Log-K-means is also a suitable technique. It performs like K-means here.

Figure 5 shows both the most important numerical results concerning the misclassi-
fication rate (in percentages) and a corresponding graphical representation of these

16
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univariate statistics. The reading of this figure is like as the one of Figure 4. Ob-
viously, the core-based clustering methods perform slightly better (0.5% in average
error rate) than the traditional ones. But what is of much more importance is that
the standard deviation of error rates as a measure of stability decreases to less than
a third of the one of the traditional methods. The reason for this may be that the
influence of the outliers is taken away by core-based clustering.

6 Application in ecology

6.1 Introduction into the problem

It is generally accepted that ecosystems are networks with a high degree of backcou-
pling interactions. Therefore many attempts to estimate the degree of ecosystems
health, i.e. its degree of integrity are based on food web structures. For a deep
discussion of integrity and health of ecosystems, see Barkmann (2001). Measures of
integrity, based on food web structures need a careful taxonomic investigations. In
food webs phytoplankton plays a basic role as it is mainly responsible for the utilisa-
tion of light and minerals within the food web. Therefore it may be a good strategy
to start integrity measures by means of a quantitative analysis of abundance data
of different types of algae. However there are severe and still not solved taxonomic
problems in order to use those data routinely. In contrary to the taxonomic ap-
proach Steinberg et al. (1999) proposed an ataxonomic method, which is based on
a pure analysis of size classes. Even a semiempirical theoretical frame was given
in stating that there an “energy equation® and a “continuity condition“ should hold
(Steinberg et al. 1999). Here a more pragmatic approach is followed, which may be a
basis for later theoretical investigations in the sense of integrity measures: If namely
integrity measures should be used, a methodology has to be established, which also
is suitable for monitoring: This demands for an (semi-) automatic measurement and
an appropriate statistical evaluation.

The monitoring of phytoplankton by microscope is very time- and work-consuming.
Flow cytometry provides the opportunity to investigate algae communities in a
semiautomatic way (Hofstraat et al. 1994). Two different kinds of information are
obtained: (1) the number of cells (here algae) per unit of sample-volume and (2)
optical characteristics of each cell. These are parameters of light scatter and of flu-
orescence, in our study depending on the composition of photosynthetic pigments.
The latter makes it possible to differentiate between different pigment-groups. In
our example, the output consists of 5 parameters. Note that these pigment-groups
are not identical to a taxonomic classification, but can be semiempirically related
to different algae groups (Hoek 1993). To identify the different pigment-groups and
to count the number of organisms belonging to each group, classes are determined
manually in most cases. Anyway as 5 parameters should be taken into considera-
tion, one has to handle a multidimensional space, where the procedure of building
clusters manually might be difficult or even impossible. Thus, the technique of flow

18
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Parameter Excitation Detected Description
(short cut) | wavelength [A] | emission [}]

FSC 633 nm (red) | > 610 nm Size of the cells
SSC 633 nm (red) | > 610 nm | Structure of the surface of the cells
FL1 633 nm (red) | > 665 nm Pigment chlorophyll a
FL3 | 532 nm (green) > 665 nm Pigment chlorophyll a
FL4 | 532 nm (green) 575 nm Pigment phycoerythrin

Table 1: Configuration of the flow cytometer

cytometry as a routine in phytoplankton monitoring and the evaluation of the data
demands for an automatic data analysis by suitable mathematical tools like clus-
ter analysis. For a comparative analysis between samples of different freshwater
systems and of different seasons of the year it is also convenient, to describe each
pigment-group as a Gaussian-function.

6.2 Some background of the data gathering

Flow cytometry allows single cell analysis based on information about light scatter
and fluorescence. A simplified construction scheme of a flow cytometer is depicted
in Figure 6. The suspended cells in the sample vessel are transported to a nozzle.
In the nozzle they are surrounded by a sheath fluid and hydrodynamically focused
as well as separated from each other. With a free flowing water jet cell by cell
intersects two laser beams and send out pulses of scattered light and fluorescence.
Light detectors, photomultiplier tubes and photodiodes, are transforming the optical
pulses of each cell into electronic signals. The signals are stored as list mode files
in a computer, meaning that fore every single cell up to 6 optical parameters can
be recorded. As parameters of scattered light there is the forward scatter (FSC)
as a rough measurement for the cell sizes and the side scatter (SSC) from which
information about the structure of the surface of the cell can be deduced. In case of
the fluorescence up to four different signals can be detected according to the optical
attributes of the cells under investigation. In the present study a FACStarPlus
(trademark of Becton Dickinson) with a red and a green laser, wavelength 633nm
and 532nm respectively, has been used. The opening of the nozzle was 100um of
size, thus cells up to a diameter of about 60um can be measured. Altogether the
optical pulses of two parameter for scattered light and only three of fluorescence has
been recorded (Table 1), so one fluorescence detector of the machine was not in use.
The trigger parameter discriminating if a particle will be recorded or not, was FSC,
thus the optical signals of all particles (algae and other particles) has been stored.
For further explanation see also below.

With flow cytometry pelagic algae can be easily measured because they are al-
ready suspended in water where they live separated from each other as single cells
or colonies. Because of the auto-fluorescence of their photosynthetic pigments no
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Figure 8: Graphical presentation of the result of hierarchical clustering (Ward
method) of a randomly drawn sample of size 250 observations (data: phytoplankton
data).
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staining is necessary. From previous investigations it is known, that the fixation of
algae cells can causes changes in their fluorescence characteristics (e.g. Lepesteur et
al. 1993, Hall 1991, Vaulot et al. 1989). To avoid such troublesome side-effects, the
probe has been measured within not more than one day and without any additional
manipulation like staining or fixation. Following the approach of Steinberg et al.
(1998) due to the ratio of different pigments the excitation with red and green laser
light allows the differentiation of four pigment-groups. Algae containing as an acces-
sory pigment: (1) phycocyanin (PC) concerning the taxonomic group of cyanophyta,
(2) phycoerythrin (PE) concerning the taxonomic groups of cyanophyta and cryp-
tophyta, (3) carotene concerning the taxonomic group of heterocontophyta and (4)
algae with only a very low ratio between carotene and chlorophyll a (CHLa) con-
cerning the taxonomic group of chlorophyta (Figure 10). Thus a semi-taxomonical
differentiation between groups of algae is possible.

6.3 The data under investigation - a snapshot

In the present study a sample of lake Miiggelsee is analysed. The sample was
taken on the 8th of July 2002 from the upper water layer (0.5 — 3.5m). Altogether a
sample volume of 1.178 ml has been analysed with flow cytometry and the five optical
signals of altogether 21778 particles has been stored in the computer. The left side of
Figure 10 depicts the diagram of chlorophyll a (CHLa) fluorescence A> 665nm when
excited with the two wavelengths: A= 633nm (red) and A= 532nm (green). Due to
a transfer of energy from accessory pigments to CHLa, groups of different pigment
compositions occur as stripes in the diagonal. To be able to identify the different
pigment-groups, a procedure for the calibration of the cytometer has been developed,
which is based on the measurement of cultured algae. The calibration makes sure,
that the chlorophyta, containing mainly chlorophyll a, occurs as the diagonal in
the centre of the dot-plot (Figure 10). Algae with high amounts of the pigment
carotene (heterokontophyta) and with phycoerithrin (cyanophyta, cryptophyta), are
located above the chlorophyta. Algae with pycocyanin (cyanophyta) are located
below them. As written above in addition the accessory pigment PE can be detected
separately when fluorescence emission at A= 575nm is measured (lower dot-plot in
Figure 10).

Just by optical inspection it is easy to see, that the identification of algae requires
more than the three parameters used in the two dot-plots of Figure 10. Looking
for example at the lower diagram in Figure 10 one can see, that there is no clear
differentiation between the broad cloud of dots at the bottom of the left corner and
the rising band of chlorophyta. From previous studies we know, that the broad cloud
can be composed of algae of very small size or only little amounts of pigments, as
well as detritus (dead organic material) or inorganic particles. For the purpose of
phytoplankton monitoring it is of major interest, to differentiate between algae and
other particles. Therefore different powerful mathematical tools has been applied,
as written in the previous Sections.

25



1000 -

200

800 +

700

600

500 4

FL3

400 +

300

200 4

100

Result of model-based Gaussian clustering projected into the original FL1 x FL3 plane

xC

Figure 12:

100 200 300 400 500 600 700 800 200
FL1

Final result of model-based Gaussian clustering of 8786 observations.

26



S8C

FL1/FL3

| i |

FSC SsC

FL1/FL3

Figure 13: Scatterplot matrix of the final result of model-based Gaussian clustering

27



A Ui
; h’s*’" o “ﬁ"n‘i‘*"'i

“‘l
S
e ———————— \
— Sl
< < Y A\ N OAHO0N
T T ;*‘::'1::;*;:“'4":':’,t‘i“‘nl;“:""‘nﬂ" ’:"o""‘i’i.":n':':"
oA i ‘ 'Iﬁ" o
unuti Hu .
1"\"%“"" !" H‘M:‘ l‘ '1 ’;'l' “-,' ‘l‘ ‘1- 11| |"I:| 1 “‘ ) j;
i ‘t st ‘h” ' ( 'l“"’:’t‘ﬁ !'t"l"‘
0 1 t o “ 'i“t‘ i
210} 40 % U $1Un0D
|' o — II ""i"q"l’l“f‘".}"ﬂ;‘l|‘l
A SRR
l| H‘ ey D
“ ‘1‘ ‘ “h 1‘l‘ ‘ ‘1 "I ‘\“1‘1“ “1."" :"‘ﬂ *":1'. ) 1‘1'.“'-“““":“'1.
Y ”H Hmw’i (s
‘1*'u:‘!:;"."i:'.“ﬂ;'.';\"lr,riﬂ;‘1&':*:1':1"».“'."'.:,'r:.;||i:ﬂ:t‘;\"i"h:‘ir;',i:n':ﬂ.l"
AAACOEREERAAAAO A AARRNOE
AR AR AR
i"I’g".‘i!.‘,‘1:1‘,1't'u';t“t"'l‘;;'ti‘i‘i'q“\‘.l'"1"l‘ilt'li‘!l'.,f;ﬁ'i"‘:‘;'}l‘:
i \I
iy ) \’l l' "1‘ :\‘ i) H‘.

Figure 14: Pigment-groups depicted as Gaussian-functions

28



6.4 Results of model-based clustering

From an ecological point of view both information, the number and kind of pigment
groups, and the number of organisms in every group, are of interest. To extract
these information from the original data (list mode file), several mathematical tools
has been used sequently. In a first crude clustering step, the original data has been
clustered with the fast K-means approach. It is based on the simplest model (3)
in model-based Gaussian clustering. The original variables SSC, FSC, FL1, FL3,
and FL4 are used without any data preprocessing or standardisation step. Here the
main focus is on dividing “interesting” particles (algae) from particles from other
origin. By this clustering procedure, 8786 particles out of the 21778 events in the
original data set, has been identified as cell-groups with similar optical characteris-
tics. Figure 7 shows four interesting clusters that consist of nearly nine thousand
observations. In conformity with the forthcoming results, the variables SSC, FSC,
FL1/FL3 (for explanation, see below), and FL4 are used in this scatterplot matrix.

In the following these 8786 cells are declared as algae. As we are mainly interested in
the pigment-bands, the ratio of FL1 and FL3 is of great importance. For that reason,
the ratio of FL1 and FL3 is calculated as a new variable for further calculations.
It is denoted FL1/FL3, or shortly FL1/3. From the statistical point of view this
leads to a better match of the data to the Gaussian model than by using the original
variables FL1 and FL3 (see the diagram at the top of Figure 10). As a consequence
standardization of data is now necessary in the case of clustering based on variance
criteria. This simple Gaussian model was already used in the first step.

In a second step, hierarchical clustering has been used for two main reasons. First,
usually one get a good initial solution for a subsequent more complex Gaussian
model. Second, one can try to find an appropriate number of clusters for further
analysis. However, a better but much more expensive way for determining the
number of clusters would be a simulation study based on measures for compar-
ing clustering results (Rand (1971), Hubert and Arabie (1985), and Mucha (1992,
1995)). Here, the number of clusters is simply chosen from a simulation study based
on 200 randomly drawn samples of size 250 observations from the nearly nine thou-
sand observations. For each sample, the hierarchical Ward’s method is carried out.
By random sampling one get a feeling about the variation of the criterion values in
respect to the number of clusters. A random sample of 250 observations seems to be
sufficiently large in respect to the 4 dimensions (variables: SSC, FSC, FL1/FL3, and
FL4), so that the distribution of these selected observations should reflect the dis-
tribution of observations in the entire set. Figure 8 shows the result of hierarchical
clustering of such a sample, and Figure 2 gives a density estimate of their pairwise
distances. Random sampling is most “natural® because the higher the density of a
region the more observations are randomly drawn from the region (for a comparison,
see Figure 7).

Figure 11 shows some statistics of the obtained criterion values regarding to the
number of clusters. Because one is interested in low criterion values the curves,
Low5% and Low10% are important for choosing the number of clusters. Obviously,

29



going up in the hierarchy from 6 to 5 clusters, a high increase of the criterion value
can be observed. Therefore the number of six clusters has been chosen for further
analysis.

In the third step, the most complex model-based Gaussian clustering is carried out.
As an appropriate starting point for the model, the result of hierarchical clustering
on a sample can be recommended. By doing so, the determinant criterion (8) leads
to some well separated clusters, and as expected, to an additional cluster with a
quite flat density collecting all observations from sparse regions (Figure 9). Banfield
and Raftery (1993) recommended to assume that there is beside Gaussian models
a Poisson process with an unknown intensity parameter for all these observations
that do not follow the Gaussian pattern. Here another way out is proposed that is
based on downweighting observations coming from sparse regions.

In the two tiny simulation studies above (Section 5), the investigations are promising
with regard to improvement of performance and stability. There are many ways
to find observations that come from sparce regions. Here the K-means method is
applied in a similar fashion as described in Section 5 with the following modifications.
The number of microclusters L = 250 is used and a threshold ¢ = 10 is chosen, i.e.
the minimum cardinality of a core is 10. Taking into account that the choice of ¢
and L as well as the random initial partition can affect the results, the K-means
clustering is carried out five times. An observation is downweighted only if it is at
least two times of at most five times out of cores. Figure 12 shows the final result of
weighted Gaussian clustering, depicted as a dot-plot of the two originally measured
parameters of chlorophyll fluorescence FL1 and FL3. In this example, there is one
group of chlorophyta (red), one group of heterokontophyta (green), two different
kind of algae-groups containing phycoerithrin, PE1 (purple) and PE2 (black) and
two different groups of algae with phycocyanin, PC1 (dark blue) and PC2 (light
blue). Table 3 gives the parameter characteristics of the clusters in an overview.
Note that the calculated parameter FL1/3 can be used as the qualitative numerical
expression of the pigment ratio of the algae. Figure 13 shows the scatterplot matrix
of the final result of weighted Gaussian clustering that corresponds entirely to the
result that is presented in Figure 12.

A convenient way to describe the different clusters might be the expression as a
Gaussian-function, as for each cluster the position with respect to the fluorescence
parameters FL1/3 and FL4 can be determined exactly as well as its altitude, here
in percentage of the total count. In the field of phytoplankton monitoring this ap-
proach yield some advantages, as now pigment-groups can be described in a precise
mathematical way. Thus the comparison of probes of different locations and of dif-
ferent seasons of the year can be done easily as well as the development of structural
indicators for an ecological assessment of the freshwater systems. Figure 14 shows
the pigment-groups of the probe of Lake Miiggelsee as Gaussian-functions.

As written above in most cases phytoplankton is counted and classified by micro-
scope. For the probe of Lake Miiggelsee both methods, microscopy and flow cytom-
etry has been performed. So results obtained by the mathematical clustering of the
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Class | Colour in Pigment Centroids of classes Total
graphics group | FSC SSC FL1 FL3 FL1/3 FL4 | count

1 Red | Chlorophyll | 483 359 464 439 1.05 51 | 1927
2 Green Carotene | 486 338 450 517 0.86 53 | 1022
3 | Dark blue PC1 | 405 422 552 390 1.42 35| 1539
4 | Light blue PC2 | 271 321 409 258 1.60 26 | 1839
5 Purple PE1 | 485 440 529 613 0.86 410 850
6 Black PE2 | 490 436 439 549 0.79 687 | 1609
Sum 8786

Table 2: Parameter characteristics of the clusters (Phycocyanin: PC1, PC2; Phy-
coerithrin: PE1, PE2)

Pigment group Cytometry Microscope

[Cells * ml-1] | [Cells * ml-1]

Total number 5894 5640

Chlorophyta 1635 765

PC and PE containing algae 3392 3812
Heterokontophyta 867 887

Table 3: Comparison of data from microscope and flow cytometry

cytometry data can be compared qualitatively and quantitatively with those from
microscopy. Anyway, the comparison is restricted by some technical and method-
ological reasons. Cells of very small size (picoplankton) in the range of 0.2 to 2um
(e.g. Sommer (1994)) and cells of a size larger than 60 yum are excluded. For that
reason class 4 (PC2) in Table 2 has to be removed. The centroid of the FSC of this
class is approximately half of the numerical value of all other classes. As the FSC
is a parameter for the cell size, there is a high probability, that this class subsume
mainly picoplanktic algae. This assumption is also confirmed by the measurement
of cultured picoplanktic algae. Beyond this, the clusters of PC and PC contain-
ing algae has to be added to one group, because the taxonomic determination of
the cells via microscopy, do not allows for a pigment-based differentiation. So the
comparison between the microscopic count and the clustering of cytometry data is
performed with only three different pigment-groups. The chlorophyta, phycocyanin
(PC) and phycoerithrin (PE) containing algae, and heterokontophyta (Table 3).

For a competent comparison of the counts obtained by the two different methods of
microscopy and flow cytometry, one has to take the statistical standard error of each
method into account. In the case of microscopy, the standard error is correlated
to the number of counted cells (Tiimpling and Friedrich (1999)). Note, that the
number of cells per sample volume for each group, is calculated from representative
counts in some of the stripes of the sedimentation chamber according to Utermohl
(1958) using an inverted microscope. In case of the probe from Lake Miiggelsee
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for example, in the group of heterokontophyta 180 cells has been counted, in the
group of PC/PE-algae it has been 308 cells and for the chlorophyta only 51 cells.
Following the suggestion in Tiimpling and Friedrich (1999), for the total count a
maximal standard error of 7-10%, for the heterokontophyta 20%, for the PC/PE
group 10% and for the chlorophyta even 60% is recommended as possible. For the
cytometric counts of phytoplankton, up to now no statistical based estimation of
the standard error is available. Anyway, first tests confirm, that a standard error
of about 10% will be a conservative estimation. Figure 16 shows the comparison of
the counts of both methods, when the assumptions of the maximal standard errors
mentioned above are taken into account.

Figure 16 shows, that only in the group of the chlorophyta the counts differ out of
the range of the standard errors. For the heterokontophyta and for the PC/PE-group
the counts are in good agreement. Also the counts of the whole probes differ only
within the range of the standard errors. Thus in general the cluster analysis has
been successful.

7 Conclusions

The principle of weighting of observations is a key idea for handling cores and out-
liers. Often the stability of clustering methods like K-means or Log-K-means can
be improved. However, the problem of choosing appropriate thresholds for estab-
lishing cores remains under investigation. Even for a fixed and arbitrary threshold
t = 2, the simulation results are promising, see especially Figure 5. The thresh-
old value t = 1 followed by Ward’s method based on centroids of L cores give
exactly the same clustering result as Ward’s clustering of the original (huge) data
matrix on the understanding that the latter one comes at one stage (partition) of
the amalgamation process exactly over the partition of cores P([,L). Moreover,
the chosen number of micro-clusters as well as the preclustering method itself affect
the result of core-based clustering. The examples and simulations are figured out
by the prototype-software ClusCorr98Y . This software contains a set of statistical
tools for data exploration with emphasis on model-based (adaptive) clustering and
multivariate graphical visualizations. It runs under Microsoft Windows.

In general the application of a sequence of cluster analysis to the data of algae
obtained by flow cytometry has been successful. Nevertheless there are some topics
to discuss: First of all it has to be proved, that the first step of clustering with
the fast K-means approach yields suitable results. By this procedure algae should
be differentiated from other particles. The comparison with the microscopic count
shows, that the differentiation in the group of chlorophyta might be not precise.
Possible improvements of the method might be the clustering when the calculated
parameter FL1/3 is added or the weighting of parameters. Furthermore the effect
of choosing another number of start clusters has to be tested. Anyway as only a
snapshot has been analysed here, a final decision if this method is successful has to
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be proved by analysing more probes.

In the second step, a hierarchical clustering was used to find an appropriate number
of clusters for the further investigation. Here also it has to be tested, if the choice of
a higher number of clusters will improve the final result. Figure 16 shows that the
group of chlorophyta could be divided in at least two subgroups. Figure 12 confirms
this impression.

Considering the variable FL4, for example, there is a very high number of observa-
tions near the detection limit (FL4=1 and FL4=2) surrounded by a comparatively
sparce region (FL4>2 and FL4<15). This conspicuity disturbs the assumption of
normality (see for instance, Figure 13). However, the estimates of some local den-
sities looks similar (Figure 15). For this troublesome effect there might be two (or
more) possible explanations: The optical filters in the flow cytometer do not suspend
other fluorescence emissions but of wavelength of A = 575 nm (£ 10 nm) in a proper
way. Some of the algae cells of the groups mentioned above has got little amounts
of the pigment phycoerithrin. These two first assumptions has to be tested in fur-
ther experimental investigations. The additional consideration of the parameter
FL1/3 is the bases for the fitting of a two dimensional Gaussian-function. Anyway
the dimension of FL4 is only needed for a suitable visualisation of the functional
responses.

As written above, the application of cluster analysis to data from flow cytometry has
been successful. These first results and further investigations and simulation studies
should pay much more attention to such realistic problems in ecological assessment
of freshwater systems.
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