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ABSTRACT. The WIAS software package BOP is used to simulate gas turbine models. In order
to make accurate predictions the underlying models need to be calibrated. This study compares
different strategies of model calibration. These are the deterministic optimization tools as non-
linear least squares (MSO) and the sparsity promoting variant LASSO, but also the probabilistic
(Bayesian) calibration. The latter allows for the quantification of the inherent uncertainty, and it
gives rise to a surrogate uncertainty measure in the MSO tool. The implementation details are
accompanied with a numerical case study, which highlights the advantages and drawbacks of
each of the proposed calibration methods.
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1. INTRODUCTION

Engineering practice widely uses computer models. The accuracy of such computer models
is usually defined by model validation, determining the degree to which the simulations re-
produce the real behavior of the engineering systems. In particular, model updating matches
model parameters with physical observations (measurements) utilizing mathematical means.
Accurate predictions from simulations lie at the heart of the design, development, field support,
and tendering activities. Specifically, we are concerned with the mathematical models of gas
turbines (GT), which provide guarantee performance values to prospective customers. “There-
fore, the engine performance model needs to be both predictive and stochastic. The uncertainty
of the GT performance model has to be clearly derived based on all the available information
and the guarantee process has to be based on a rigorous statistical analysis.”1

Gas turbine models are highly nonlinear, and the parameter calibration for these models is a
complex problem that involves optimization in a high-dimensional space. Considerable compu-
tational efforts are needed to get a sufficient solution of this problem. Traditional approaches for
GT model calibration do not consider uncertainties and do not provide uncertainty quantifica-
tion of the estimated parameters. Several algorithms have been developed aiming to improve
the traditional calibration methodology. The majority of these algorithms is probabilistic match-
ing, e.g. weighted least squares, maximum likelihood estimates, Bayesian inference methods,
we refer to [13] for a general account on GT simulation. While traditional approaches are de-
terministic, the need for quantification of the inherent uncertainties led to the use of Bayesian
approaches for model calibration. The seminal work in this direction is [5], and the challenges

1see the introduction from [1] for more details.
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in the calibration of computer models from the engineering point of view are highlighted in [14].
A comparison of deterministic and Bayesian methods for calibration is given in [16].

The present study aims to compare the deterministic and stochastic calibration techniques im-
plemented in an in-house software package BOP for steady state as well as transient prob-
lems, cf. [2]. Both the deterministic and Bayesian approaches are implemented as add-ons of
our process simulation tool BOP. This software package is especially tailored to the solution
of large-scale problems from industrial process engineering, specifically the GT performance
problem. Among other things, the simulation concept of BOP enables an efficient implementa-
tion of methods that require a large number of steady state solutions. These techniques offer a
speedup for both parameter calibration add-ons, deterministic and Bayesian.

Special emphasis is on the uncertainty quantification obtained by these calibration methods. If
deterministic approaches are used for parameter calibration, the quantification of the uncertainty
of the calibrated gas turbine model is not clearly derived. However, a linearization of the model
around the calibrated model parameters may be used to quantify the uncertainty. We shall
highlight the relation of this linearization to the posterior covariance as obtained by the Bayesian
approach.

In this report we compare the two calibration approaches. First, in Section 2 we derive the
deterministic and probabilistic optimization methods, which use additional scaling parameters
(weights) in order to tune the performance of the calibration. Implementation details for each
method are given in Section 3. The main part concerns the simulation of a model with 5 calibra-
tion parameters and 21 experimental observations using the BOP tool (Section 4). In particular,
we study how the additional tuning parameters influence the calibration results. Then, we com-
pare the fits as obtained by either of the methods under consideration.

2. CALIBRATION PROBLEM: METHODOLOGY

In this section we introduce the calibration problem and we derive the three methods to be
considered. The first one is a classical penalized least squares approach, the second one is a
sparsity promoting modification, which is called LASSO, and the third one is a Bayesian calibra-
tion of the full model.

2.1. Problem formulation. The gas turbine performance is modeled by a system of nonlinear
equations. The model input consists of operating conditions X ∈ Rl and unknown model
parameters θ ∈ Θ ⊂ Rn. The model output is the experimental observations Y ∈ Rm. Then,
the nonlinear model for the gas turbine performance yields

(1) Y = F (θ,X) + ε,

where F : Θ×Rl → Rm, ε ∈ Rm in the experimental error. The function F does not have an
explicit representation and is given by means of the simulation tool BOP [2]. From now on we
ignore the operating conditionsX in the problem formulation (1) in order to simplify the notation.

The idea of the calibration problem is to adjust the model parameters θ such that the experimen-
tal observations Y are explained in the best way. Since the model output has some experimental
error that is unknown, the common way to formulate the calibration problem is using the least
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squares approach, thus the least squares fit is obtained by solving the minimization problem

(2)
∥∥F (θ)− Y 0

∥∥2

2,Y
−→ min

θ∈Θ
.

Here, Y 0 is the measured output. However, this minimization does not take into account knowl-
edge about the parameters θ. To account for this knowledge, the minimization problem (2) can
be extended by a constraint optimization or by its Lagrange relaxation.

Remark 1. In this report we are concerned with a single measurement point Y 0, i.e., with
measurements from only one experiment. Experiments are usually performed several times
with the same or different operational conditions X . Methods that are discussed below are
easily generalized to the case of multiple measurement points. We would have Y ∈ Rl×m

corresponding to l experiments, and the minimization problem (2) would turn into

1

l

l∑
k=1

∥∥F (Xk, θ)− Y 0
k

∥∥2

2,Y
→ min

θ∈Θ
.

2.2. Penalized least squares. Here, we consider the following generalized minimization prob-
lem instead of (2)

(3) β
∥∥F (θ)− Y 0

∥∥2

2,Y
+ (1− β)

∥∥θ − θ0
∥∥2

2,θ
→ min

θ∈Θ
.

Above, we use a weighted Euclidean norm

(4)
∥∥F (θ)− Y 0

∥∥2

2,Y
=
〈(
F (θ)− Y 0

)
, (mΣY )−1 (F (θ)− Y 0

)〉
,

where the matrix ΣY = diag
(
σ2
Y,i

)
is the diagonal matrix with variances σ2

Y,i on the diagonal.
Notice that the weights take into account the dimensionality of the response vector Y 0 in a
normalizing way. Similarly, the Euclidean norm ‖θ − θ0‖2

2,θ is defined, where θ0 is the initial
parameter set.

In addition, we introduce the weighting parameter 0 < β < 1, which allows to control the im-
portance of the fit. Having β close to 1 puts emphasis on the fit for the measurements, whereas
β close to 0 puts emphasis on the initial parameter set θ0. To have control over the calibration
process, we introduce an additional scaling parameter T in the minimization problem (3). We
thus arrive at

(5)
β

T

∥∥F (θ)− Y 0
∥∥2

2,Y
+

1− β
T

∥∥θ − θ0
∥∥2

2,θ
→ min

θ∈Θ
.

This scaling parameter T does not change the solution of the least square problem, but gains
significance when interpreting (5) in a Bayesian context.

2.3. LASSO. The term LASSO refers to ‘least absolute shrinkage and selection operator’ [12].
The main idea of the method, motivated by the engineering point of view, is to change the initial
parameter set θ0 only in those coordinates where it is necessary in view of the given mea-
surement Y 0. This approach is called sparsity promoting minimization, and the corresponding
minimization problem is formulated as

β

T

∥∥F (θ)− Y 0
∥∥2

2,Y
+

1− β
T

∥∥θ − θ0
∥∥

1,θ
→ min

θ∈Θ
,(6)

hence, the penalty is considered in L1-norm instead of the Euclidean norm from (5).
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2.4. Bayesian calibration. The above deterministic optimization algorithms yield minimizers,
but the inherent uncertainty remains unclear. Therefore, we also consider Bayesian methods,
which in addition to computing the minimizer allow to quantify the uncertainty. The functional in
the minimization problem (5) has a Bayesian interpretation which is used to design a stochastic
method to find the minimizer.

Suppose that the experimental observations Y and the parameters θ are random. Then, we
consider the conditional probability P[Y |θ] of Y given the parameters θ, which is implicitly given
by (1). We are interested in P[θ|Y ] of θ, which is related to the sampling distribution P[Y |θ]
through the Bayesian formula as

(7) P (θ|Y ) =
P (Y |θ) π(θ)

P (Y )
∝ P (Y |θ) π(θ),

where ∝ means “proportional to”, and the probability π is called a prior distribution. If we now
specify the sampling distribution that describes how we obtain the data Y in the model (1) as

Gaussian, i.e., the error distribution ε is Gaussian, ε ∼ N
(

0, Tm
2β

ΣY

)
, then the sampling

distribution takes the form

fY |θ(y) ∝ exp

(
−1

2

〈
(F (θ)− y),

(
Tm

2β
ΣY

)−1

(F (θ)− y)

〉)

= exp

(
−β
T
‖F (θ)− y‖2

2,Y

)
.

Similarly, we obtain for a Gaussian prior distribution of the form θ ∼ N
(
θ0, Tn

2(1−β)
Σθ

)
that

f(θ) ∝ exp

(
−1− β

T

∥∥θ − θ0
∥∥2

2,θ

)
.

Thus, the product on the right in (7) takes the form of the exponential of the functional in (5) to
be minimized. We draw two conclusions. First, within the Gaussian–Gaussian framework, the
minimizer (5) maximizes the posterior distribution fY |θf(θ). Therefore, it is called the “maximum
a posteriori” (MAP) estimator. Secondly, the parameters β and T have a probabilistic interpre-
tation. Large values of T yield widely spread sampling and prior distributions, and hence the
posterior will spread similarly. Small values of β > 0 will spread the sampling variance relative
to the prior variance, which will have the desired impact as described in § 2.2.

Within the Bayesian approach the goal is to sample from the posterior distribution

(8) fθ|Y 0(θ) ∝ fY 0|θ(Y
0)f(θ), θ ∈ Rn.

The normalizing factor P (Y 0) in (7), which is the probability to see the measurement Y 0, is
unknown. However, in case of a linear response function F in (1), an explicit description of
the posterior distribution exists: the posterior distribution is again Gaussian, and its covariance
can be computed exactly. Since the function F is linear, we represent F (θ) at any θ ∈ Θ as
F (θ) = F (θ0)+J (θ − θ0) with J denoting the Jacobian matrix, and the posterior covariance
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reads

covpost =

(
JT
(
Tm

2β
ΣY

)−1

J +

(
Tn

2(1− β)
Σθ

)−1
)−1

= T

(
2β

m
JTΣ−1

Y J +
2(1− β)

n
Σ−1
θ

)−1

.(9)

Moreover, the posterior mean equals the MAP estimator. On the other hand, in case of a nonlin-
ear response function F , the posterior is no longer Gaussian, and the posterior mean may differ
from the MAP. Therefore, the implementation of the Bayes algorithm must take into account that
we need to sample from the posterior density (8) without knowing the normalizing constant.

The calibration techniques as described above are divided into deterministic and stochastic
methods. These methods are implemented in the simulation tool BOP, see [2]. A preliminary
discussion on the comparison between several calibration approaches in the context of gas
turbine performance was given in [1].

3. DETAILS ON THE CALIBRATION METHODS

In this section we discuss details of the implementation of the different calibration methods.

3.1. Mean square optimization (MSO). The deterministic method solves the least squares
problem (5) to find optimal parameters θ for given measurement data Y . We use the damped
Levenberg-Marquardt algorithm, which is an iterative method used to solve nonlinear least
square problems. It originates in the studies [6, 7], and is described in [9]. First, we replace F (θ)
by a linearized model and introduce a trust region with the radius ∆ > 0 (for more details
see [9]):

β

T

∥∥Js+ rk−1
Y

∥∥2

2,Y
+

1− β
T

∥∥s+ rk−1
θ

∥∥2

2,θ
→ min
‖s‖∈∆

,(10)

where J is the Jacobian matrix, rk−1
Y = F (θk−1)− Y 0, rk−1

θ = θk−1 − θ0, s is the update at
the current iteration θk = θk−1 + s, and k is the iteration number.

The introduced linearization F (θk) ≈ F (θk−1)+Js provides a good approximation only when
the update s is small. The trust region makes sure that the current update s is small enough
for the approximation. Then, at each iteration step we apply a trust region around the current
iterate θk by introducing an additional term in the minimization problem:

β

T

∥∥Js+ rk−1
Y

∥∥2

2,Y
+

1− β
T

(∥∥s+ rk−1
θ

∥∥2

2,θ
+ λ ‖s‖2

2,θ

)
→ min,(11)

where λ is the damping factor. Hence, the corresponding normal problem yields[
β

m
JTΣ−1

Y J +
(1− β)

n
(1 + λ)Σ−1

θ

]
s =

β

m
JTΣ−1

Y rk−1
Y +

(1− β)

n
Σ−1
θ rk−1

θ ,(12)

θk = θk−1 + s.(13)

Large values of the damping factor λ stabilize the system (12), (13) and yield small values of the
update s. We do not look explicitly for the damping factor λ corresponding to the trust region with
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the radius ∆. Instead, we use the algorithm of Moré [15], which looks for the smallest values of
λ which provide good approximation of the continuous problem.

Then, using the following normalization

(14) θ̃ = Σ
− 1

2
θ

(
θ − θ0

)
, Ỹ = Σ

− 1
2

Y

(
Y − Y 0

)
, J̃ = Σ

− 1
2

Y JΣ
1
2
θ ,

the system of equation (12) and (13) is dimensionless, and it can be written as[
β

m
J̃T J̃ +

(1− β)

n
(1 + λ)I

]
s̃ =

β

m
J̃T Ỹ k−1 +

(1− β)

n
θ̃k−1,(15)

θ̃k = θ̃k−1 + s̃;(16)

where Ỹ k−1 is evaluated using Y k−1 = F (θ̃k−1σθ+θ0) and the corresponding dimensionless
variables in (14).

Given some ε > 0, the stopping criterion for the iterative process is∥∥∥∥ β

Tm
J̃T Ỹ k +

(1− β)

Tn
θ̃k
∥∥∥∥ < ε.

The deterministic optimization method cannot take into account uncertainty information, at a
first glance. However, as was seen in § 2.4, for small changes in θ we may assume that the
map F is near to linear, and the approximation of the covariance matrix can be computed using
(9).

For more details on the implemented algorithm we refer to the full description of the BOP add-on
MSO [11], and the documentation [2].

3.2. LASSO: sparse mean square optimization. To enhance predictability and to select sig-
nificant variables in the mean square optimization we also implement the L1-norm regulariza-
tion as given in (6), as described in [4]. There, the weighted L1-norm is reduced to the L2-norm
as follows

‖x‖1,x =
1

n

n∑
i=1

|xi|
σ2
xi

=
1

n

n∑
i=1

(
xi

σxi |xi|1/2

)2

=
∥∥M1/2

x x
∥∥2

2,x
,(17)

where Mx = diag {|xi|−1}i=1...n. Hence, the minimization problem (6) is equivalent to

β

T

∥∥F (θ)− Y 0
∥∥2

2,Y
+

1− β
T

∥∥∥M1/2

θ−θ0(θ − θ
0)
∥∥∥2

2,θ
→ min

θ∈Θ
.(18)

The iterative process, with rk−1
θ = θk−1 − θ0 and rk−1

Y = F (θk−1)− Y 0, is given by

[
β

m
J>Σ−1

Y J +
(1− β)

n
(Mrk−1

θ
+ λ)Σ−1

θ

]
s =

β

m
J>Σ−1

Y rk−1
Y +

(1− β)

n
Mrk−1

θ
Σ−1
θ rk−1

θ ,

(19)

θk = θk−1 + s.(20)

If, at some iteration k and for some component i, the deviation
∣∣(rkθ)i∣∣ is smaller than a toler-

ance δ, then we set θli = θ0
i for all l > k and exclude this component in further iterations. Then,
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we define for i, j = 1 . . . n(
Ikθ
)
ij

=

{
1, if i = j and

∣∣(rkθ)i∣∣ ≥ δ;

0, otherwise.

When the algorithm converges, the following condition is satisfied∥∥∥∥Ikθ ( β

Tm
JTΣ−1

Y rkY +
(1− β)

Tn
Σ−1
θ sgn

(
rkθ
))∥∥∥∥ < ε.

3.3. Bayesian approach. Since in the model (1) for the gas turbine performance the func-
tion F is nonlinear, we must use an asymptotic sampling scheme, i.e., a Markov Chain Monte
Carlo (MCMC) sampling method. Here we describe the Metropolis-Hastings Markov chain algo-
rithm, which simulates an acceptance-rejection scheme. The Metropolis-Hastings Markov chain
computes a sequence of random vectors θ0 . . . θN , which are asymptotically (for large N ) dis-
tributed with given posterior density (8). To account for the burn-in of the Markov chain we skip
the first N0 − 1 computed values to ensure that the remaining samples θN0 . . . θN are close to
the limiting distribution, which is the desired posterior distribution.

A sketch of the Metropolis-Hastings Markov chain algorithm is shown below (see Algorithm 1).
At each step, we make a new proposal θ̃k, and then, we either accept or reject it based on the
Metropolis-Hastings criterion. In case of a rejection, the next sample equals the previous one.

Data: Choose starting vector θ0 in hyper-rectangle and sample size N
for k = 1 . . . N do

Propose new vector θ̃k from proposal distribution Q(θ̃k|θk−1);

Compute P
(
θ̃k
)

, P
(
θk−1

)
, and set αk ← P

(
θ̃k
)
/P
(
θk−1

)
;

if αk ≥ 1 then
accept θk ← θ̃k ;

else
accept θk ← θ̃k with probability αk;
otherwise reject and set θk ← θk−1 ;

end
end

Algorithm 1: Metropolis-Hastings sampling

The described Markov chain in Algorithm 1 is determined by the choice of a proposal distri-
bution Q. Common choices for the proposal distributions are uniform, Gaussian, or triangular.
We use a Gaussian proposal distribution centered around the previously accepted sample θk−1

with a variance controlled by a fraction parameter δ. During the acceptance-rejection iterations,
we adapt the fraction δ to meet an asymptotically optimal averaged acceptance ratio α ∼ 0.25
(see [10]). For more details and discussions on the Bayesian algorithm see [8] and the docu-
mentation [2].

4. NUMERICAL EXPERIMENT WITH FIVE CALIBRATION PARAMETERS

The numerical experiments are based on a specific GT model, which is first briefly outlined,
cf. § 4.1. In particular, we indicate how a normalization is used to make the representation of the
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results easy. We also discuss how the LASSO achieves a reasonable calibration accuracy but
changes the model parameters only in a sparse manner, cf. § 4.2. Then, we study the impact of
the additional tuning parameters: the weight β, which balances between the importance of the
measurement accuracy and the model confidence, and the ’temperature’ T , which influences
the efficiency of the Bayesian approach. Since the MSO and Bayesian methods solve the same
minimization problem (5), the impact of these parameters is similar. Thus, to avoid repetitions
and overload of the numerical simulation, we present the dependence study for the weight β for
the MSO method, cf. § 4.3, and for the scaling T for the Bayesian method, cf. § 4.4. Finally, we
compare the MSO and Bayesian methods for some selected parameters, cf. § 4.5.

4.1. Setup. Using the mathematical model for the gas turbine simulation, we set up a calibra-
tion problem with n = 5 model parameters and an experimental measurement for m = 21
output parameters. For the model parameters θi, i = 1 . . . n, we provide initial values θ0

i and
intervals [θ0

i − dθi ; θ
0
i + dθi ] where they are allowed to vary (Table 1). For the experimental

observations Yi, i = 1 . . .m, we provide measured values Y 0
i with their standard deviations

σY,i (Table 2).

In order to be able to use the model for different environmental conditions, so called ANSYN
factors are introduced in the model. In our case these are parameters “A”, “B”, and “E” in Table 1.
“The ANalysis by SYNthesis (ANSYN) technique is a standard performance analysis method
widely used in industry. It is currently used to evaluate engine performance from tests and to
derive correcting factors (i.e. ANSYN factors) that modify certain parameters of the components’
characteristics in order to allow the reproduction of real engine behavior by means of a synthesis
calculation” [3].

# Name Initial value θ0 Interval
A COMP.MREDFX_NREDS_VGV 1 [0.99; 1.01]
B GLOBAL.LPT_MRED_ANSYNX 1 [0.99; 1.01]
C GLOBAL.THG1_X 1550 [1538; 1562]
D GLOBAL.THG2_X 1700 [1692; 1708]
E TSTG4.ETA_ANSYNX 0 [−0.001; 0.001]

TABLE 1. Input data for model parameters

# Name Measured value Y0 Standard deviation σY
A CD06.PT_IN 3.1615 0.05
B CINT.DPTS 0.0028 0.05
C EV.DPT 1.1662 0.05
D EVP.PT_IN 32.3097 0.15
F GENO.PGROSS 262095.7062 262.096
G GLOBAL.DPSSEV_MEA 0.0827 0.001
N GLOBAL.M_FUEL_TOTAL 14.2132 0.03
U TDIF.GASOUT.TT 887.8054 2.0

TABLE 2. Input data for selected experimental observations
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To have an easy comparison between the parameters after the calibration is performed, we
introduce the following normalization. For the model parameters θi we are given initial parame-
ters θ0

i , and interval length 2dθi , and hence we normalize2 as follows

θ̃i =
√

3
θi − θ0

i

dθi
, i = 1 . . . n,

where 2dθi is the length of the intervals given in Table 1. Similarly, the normalization is done for
the experimental observations by

Ỹi =
Yi − Y 0

i

σY,i
, i = 1 . . .m,

where σY,i is the standard deviation from Table 2.

4.2. Deterministic calibration: L1- vs. L2-norm regularization. We solve the calibration
problem described above using the deterministic MSO method and compare L1- and L2-norm
regularizations. For the MSO method we use given intervals and standard deviations from Ta-
bles 1 and 2 to compute the weighted Euclidean norms in (4) and (17). We use T = 1 and
β = 0.5, which results in equal weights for both terms in the minimization problems (5) and (6).

Figure 1 shows the normalized model parameters after solving the calibration problem using the
MSO method with L1- and L2-norm regularizations on the left and on the right, respectively.
Since the normalized variables have standard deviation one, we mark the intervals [−1; 1] by
vertical dashed blue lines. The red vertical lines show the normalized model parameters after the
optimization. For L2-norm regularization, light gray bars represent the approximated posterior
standard deviation σθ,i and they have width 2σθ,i, while dark gray bars have width 4σθ,i for
i = 1 . . . n.

Remark 2. For the L1-optimization (LASSO) the posterior standard deviation is actually not
justified (by mathematical reasoning). Therefore, no artificial confidence regions are given for
the L1-optimization results.

Figure 1 (upper panel) shows that all five model parameters change using the MSO method
with L2-norm regularization, but the most significant shift is observed only in the parameter “A”.
On the other hand, the MSO method with L1-norm regularization selects as significant and
optimizes only parameter “A”.

Figure 1 (lower panel) also shows the corrected values of the normalized experimental observa-
tions after the optimization using MSO method with L1- and L2-norm regularizations, and the
plots exhibit comparable accuracy.

4.3. MSO method: dependence on the weight β. We introduced the weight β in the min-
imization problem (3) to calibrate the knowledge about the accuracy of the experimental ob-
servations Y 0 and about the values of the model parameters θ0. In § 4.2 we used β = 0.5,
which means that we do not give any preference to the experimental observation or to the
model parameters. In this section we present results for the same numerical experiment with
five calibration parameters, cf. § 4.1, but using the β values 0.1 and 0.9.

2The scaling is performed such that after normalization the new variables have mean zero and standard devia-
tion equal to one. For uniformly distributed θi on some interval [a, b] the standard deviation equals (b− a)/

√
12.
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Model parameters

Experimental observations

FIGURE 1. Calibration results with β = 0.5 using MSO method: L1- and L2-
norm regularizations on the left and on the right, respectively. Upper panel
shows fit for normalized model parameters θ̃, lower panel shows the calibra-
tion for the normalized experimental observations Ỹ .

The upper panels in Figures 2 and 3 show the normalized model parameters after solving the
calibration problem with β = 0.1 and 0.9, respectively. If β = 0.1, i.e., if we trust our knowledge
about the values of the model parameters θ0 more than experimental observations Y 0, then the
MSO method with L1-norm regularization (the left of Figure 2) shows that only the parameter
“A” needs to be calibrated. Moreover, the resulting value of parameter “A” using β = 0.1 is
closer to the initial one in comparison with the resulting value with β = 0.5. If β = 0.9, i.e., if
we trust the experimental observations Y 0 and are not sure about our knowledge of the model
parameters θ0, then the MSO method with L1-norm (the left of Figure 3) selects parameters
“A” and “D” for the calibration. For the MSO method with L2-norm regularization (the right of
Figures 2 and 3), the model parameters after the optimization have larger shifts from their initial
values for β = 0.9 than for β = 0.1. This behavior is consistent with the values of β.
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Model parameters

Experimental observations

FIGURE 2. Calibration results with β = 0.1 using MSO method: L1- and L2-
norm regularizations on the left and on the right, respectively. Upper panel
shows fit for normalized model parameters θ̃, lower panel shows the calibra-
tion for the normalized experimental observations Ỹ .

The lower panels in Figures 2 and 3 show the corrected values of the normalized experimen-
tal observations after the optimization using the MSO method with β = 0.1 and 0.9, respec-
tively. The weight β = 0.9 provides a better match to the experimental observations than the
value 0.1, which is explained by the contribution of the terms in the minimization problem given
the weight values.

4.4. Bayesian approach: dependence on the scaling T . Unlike the MSO method, the Bayesian
calibration approach accounts for the stochastic information for the model parameters and for
the experimental observations and hence provides a stochastic solution (sample) for the cali-
bration problem. Here, we solve the calibration problem presented in § 4.1 accounting for the
randomness of the input parameters. Similarly to § 4.2, we use the weight β = 0.5 for this
example.
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Model parameters

Experimental observations

FIGURE 3. Calibration results with β = 0.9 using the MSO method: L1- and
L2-norm regularizations on the left and on the right, respectively. Upper panel
shows fit for normalized model parameters θ̃, lower panel shows the calibration
for the normalized experimental observations Ỹ .

First, we solve the calibration problem with the default scaling factor T = 1, and we observe
that the algorithm cannot find an appropriate fraction parameter that yields a ‘good’ acceptance
ratio, cf. § 3.3. The ‘bad’ acceptance ratio is too far from the asymptotically optimal one and
yields too wide posterior distributions, which sometimes include values outside of the subset
Θ from (3). Hence, we decrease the scaling factor to T = 0.1 and apply again the Bayesian
calibration approach, which yields a ‘good’ solution.

The achieved acceptance ratios and the used fraction parameters for both cases are shown in
Table 3. For both cases, i.e., T = 0.1 and 1, Figure 4 shows posterior distributions of the model
parameters (dark gray line) in comparison with their prior distributions (light blue line), as well
as the MAP values (dashed lines) and the posterior mean (solid lines). Similarly to the MSO
approach, we observe the most significant shift in the parameter “A”. For the case with β = 0.5
and T = 0.1, Figure 5 shows the posterior densities of the selected experimental observations,
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T = 0.1 T = 1
Acceptance ratio 0.239 0.739
Fraction 0.438 0.3

TABLE 3. Used fraction values and achieved acceptance ratios using Bayesian
approach with β = 0.5.

i.e., parameters “A”, “B”, “C”, “F”, “N”, and “U”. Parameter names written in red indicate that the
MAP estimate is outside of the prior rectangle.

It is clear from (5) that the scaling parameter T does not change the solution of the least square
problem, and hence the location of the MAP estimate in the Bayesian approach. However, it in-
fluences the posterior covariance. Larger values of T yield larger covariance. This can be seen
from (9), but this is also evident in the numerical simulations (Figure 4). In addition, if the input
intervals for the model parameters and the input standard deviations for the experimental ob-
servations are too large, then the calibration algorithms encounter difficulties to obtain a reliable
solution. Then, we can use the scaling parameter T to improve the posterior distributions. T
equals 1 by default and is set less than 1 when the algorithm encounters difficulties.

4.5. MSO method vs. Bayesian approach. To compare the deterministic and stochastic opti-
mization methods, we perform simulations for the problem discussed in § 4.1 with β = 0.9 and
T = 0.1 using the MSO with L2-norm regularization and Bayesian methods. Table 4 compares
the MAP estimates obtained for five model parameters and five selected experimental obser-
vations obtained with these two methods. Additionally, we present the posterior mean values
for the Bayesian approach. We observe that both methods produce well comparable values for
the calibrated parameters. Moreover, the last two columns of Table 4 show how the standard
deviation, which is estimated in the deterministic MSO method, matches the one obtained with
the Bayesian approach.

Figure 6 shows the calibration results for the model parameters using the MSO method (the left
column) and using the Bayesian approach (the right column) with sample size 5000. The dis-
tributions shown in light blue color are the prior distributions that are assumed to be Gaussian.
In case of the Bayesian approach, the dark gray lines show the obtained posterior distributions.
The MAP estimate, the posterior mean, and the standard deviations in Table 4 are computed
from the obtained posterior distributions in this case. The MSO method outputs, for each model
parameter and each experimental observation, a minimizer and an approximated standard de-
viation, computed from (9). Then, in the MSO plots Gaussian distributions shown in dark gray
are drawn with these means and covariances.

Remark 3. We make the following important notice. The primary goal of the Bayesian analysis
is to provide samples from which one can detect the (posterior) mean, the (posterior) standard
deviation, and other quantities of interest (QOI). The determination of the MAP may be seen as
a by-product. As mentioned in § 2.4, if the functional dependence in (1) would be linear, and if
the error distribution as well as the chosen prior distribution were assumed to be Gaussian, then
the posterior would again be Gaussian. Its (theoretical population) mean would then coincide
with the MAP estimate. If this is not the case, then the Bayesian approach delivers information
about the posterior mean rather than the MAP, because the samples concentrate around its
center. Thus, for the Bayesian approach the posterior mean is the QOI. If the focus is on the
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MAP, then other types of simulation must be considered. As the simulation results from Table 4
highlight, there is a good agreement between MAP and posterior mean, which indicates that the
function F in (1) is ’linear’ around the posterior mean.

Figure 7 shows the posterior densities of the selected experimental observations, i.e., parame-
ters “C”, “D”, “F”, “G”, and “N”, using the MSO method (the left column) and using the Bayesian
approach (the right column). The vertical blue dashed lines in the MSO results represent in-
tervals for the experimental observation, which are computed as

[
Y 0 −

√
3σY , Y

0 +
√

3σY
]

to have a fair comparison between Bayesian and MSO methods. The same intervals in the
Bayesian results are shown by boxes filled with inclined lines in light blue color.

In general, the calibration results compare well for both methods. The standard deviations for
all model parameters match the standard deviations obtained with the Bayesian approach (Ta-
ble 4). For all experimental observations, the MSO method underestimated the standard devi-
ations in comparison with the Bayesian approach. The latter effect might be explained by the
error introduced by the numerical differentiation, i.e., by the computation of the Jacobian, in the
numerical estimation of the covariance (see the first term on the right hand side of (9)).

MAP Posterior mean STD
# MSO Bayesian Bayesian MSO Bayesian

M
od

el
pa

ra
m

. A 1.0124 1.0172 1.0122 0.0024 0.0025
B 0.9991 1.0076 0.9987 0.0027 0.0032
C 1550.9851 1553.5717 1552.2116 7.1960 6.8659
D 1701.8083 1697.3673 1702.0322 1.8858 1.9936
E 0.00017 −0.0012 0.0001 0.00066 0.0007

E
xp

.o
bs

er
v. C 1.1622 1.1676 1.1621 0.0037 0.0052

D 32.4269 32.5305 32.4384 0.0727 0.1143
F 262085.1877 261265.0415 262070.6743 235.1104 874.3147
G 0.0827 0.0853 0.0825 0.00078 0.0012
N 14.2051 14.2228 14.2076 0.0183 0.0433

TABLE 4. MAP estimates, posterior mean values, and standard deviations
(STD) for the model parameters and selected experimental observations using
the MSO and Bayesian approaches with β = 0.9 and T = 0.1

Table 5 shows the computational times for the MSO method using L1- and L2-norm regular-
izations and for the Bayesian method with sample sizes 1000, 2000, and 5000. In general, the
MSO is one or two orders of magnitude faster than the Bayesian approach. The MSO method
with L1-norm regularization converges slower than the MSO method with L2-norm regulariza-
tion. The computational time for the Bayesian method depends approximately linearly on the
number of samples. From our experience, 1000 samples give a good enough approximation for
this particular problem, but to get precise posterior distributions for comparison purposes, we
used bigger sample size, i.e. 5000.
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MSO Bayesian
regularization number of samples

L1-norm L2-norm 1000 2000 5000
Time, [sec] 59.96 20.7 419.69 892.62 2070.03

TABLE 5. Computational time for the MSO and Bayesian approaches with β =
0.9 and T = 0.1

5. DISCUSSION

We are concerned with calibration methods for mathematical models of gas turbine performance
as these are implemented in the simulation tool BOP. Specifically, we discuss in detail the fol-
lowing calibration methods: the classical penalized least square method (MSO), the sparsity
promoting minimization, i.e., LASSO, and the Bayesian method.

The penalized least squares method, called MSO within BOP, is a versatile calibration method.
Based on our numerical experiment, it works well and fast but has some disadvantages. First, as
a result of the calibration all model parameters are changed, which from an engineering point
of view, is not desirable, as the engineers trust in their model, and they want to correct only
those parameters which are significant for the reproduction of the real gas turbine behavior.
Another disadvantage is the lack of sensitivity information (uncertainty quantification) at the
minimizer. Both these drawbacks can partially be resolved. The LASSO method calibrates the
model parameters selectively (sparsely), only those parameters get optimized that are important
for the minimization problem of interest, see Figures 1.

To retrieve sensitivity information the engineer has several choices. First, a full Bayesian ap-
proach is implemented. This gives the desired uncertainty quantification if the MAP, which cor-
responds to the minimizer in the MSO method, is close to the posterior mean. This is the case
in the simulation study. However, this method is time consuming (see Table 5). Alternatively, by
linearizing the mapping F from (1) around the minimizer, the explicit form of the Bayesian pos-
terior covariance as this is given in (9) can be used to get the sensitivity information. Again, the
comparison in Table 4 highlights that this is a reliable alternative. The increased computational
time is the price that has to be paid for the fully reliable solution. At present no Bayesian alter-
native to the LASSO is implemented, and therefore, no quantification of the uncertainty inherent
in the obtained solution is available.

Another aspect of this study is the choice of the tuning parameters in the minimizer, namely
weights 0 < β < 1 and T > 0. Their role was discussed in § 4.3 and 4.4, respectively. From
engineering point of view the effect of the weight β is the following. When setting up a calibration
problem, if we are sure about our prior knowledge of the model parameters, then we choose
β < 0.5. Then, less priority is given to the matching of the experimental observations than to
the matching of the initial values of the model parameters. On the contrary, if we are sure that
the experimental measurements are accurate and we do not have so much knowledge about
the model parameters, then we choose β > 0.5. Finally, if we are equally confident about the
initial values of the model parameters and about the experimental observations, then we choose
β = 0.5.
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The scaling parameter T is introduced to control the posterior covariances and, in general,
does not change the solution of the minimization problem. It equals one by default and should
not be changed unless required to solve the calibration problem. As we saw in § 4.4, smaller
values of T might be needed to obtain a ‘good’ acceptance ratio and a reliable solution using
the Bayesian method if the posterior covariance is too large.

Based on these observations we draw the following conclusions. Practically, to solve a cali-
bration problem, the Bayesian approach should first be used to gain some intuition about the
model’s and the parameters’ behavior. Then, in order to validate the accuracy of the MSO,
one should perform the comparison of the calibration results obtained with the MSO and the
Bayesian method for the given minimization problem. If the comparison is successful then one
can proceed using the MSO method for further fast simulations for the given minimization prob-
lem. In order to use the sparse minimization (LASSO), a sparse Bayesian method should be
implemented.
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Calibration of the model parameters for different T

T = 0.1 T = 1
pa

ra
m

et
er

“A
”

pa
ra

m
et

er
“A

”

pa
ra

m
et

er
“B

”

pa
ra

m
et

er
“B

”

pa
ra

m
et

er
“C

”

pa
ra

m
et

er
“C

”

pa
ra

m
et

er
“D

”

pa
ra

m
et

er
“D

”

pa
ra

m
et

er
“E

”

pa
ra

m
et

er
“E

”

FIGURE 4. Calibration results with β = 0.5 and with T = 0.1 and 1 for the
model parameters using the Bayesian algorithm.
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Calibration of selected observations for T = 0.1
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FIGURE 5. Calibration results with β = 0.5 and with T = 0.1 for selected
experimental observations, i.e. parameters “A”, “B”, “C”, “F”, “N”, and “U”, using
the Bayesian algorithm.
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Comparison of MSO and Bayesian calibration for the model parameters
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FIGURE 6. Calibration results with β = 0.9 and T = 0.1 for the model param-
eters using the Bayesian and MSO algorithms.
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Comparison of MSO and Bayesian calibration for selected observations
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FIGURE 7. Calibration results with β = 0.9 and T = 0.1 for selected ex-
perimental observations, i.e. parameters “C”, “D”, “F”, “G”, and “N”, using the
Bayesian and MSO algorithms.
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