
Weierstraß-Institut
für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Technical Report ISSN 1618 – 7776

WPM Package Manager Version 1.0

- Software Documentation -

Timo Streckenbach

Weierstrass Institute for Applied Analysis and Stochastics

E-Mail: strecken@wias-berlin.de

submitted: 11th March 2010

No. 12

Berlin 2010

Key words and phrases. Package manager; software versioning; dependencies; source package;
virtual package; compiler flags; database; root-permissions; portability; Mixing FORTRAN, C and
C++.

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Mohrenstraße 39
10117 Berlin
Germany

Fax: + 49 30 2044975
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

CONTENTS 1

Contents

1 Introduction 3
1.1 Main goals . 3
1.2 Installation of the package manager 3
1.3 Prepare examples . 4
1.4 Package, version and release . 4

2 Build source code with wpm-build 5
2.1 Mixing FORTRAN, C and C++ . 6

2.1.1 Mangle flag . 6
2.1.2 Generate C/C++ macros . 6

2.2 Available vendors . 7
2.3 Flags . 8

2.3.1 Options . 9
2.3.2 Compiler . 9
2.3.3 Linker . 10
2.3.4 Library . 11
2.3.5 System . 11

2.4 Flags Makefile example . 11
2.5 Build . 12
2.6 Build Makefile example . 13
2.7 Check vendor . 14
2.8 Writing user extensions . 14

3 WPM and users 14
3.1 Initialize database . 15
3.2 Getting information about package files 16
3.3 Getting information about installed packages 16

3.3.1 General . 17
3.3.2 Build . 17
3.3.3 History . 18

3.4 Install packages . 18
3.4.1 Basic options . 20
3.4.2 Advanced options - control execution of wspec sections 20
3.4.3 Advanced options - install, uninstall, repair 21
3.4.4 Advanced options - control installation directories granularly . 21

3.5 Erase packages . 21
3.6 Examples . 22

3.6.1 Install each package as opt and dbg 22
3.6.2 Install packages built with different compiler vendors 23

CONTENTS 2

4 WPM and developers 24
4.1 Guideline . 25
4.2 Build a wpm package . 25
4.3 Write a wspec file . 26

4.3.1 Pre-defined WPM environment 27
4.3.2 Header variable details . 28
4.3.3 Section details (build and install) 28
4.3.4 Section details (database) . 30

4.4 Dependency information . 31
4.5 Signature . 32
4.6 Examples . 33

4.6.1 Source package of a library . 33
4.6.2 Source package of an application 37
4.6.3 Virtual package . 43

5 How do I ... 46
5.1 install a wpm package? . 46
5.2 create a wpm package from a software? 47
5.3 add a new compiler to WPM? . 47
5.4 add a new system to WPM? . 47
5.5 change the vendor default? . 48

A Apple bundle with wpm-bundle 48

1 Introduction 3

1 Introduction

WPM is a command-line tool designed to support build and installation facilities.
It is implemented as a collection of script files, written in Bourne Shell syntax.
For the sake of portability the code takes care about the common pitfalls of shell
programming [s. autoconf, Portable Shell Programming].

NOTE This software comes with absolutely no warranty!

1.1 Main goals

This package manager is mainly designed to assist software developers to handle
source packages1 and must consider the following basic requirements.

The package manager itself should

• be easy to install,

• run on common systems,

• work without root-permissions,

• contain a database of build commands and flags for FORTRAN, C and C++,

• be able to handle different versions of a software packages (software versioning),

• consider dependencies of software packages.

1.2 Installation of the package manager

The official location of WPM is the URL

http://www.wias-berlin.de/software/pdelib/download/wpm-1.0.tar.gz

As an alternative, a checkout from the subversion repository is possible with the
following command

$ svn co -r5091 \

svn+ssh://hilbert.wias-berlin.de/Home/darcy/svnroot/trunk/wpm wpm

Ensure that the user can execute the program wpm , wpm-build and wpm-bundle

contained in the wpm folder.

1Details about source packages in Chapter 4

1 Introduction 4

1.3 Prepare examples

Inside the WPM distribution exists a directory examples. To generate the example
packages checklib-1.0-1.wpm, check-1.0-1.wpm and chksum-1.0-1.wpm2, change
into this directory and start the setup step (s. Section 4.2 for details) with

$./wpm_setup.sh

To discover the content and dependencies of a package compare Section 3.2.

1.4 Package, version and release

The following terms have a special meaning and are explained here:

name Pure name of a package (for instance checklib)
version Version number of a package (for instance 1.0)
release Release number of a package (for instance 1)
label Composed from name, version, release with separator ”-”

The label identifies a package in the database.

The following figure shows the details of the WPM package file format. More details
about the wspec header variables Source and SourceFiles can be found in Section
4.3. The WPM package represents a ordinary uncompressed tar file created with
tar -c. And the archives inside the WPM are still compressed
with tar -c | gzip -c.

2This software is also an integrated part of WPM which generates checksums (see 4.5).

2 Build source code with wpm-build 5

<name>-<version>-<release>.wpm

<name>.wspec

control.tar.gz

data.tar.gz

source.tar.gz

Source*

files of
'files='

folders of
'files='

SourceFiles*

∗ Optional files

2 Build source code with wpm-build

The program wpm-build is designed to collect knowledge about compilers (FORTRAN,
C and C++) and build tools to create static libraries and link binaries.

The knowledge database of available vendors (s. 2.2) should be able to compile

• FORTRAN, C and C++ code up to optimization level O3 (without aggressive
optimizations which have the potential to alter the semantics of the program);

• FORTRAN, C and C++ code with OpenMP directives and clauses;

• ANSI C code;

• C++ templates including STL;

• C++ with with large file support3 (_FILE_OFFSET_BITS=64);

3Relevant on 32 bit systems.

2 Build source code with wpm-build 6

2.1 Mixing FORTRAN, C and C++

Integrating C/C++ and FORTRAN into a single executable relies on knowing
how to interface the function calls, argument list and global data structures so
the symbols match in the object code during linking. The entry point names for
some FORTRAN compilers have an underscore appended to the name and case in
FORTRAN is NOT preserved and mostly is represented in lower case in the object
file.

2.1.1 Mangle flag

When using wpm-build for instance in configure scripts the following subcommand
maybe useful

$ wpm-build flags --fmangle

Possible results of this call

lowercase_nounderscore_noextraunderscore

lowercase_nounderscore_extraunderscore

lowercase_underscore_noextraunderscore

lowercase_underscore_extraunderscore

uppercase_nounderscore_noextraunderscore

uppercase_nounderscore_extraunderscore

uppercase_underscore_noextraunderscore

uppercase_underscore_extraunderscore

2.1.2 Generate C/C++ macros

The subprogram wpm-build header returns C/C++ macros which allow to write
portable external function declarations.

Example

$ wpm-build header

#define F77_FUNC(name,NAME) name ## _

#define F77_FUNC_(name,NAME) name ## __

And for example the declarations in a C++ program of two FORTRAN functions
fortran_func1(i) and fortranfunc2(i) may implemented as follows.

extern "C" void F77_FUNC_(fortran_func1,FORTRAN_FUNC1)(int* i);

extern "C" void F77_FUNC(fortranfunc2,FORTRANFUNC2)(int* i);

2 Build source code with wpm-build 7

Some compilers will add an extra underscore, if the name of the FORTRAN function
contains an underscore.

2.2 Available vendors

With the next subcommand a list of available vendors for the current system (WPM_HOST)
is accessible.

$ wpm-build list

WPM_HOST : powerpc-apple-darwin8.11.0

WPM_VENDOR :

Available vendors : gnu ibm

Currently selected: gnu

If the variable WPM_VENDOR is empty, wpm-build will select the default for this sys-
tem. The defaults for the systems are defined in sys/*/default. User extensions
are described in Section 2.8. The following table contains the list of available ven-
dors.

2 Build source code with wpm-build 8

system vendor parallel comment
ia32 linux gnu no g++, gcc, gfortran 4.1.0 (SUSE Linux)

gnu77comp no
gnu77 no
intel9 yes icc 9.1.038, ifort 9.1.032

x86 64 linux gnu no g++, gcc, gfortran 4.1.0 (SUSE Linux)
intel9e yes Intel EMT 64bit with openmp

aix default yes multi-threaded executable with
xlc++ r, xlc r, xlf r; AIX Version
5.3, IBM(R) XL C/C++ Enterprise
Edition V8.0

intel darwin gnuif no
gnu42 yes g++-4, gcc-4, gfortran 4.2.0
intel64 no

powerpc darwin gnu no g++, gcc 4.0.1, g77 3.4.3
ibm yes IBM(R) XL C/C++ Advanced Edition

Version 6.0
mingw gnu no
mips irix default yes MIPSpro Compilers: Version 7.4
alpha osf default yes Compaq C V6.5-011 on Compaq Tru64

UNIX V5.1B, Compiler Driver V6.5-
003; C++ link problems with manual
instanciated template members

solaris2 default prepared
cygwin gnu no neglected
ia64 gnu no prepared

intel prepared

2.3 Flags

Getting build tools and flags in a granular way from wpm-build with

• wpm-build flags [Options] <Flags>...

2 Build source code with wpm-build 9

2.3.1 Options

...--help list of flags

...-opt select optimized flags (default and overwrites WPM_CONFIG)

...-dbg select debug flags (overwrites WPM_CONFIG)

...-noopt select non optimized flags (overwrites WPM_CONFIG)

...-pro select profiler flags (overwrites WPM_CONFIG)

...-32 try 32 bit (on some systems the user can choose between 32
and 64 bit binaries)

...-64 try 64 bit

...--vendor query vendor

...--cfg file source of flags

2.3.2 Compiler

...--objext extension of object files generated by compiler (”o” or ”obj”)

...--cxx C++ compiler

...--cc C compiler

...--f77 FORTRAN compiler

...--cxxflags accumulated compiler flags:

...--cflags basic + warn + incdef + opt/dbg/noopt/pro

...--fflags

...--cxxflags min accumulated compiler flags:

...--cflags min basic + incdef + opt/dbg/noopt/pro

...--fflags min

...--cxxflags warn warning flags

...--cxxflags incdef include and defines

...--cxxflags dbg debug without optimization

...--cxxflags noopt no optimization

...--cxxflags opt optimization (level O3)

...--cxxflags pro optimization (level O3) with profiler flags

...--cxxflags basic basic flags assumed by the flags above

2 Build source code with wpm-build 10

...--cflags warn analog to the C++ compiler flags

...--cflags incdef

...--cflags dbg

...--cflags noopt

...--cflags opt

...--cflags pro

...--cflags basic

...--fflags warn analog to the C++ compiler flags

...--fflags incdef

...--fflags dbg

...--fflags noopt

...--fflags opt

...--fflags pro

...--fflags basic

...--fmangle FORTRAN name mangling (compare Section 2.1)

...--openmp flags OpenMP flags

2.3.3 Linker

...--exeext extension of executable files generated by linker (empty or
”.exe” for windows)

...--ldflags linker flags

...--libs start some linker supports grouping of statical libs with a unique
list. Close group with --libs_end.

...--libs end

...--libs basic vendor libs (for example: -lg2c)

...--cxxlibs

...--clibs

...--flibs

...--flibs first on some systems this should be a problem

2 Build source code with wpm-build 11

2.3.4 Library

...--ranlib ranlib generates an index to the contents of an archive and
stores it in the archive

...--ar archive program

...--arflags flags for creating an archive

2.3.5 System

...--bits

2.4 Flags Makefile example

The following example Makefile uses the WPM subcommand wpm-build flags.

WPM_CFG = -dbg

WPM_FLAGS = wpm-build $(WPM_CFG) flags

CXX = ‘$(WPM_FLAGS) --cxx‘

CXXFLAGS = ‘$(WPM_FLAGS) --cxxflags‘

AR = ‘$(WPM_FLAGS) --ar --arflags‘

RANLIB = ‘$(WPM_FLAGS) --ranlib‘

LDFLAGS = ‘$(WPM_FLAGS) --ldflags‘

LIBS = ‘$(WPM_FLAGS) --libs‘

COMPILE = $(CXX) $(CXXFLAGS) -c

LINK = $(CXX) $(CXXFLAGS) $(LDFLAGS) -o

LIB_OBJ = file1.o file2.o

BIN_OBJ = main.o

all: prog.exe

clean:

-rm -f *.o prog.exe

prog.exe: libfile.a $(BIN_OBJ)

$(LINK) $@ $(BIN_OBJ) libfile.a $(LIBS)

2 Build source code with wpm-build 12

libfile.a: $(LIB_OBJ)

$(AR) $@ $(LIB_OBJ)

$(RANLIB) $@

.cxx.o:

$(COMPILE) $<

.PHONY: all clean

.SUFFIXES: .cxx .o

This example is part of the WPM distribution. See directory

wpm/examples/example_flags_makefile.

2.5 Build

The described above usage of wpm-build flags is the most flexible way to build
programs with a makefile. But alternatively a more comfortable usage is provided
by wpm-build. In many cases the build subcommands are sufficient:

• wpm-build compile [extra-flags] *.cxx *.c *f This subcommand is equal
to

--cxx [extra_flags] --cxxflags $DEFS $INCLUDES $CXXFLAGS -c *.cxx

--cc [extra_flags] --cflags $DEFS $INCLUDES $CFLAGS -c *.c

--f77 [extra_flags] --fflags $DEFS $INCLUDES $FFLAGS -c *.f

The user can specify additional flags with the environment variables DEFS, INCLUDES,
CXXFLAGS and with command line extra-flags.
• wpm-build lib <lib> *.o Same as --ar --arflags <lib> *.o.
• wpm-build ranlib <lib> Same as --ranlib <lib>.
• wpm-build cplib <lib> <from-dir> <to-dir> Installs <lib> into a possibly
existing target directory. This subcommand is equal to

mkdir_p <to-dir>

cp <from-dir>/<lib> <to-dir>

--ranlib <from-dir>/<lib>

• wpm-build link <main> [extra-flags] *.o *.a *.so The subcommand sup-
ports grouping with --libs_start, --libs_end described in Section 2.3. The
equal command

--cxx --cxxflags --ldflags -o <main> [extra-flags] *.o *.a *.so --libs

2 Build source code with wpm-build 13

2.6 Build Makefile example

The following example Makefile uses the WPM subcommands wpm-build compile,
wpm-build link, wpm-build lib and wpm-build ranlib.

WPM_CFG = -dbg

WPM_BUILD = wpm-build $(WPM_CFG)

LIB_OBJ = file1.o file2.o

BIN_OBJ = main.o

all: prog.exe

clean:

-rm -f *.o libfile.a prog.exe

prog.exe: libfile.a $(BIN_OBJ)

@echo "Linking $@..."

@rm -f $@

@$(WPM_BUILD) link $@ $(BIN_OBJ) libfile.a $(LIBS)

libfile.a: $(LIB_OBJ)

@echo "Creating $@..."

@$(WPM_BUILD) lib $@ $(LIB_OBJ)

@$(WPM_BUILD) ranlib $@

.cxx.o:

@echo "Compiling $< ..."

@$(WPM_BUILD) compile $<

.PHONY: all clean

.SUFFIXES: .cxx .o

This example is part of the WPM distribution, see directory

wpm/examples/example_build_makefile,

and is equivalent to the build task as described in the last example of Section
2.4.

3 WPM and users 14

2.7 Check vendor

The user should always perform a test run with the selected tools of a vendor (s.
2.2). Especially, when the target system is new. The administrator might decide
to choose non-standard installation options for the compiler. If this is the case, the
user must adapt the desired vendor file.

• wpm-build check This subprogram builds simple test-code (.cxx,.c,.f) and tries
to link libs with interdependency (test: --libs_start, --libs_end); link mixing
C++, C and FORTRAN code which tests the macros F77_FUNC(..), F77_FUNC_(..)

generated from subcommand wpm-build header.

2.8 Writing user extensions

The user can define an own set of build tools and flags. It is recommend either to
start from an existing vendor file (sys/*/*.sh_inc) that is close to the target setting
or from the commented template file sys/template.sh_inc. The template file
contains all available variables, which names are the same as the flags but extended
with the prefix arch_. The arch-files will be included by wpm and consequently this
files should also contain Bourne Shell compatible code. Testing of the changes is
possible with wpm-build check (s. 2.7).

3 WPM and users

This section describes the user interface of WPM, that is, the set of subprograms
available for performing maintenance of packages.

• wpm initdb to initially create a database
• wpm install to install packages
• wpm uninstall to uninstall packages
• wpm query to query database
• wpm-build to access build commands
• wpm-bundle to create Mac OS X application bundles4

Both command-line tools wpm and wpm-build are controllable with switches and
variables. To customize the tools with higher flexibility, all variables can be defined
on the command line, from the environment or in a resource file (.wpmrc in working
directory). The evaluation occurs in following order:

4For details see Appendix A.

3 WPM and users 15

1. command line

2. environment

3. resource file

There are some general variables which influence the behavior of the subprograms
discussed in this section.

WPM_DBPATH=<dir> location of the WPM database (default $HOME/wpm-db)
WPM_INSTDIR=<dir> location of installed packages (default $HOME/local)

To become aware of the variable settings in a safe way it is recommended to attempt
the following subprogram

$ wpm status

3.1 Initialize database

Before WPM is able to install a package the user must setup a database. This
consists of nothing more than a set of ascii files.

• wpm initdb If the directory WPM_DBPATH is not empty the procedure aborts.
Otherwise the subcomand creates the directory and puts a marker inside.

• wpm initdb --nonfs Without this flag WPM creates an additional marker which
tells wpm install to arrange the packages in the WPM_INSTDIR and the database
entries in a hierarchical level defined by WPM_HOST. This feature may be useful on
network file systems.

• wpm initdb --nomulti-pkg Without this flag WPM creates an additional marker
which tells wpm install to arrange the packages in the WPM_INSTDIR[/WPM_HOST]

in a hierarchical level defined by the package. For example if WPM should install
different versions of a package this flag is necessary.

• wpm initdb WPM INSTDIR=<new-default-dir> Change the default installation
directory to <new-default-dir>.

• wpm initdb --nonfs --nomulti-pkg WPM INSTDIR=<new-default-dir> Com-
bination of the above flags is allowed.

There is no way to remove a database with WPM. When the user wants to change
options after wpm initdb, the recommended way is the complete removal of the di-
rectory WPM_DBPATH and the restart of wpm initdb. In case of a non-empty database
the uninstall all packages is necessary.

3 WPM and users 16

Remark: It is possible to set WPM_INSTDIR=/usr and install all packages into the
unix directory structure. During installation the subcommand wpm install per-
forms a conflict check before files are copied to the target directories.

3.2 Getting information about package files

To discover the content and dependencies of a package file, the following command
can be used.

$ wpm install --simulate <package>.wpm

Furthermore, the command extracts the package file into the current working direc-
tory and prints the status of directory settings (package file details s. 4.2).

For example

$ wpm install --simulate check-1.0-1.wpm

WPM_DBPATH : /Users/strecken/wpm-db

WPM_HOST : powerpc-apple-darwin8.11.0

WPM_CONFIG : opt

WPM_COM : wpm-build flags (default)

WPM_SOURCE_DIR : <DIR>/wpm/examples/WPMS/BUILD_check

WPM_BUILD_DIR : <DIR>/wpm/examples/WPMS/BUILD_check/check

WPM_REQUIRES : checklib-1.0

WPM_PROVIDES : check-1.0

WPM_INSTDIR : <DIR>/local

WPM_INSTDIR_bin : <DIR>/local/bin

The variable WPM_REQUIRES indicates a dependency from checklib-1.0. To be sure
that check-1.0-1.wpm is the right package, execute the command

wpm install --simulate

again and compare the variable WPM_PROVIDES with the required package.

3.3 Getting information about installed packages

All information about installed packages is stored in the WPM database. This in-
formation is important for the package manager itself (especially for the subprogram
wpm uninstall) and for packages that shall be linked against an installed package.
To query the database, WPM provides the subcommand

$ wpm query

3 WPM and users 17

Without additional switches, a list of installed packages will be printed out. To find
a package with desired properties, the following options maybe useful

• wpm query find=opt returns packages with available option opt (empty or not)
• wpm query find=opt substr=sub returns packages with opt containing substr

• wpm query find=opt equal=eq returns packages with opt equal to eq

Beyond these general options, several options concerning a specified package are
available.

• wpm query pkg=pkg-label --check-missing checks whether the installation is
complete. If some files are missing, the list will be stored in ./wpm_check_missing.log.
• wpm query pkg=pkg-label files=subdir exe=exe gets the filename of installed
executable. Note: The result is system depending (compare Section 2.3.3).

Example

$ wpm query pkg=chksum-1.0-1 files=bin exe=whirlpool

The following sections deal with commands that are suboptions from installed
database script-files. A more detailed description is given in Sections 4.3.2 and
4.3.4.

3.3.1 General

• wpm query pkg=package-label...

...- filename of database script-file.

...--help list of available flags.

...--summary summary of the package.

...--name pure name of the package (see Section 1.4).

...--version version number of the package (see Section 1.4).

...--release release number of the package (see Section 1.4).

...--requires dependencies.

...--provides dependencies.

3.3.2 Build

• wpm build pkg=package-label...

3 WPM and users 18

...--flags flags of specified package for compiling.

...--libs libs of specified package for linking.

...--FLAGS including dependencies.

...--LIBS including dependencies.

3.3.3 History

The following flags provides history information about the installation of a pack-
age.

• wpm query pkg=package-label...

...--requires resolved used requirements.

...--packagefile used package source-file.

...--getfrom url of tarball.

...--com used built-interface.

...--com bits used 32 or 64 bits.

...--com config used config (opt|noopt|dbg|pro).

...--vendor used vendor.

...--instdir target directory.

3.4 Install packages

The simplest and most suitable way to install a WPM package is

$ wpm install <package>.wpm

But first ensure with wpm-build check that the selected vendor WPM_VENDOR works
well (compare 2.7). If the software is not included in the package, wpm install will
invoke wpm get with specified options to download and unpack the missing tarball5.
This subprogram creates a hidden file (.wpmrc) during the first run in the current
working directory. This file contains a list of locations (URL, local path name)
stored in WPM_GET_DIRS used by wpm get. For a concrete package the user may
add locations with WPM_GET_DIRS_<package-label> which wpm get prefers. The
tool curl is the default remote get command. Replace this is possible via variable
WPM_GET and wpm get calls this in the following manner

$WPM_GET <dst-file> <src-URL>

The next three steps will performed by wpm get

5Many applications are downloaded in compressed tar format, often called a tarball.

3 WPM and users 19

1. Download software not included in the package file, but necessary for the build
using curl.

2. Check signature of tarball (compare Section 4.5).

3. Unpack Software (supported formats: .tgz, .tar.gz and .shar.gz)6.

If these steps have been successfuly performed, WPM continues with the proper
installation procedure. Basically, the installation subprogram executes the following
steps

1. conflict check to ensure that no pre-existing files in the target installation
directory WPM_INSTDIR structure will be overwritten

2. patch (wspec section7)

3. prep (wspec section)

4. configure (wspec section)

5. clean (wspec section)

6. build (wspec section)

7. install (wspec section)

8. install-check

9. create config-script in WPM_DBPATH

The maintainer can use some additional options for package installation.

• wpm install [Options] <package>.wpm

The advanced options are basically for package developers and should be avoided
by the WPM user.

6Uncompress with gunzip -c, open archive with tar -xf and a shar archive with sh -xf.
7See 4.3 for details.

3 WPM and users 20

3.4.1 Basic options

--simulate shows variable-state only
--multi-pkg extend WPM_INSTDIR with package-label

(=<name-vers-release>)
WPM_COM=<script-file> Compiler-script. Default: ’wpm-build flags’.

If this has been set, WPM_VENDOR, WPM_BITS and
WPM_CONFIG have no influence to WPM_COM.

WPM_VENDOR=<vendor> selects a vendor; default empty (compare Section
2.2)

WPM_BITS=32|64 selects bits; default empty (compare options of
wpm-build flags in Section 2.3)

WPM_CONFIG=opt|noopt|dbg|pro selects optimization level; default opt (compare with
options of wpm-build flags in Section 2.3)

If the setting is =noopt, the package name will be extended with
WPM_CONFIG.
=dbg, the section files_source (s. a. Section
4.3.4) will be installed automatically.

3.4.2 Advanced options - control execution of wspec sections

-bp execute prep configure

-bc execute prep configure clean build

-bi execute prep configure clean build install (de-
fault)

--nopatch skip section patch

--noprep skip section prep

--noconfigure skip section configure

--nobuild skip section build

--noinstall skip section install

--noclean skip section clean

3 WPM and users 21

3.4.3 Advanced options - install, uninstall, repair

--uninstall remove package installation (without dependency
check!)

--check-conflict only check whether package-files are existing in
install-dir

--repair-script overwrites the config-script in WPM_DBPATH

--nodeps skip check dependencies during install/uninstall
--noinstallcheck skip check after install

Warning: The --uninstall procedure may set WPM in an unstable state.

3.4.4 Advanced options - control installation directories granularly

WPM_INSTDIR_<subdir>=<dir> overwrite subdir defaults
WPM_INSTDIR_bin=WPM_INSTDIR/bin

WPM_INSTDIR_lib=WPM_INSTDIR/lib

...
--force-<subdir> force install for subdir (disables conflict check!)

for example: subdir=share installs files from
section files_share into <prefix>/share

3.5 Erase packages

Remove an installed package is an important part of WPM. After installation a list
of all installed files is stored in the database. The package manager removes each of
these files explicitly, without calling a possibly existing uninstall procedure from a
software. The WPM package itself is not necessary for this task. This way ensures
that no commands like rm -f *.a are called and the well known unix directory
structure for installation can established.

$ wpm uninstall pkg=<package>

This procedure can not uninstall a package which is required by other installed
packages. If the maintainer needs to re-install a package the advanced (and unsafe)
install option --uninstall is recommended (s. a. Section 3.4).

3 WPM and users 22

3.6 Examples

3.6.1 Install each package as opt and dbg

Optionally, a database folder might be defined at the first step. For Example
with

$ export WPM_DBPATH=$HOME/wpm-db_example

The next command will initially create a WPM database which only separates the
installation directories of each package and sets a new default for the installation
base folder; more details in Section 3.1.

$ wpm initdb --nonfs WPM_INSTDIR=$HOME/local_example

Now we prepared the database for installation of WPM packages. Before we will
install the first package, a check of the desired compiler and build tools is recom-
mended (s. a. 2.7).

$ wpm-build check

The result should produce several output lines after Run ... without an error. If
this is not the case, the user could first try to choose another available vendor. A
detailed description how to do this can be found in Section 2.2.

Perform the installation of all package availabe in directory examples/WPM with the
following commands as optimized binaries.

$ wpm install checklib-1.0-1.wpm

$ wpm install check-1.0-1.wpm

$ wpm install chksum-1.0-1.wpm

After these steps the database should contain the following entries:

$ wpm query

check-1.0-1

checklib-1.0-1

chksum-1.0-1

Now we repeat the same installation commands like above, but we only switch to dbg

which generates non-optimized binaries with debug information and installs source
files of the packages, too.

$ wpm install WPM_CONFIG=dbg checklib-1.0-1.wpm

$ wpm install WPM_CONFIG=dbg check-1.0-1.wpm

$ wpm install WPM_CONFIG=dbg chksum-1.0-1.wpm

3 WPM and users 23

This task will stop after second command, because the package manager detects a
conflict. The output appears as follows:

checking dependency: checklib-1.0 ...

selection failed with WPM_sel_checklib_1_0=<>

(select one from: checklib-1.0-1 checklib_dbg-1.0-1)

missing package: Require <checklib-1.0>

We installed two packages (checklib-1.0-1 and checklib_dbg-1.0-1) which pro-
vide the same software. At this point WPM needs assistance from the user. We
make the following decision:

$ export WPM_sel_checklib_1_0=checklib_dbg-1.0-1

and retry the remaining commands again:

$ wpm install WPM_CONFIG=dbg check-1.0-1.wpm

$ wpm install WPM_CONFIG=dbg chksum-1.0-1.wpm

The database now contains the following entries:

$ wpm query

check-1.0-1

check_dbg-1.0-1

checklib-1.0-1

checklib_dbg-1.0-1

chksum-1.0-1

chksum_dbg-1.0-1

And finally you can find all packages which installed source code for debugging with
the next command (s. Section 3.3).

$ wpm query find=files substr=source

3.6.2 Install packages built with different compiler vendors

It is highly recommended to create an own WPM database for each compiler vendor.
The following citation explains the reason for this decision:

In general, Fortran compilers are not binary compatible, due to using different run-
time libraries. Intel Fortran Compiler is binary compatibl with C-language object
files created with either Intel C++ Compiler for Linux or the GNU gcc compiler.
The Intel Fortran Compiler documentation has further details on calling C language
functions from Fortran.

4 WPM and developers 24

Intel Fortran Compiler for Linux uses a different name-mangling scheme than the
GNU Fortran compiler. Intel does not recommend mixing object iles created by the
Intel Fortran Compiler and the GNU Fortran compiler. [White Paper: Intel(R)
Compilers for Linux*: Compatibility with GNU Compilers]

For this example we assume that a system ia32 linux (s. 2.2) is available. We begin
with gnu and define a new database location with:

$ export WPM_DBPATH=$HOME/wpm-db_example_gnu

The next command will initially create a WPM database and sets a new default for
the installation base folder8; more details in Section 3.1.

$ wpm initdb WPM_INSTDIR=$HOME/local_example_gnu

Just like in the last example in Section 3.6.1 a check of the desired compiler and
build tools is recommended (s. a. Section 2.7):

$ wpm-build vendor=gnu check

Perform the installation of all package availabe in directory examples/WPM with the
following commands as optimized binaries.

$ export WPM_VENDOR=gnu

$ wpm install checklib-1.0-1.wpm

$ wpm install check-1.0-1.wpm

$ wpm install chksum-1.0-1.wpm

Now we repeat the above steps with _intel9 postfix and select the vendor in-
tel9.

$ export WPM_DBPATH=$HOME/wpm-db_example_intel9

$ wpm initdb WPM_INSTDIR=$HOME/local_example_intel9

$ wpm-build vendor=intel9 check

$ export WPM_VENDOR=intel9

$ wpm install checklib-1.0-1.wpm

$ wpm install check-1.0-1.wpm

$ wpm install chksum-1.0-1.wpm

4 WPM and developers

This chapter is a guide to set up packages around existing software. Generally the
packages can be divided into the following categories:

8A diffrent WPM INSTDIR is not mandatory.

4 WPM and developers 25

• source packages (build and install)

• binary packages (install)

• virtual packages (refer)

The following sections will basically deal with source and virtual packages. A pack-
age which builds source code of the included software during installation time is
called source package.

A virtual package only exist logically, not physically; that is why they are called vir-
tual. Get around the problem of pre-existing software by building a virtual package
that lists the system libraries installed without WPM in an WPM package.

4.1 Guideline

The main tasks in creating WPM packages are:

1. Get the software (download tarball)

2. Patch them and create a reproducible build of the software

3. Outline any dependencies

4. Write the wspec file containing the above steps (s. 4.3)

5. Set up the WPM package

6. Test the package

With the first three steps the packager mainly discovers the software. Before trying
to make a package, the packager needs to figure out how to build the application or
library planned to be packaged.

4.2 Build a wpm package

First it is recommend to set up a directory structure as follows

SOURCES contains all packages in subfolders <name>-<version>-<release>

WPMS contains the packages generated by wpm setup

The file <name>.wspec should reside in the directory

SOURCES/<name>-<version>-<release>.

4 WPM and developers 26

The following command builds a WPM package file with file extension wpm in the
current working directory9.

• wpm setup [options] <name.wspec>

Available options

files=<file1:subdir1:...> Specifiy a list of files/directories inside

SOURCES/<name>-<version>-<release>

which should be added to the package. Only relative path names are allowed. The
settings of the header variables Source and SourceFiles in the <name>.wspec are
defaults.

--nosource Ignore the Source and SourceSubDir header variables defined in
<name>.wspec.

It is also possible to put all the command-line options for wpm setup into the file
setup.wini. The next command loads <package-dir>/setup.wini and builds a
WPM package

• wpm setup <package-dir>

The options inside a setup.wini file can be specified as shown in the following
example

setup.wini

nosource="yes"

files="README"

wspec="chksum.wspec" # this must be specified

This file becomes not part of the WPM package.

4.3 Write a wspec file

The wspec file, short for WPM specification file, defines all the actions the wpm

command should take to build the package, as well as all the actions necessary for
the wpm command to install the package. Like WPM itself the wspec file should
contain Bourne Shell syntax compatible code. A header variable is implemented
as an Bourne Shell variable and a section is implemented as an Bourne Shell func-
tion.

9See Section 1.4 for an overview of the WPM package file format.

4 WPM and developers 27

The naming convention is to name the file with the package name and a .wspec

filename extension.

SOURCE/<name>-<version>-<release>/<name>.wspec

The execution of the following sections will be done by wpm install. Before this
task starts, wpm install includes the wspec file and defines several WPM variables,
which are useable in the sections.

4.3.1 Pre-defined WPM environment

Following variables are preseted in wspec files:

WPM_SOURCE_DIR abs-dir with the wspec-file of a package
WPM_BUILD_DIR abs-dir of build
WPM_INSTDIR abs-dir for installation
WPM_INSTDIR_<instsub> abs-dir for installation
WPM_GET

WPM_GET_DIRS

WPM_CAT1EXT

WPM_CAT3EXT

WPM_EXEEXT

WPM_OBJEXT

WPM_QUERY_<dependency> query other installed packages
for example:
requires="lua-5.0 dlopen"

$WPM_QUERY_lua_5_0 --libs

$WPM_QUERY_dlopen --libs

WPM_HOST current arch (detected with config.guess)
WPM_COM tools and flags for build.

default: wpm-build flags

All directories saved in WPM-variables are absolute and existing directories. Working-
dir of all sections are WPM_BUILD_DIR.

The following pre-defined functions maybe usefull in the sections:

mkdir_p <dir> Create intermediate directories as required.
No error will be reported if a directory given
as an operand already exists.

wpm_unpack_in_wd <Source> Uncompress with gunzip -c, open archive
with tar -xf and a shar archive with sh -xf
in working directory.

4 WPM and developers 28

4.3.2 Header variable details

Summary Short software description

Name Pure name of a package (compare Section 1.4)

Version Version number of a package (compare Section 1.4)

Release Release number of a package (compare Section 1.4)

Copyright Info

Checksum Validate tarball (see 4.5)

Source tarball name without path or URL. A list of names separated by whitespace
is also allowed10.

GetDirs Web locations (URLs) without filename; the software is not included in
the package.

SourceSubDir Relative build directory; WPM unpacks the tarball into this folder.
Default: <Name>-<Version>-<Release>

SourceFiles Local sources; the software is included in the package.

requires Dependency (see Section 4.4)

provides Dependency (see Section 4.4)

URL Software homepage

Vendor Software vendor

Packager People who build the package.

PatchN Vendor patch tarball name without path or URL (N=0,1,...); see also
associated section PatchApplyN in Section 4.3.3.

PatchChecksumN Validate tarball PatchN

PatchSubDirN WPM unpacks the tarball PatchN into this relative folder.

4.3.3 Section details (build and install)

The working directory of all sections is WPM_BUILD_DIR. This folder will be created
in the current working directory and is defined as

10This could be useful if the name varies for different locations.

4 WPM and developers 29

<current-working-dir>/BUILD_<SourceSubDir>

The header variable SourceSubDir is explained in Section 4.3.2. The execution
of the following sections are controlable through the options of wpm install; see
details in 3.4.2.

locals Setting local variables which may helpful inside the wspec file. It is recom-
mend to use a safe prefex, for example local_ for these variables.

patch Start with pristine sources; then patch as needed. A patch is an automated
set of modifications to the source code. Keep the original sources separate from any
patches you need to make the software work in your environment. See also header
variable PatchN in Section 4.3.2 for details concerning a vendor patch.

PatchApplyN Defines the actions how to apply the vendor patch PatchN. This
section will be called by the WPM function wpm_patch which should be specified in
the patch section.

prep The prep section, short for prepare, defines the commands necessary to prepare
for the build.

configure Perform the configuration of the software. Usually at this place the
packager should pass the build tools and flags from wpm-build to the software
(details in Section 2.3).

clean The clean section cleans up the files that the commands in the build sections
create. This section should only cleans up binaries generated during build-time in
WPM_BUILD_DIR.

build The build target should perform all the compilation of the package. Usually,
this will include just a few commands, since most of the real instructions appear in
the Makefile.

install This section holds the commands necessary to install the newly built soft-
ware. In most cases your install section should run the make install command. But
sometimes the packager needs to install the built software itself. The following list
should be a suggestion to program this step in a portable way:

• Install an executable script

cp mysoft-config $WPM_INSTDIR_bin

chmod 755 $WPM_INSTDIR_bin/mysoft-config

• Install a built binary

cp mysoft$WPM_EXEEXT $WPM_INSTDIR_bin

chmod 755 $WPM_INSTDIR_bin/mysoft$WPM_EXEEXT

4 WPM and developers 30

• Install documentation

mkdir_p $WPM_INSTDIR_share/doc/mysoft

(cd $WPM_BUILD_DIR/documentation

cp *.gif *.html $WPM_INSTDIR_share/doc/mysoft

chmod 644 $WPM_INSTDIR_share/doc/mysoft/*.*

)

• Install a library

cp $WPM_BUILD_DIR/libmysoft.a $WPM_INSTDIR_lib

‘$WPM_COM --ranlib‘ $WPM_INSTDIR_lib/libmysoft.a

Remark Before a section executes code which requires the pre-defined WPM vari-
able WPM_COM, the packager should add a check-flag to force WPM to perform a
simple check. Example:

configure_require_wpm_com="yes"

configure()

{

CXX=‘$WPM_COM --cxx‘ CXXFLAGS=" ‘$WPM_COM --cxxflags‘" ./configure

}

4.3.4 Section details (database)

The previous wspec sections perform real actions on file system with the aim of
building and installing the software. Finally the following sections result to entries
in the WPM database.

The sections concerning files are also important for the subprogram wpm uninstall.
If it is planned to use the install procedure of the software (e.g. make install), the
packager should run the install section and determine the list of files which appears
in the WPM_INSTDIR.

files11 This section should define a list of install-subdirs of WPM_INSTDIR (for example
lib, bin, include, ...). Remark: If a virtual package is planned, this section will
usually be empty.

files <install-subdir> This section must return a list of <install-subdir>-files 12.
It is also allowed to list files in a relative path structure. The directories itself must
not be specified and will be created by the package manager.

11This section is an exception concerning the syntax. The section file must be written as a
Bourne Shell variable.

12without wildcards

4 WPM and developers 31

files source As the last section this one holds a list of files in the same manner.
But this list should only contain source files and headers which are relevant for
degugging this software. This will be installed automatically if the user specifies the
WPM_CONFIG=dbg; see also 3.4.1.

package flags This section defines the compiler flags concerning the package. Usu-
ally this section contains only defines (-D switches) and include search paths (-I
switches) of the installed package. If the software contains only applications (and
no libraries), this section must not be specified. This also holds true for the next
sections.

package libs This section defines the linker flags concerning the package. Usually
this section only contains libraries with absolute paths of the installed package.

package FLAGS This section contains flags for other software to be built against
the package.

package LIBS This section contains libraries to be built against the package. This
may be important in case of usage of system dependencies detected by the soft-
ware.

4.4 Dependency information

Version clauses should be used rigorously in build-time relationships so that one
cannot produce bad or inconsistently configured packages when the relationships
are properly satisfied.

It is not necessary to list packages which are required merely because some other
package in the list of build-time dependencies depends on them. The reason for this
is that dependencies change. What others need is their business.

The header variable requires in a wspec file specifies a list of packages separated
by space (details about wspec files in 4.3). Optionally packages are enclosed by
square brackets and alternatives are separated by vertical bars. For example, a list
of dependencies might appear as:

requires="[dlopen] gl math pthread termcap \

lapackblas-sys|lapackblas-3.0 \

lua-5.0 \

gspar-1.0 \

arpack-96 \

gms-1.0 \

metis-4.0 \

4 WPM and developers 32

pardiso-1.0 \

triangle-1.6 \

tetgen-1.4.1 \

fltk-1.1.x-r5329 \

swig-1.3.27"

If WPM finds an installed package which provides an item, a dependency will match.
Example of several packages

provides="lapackblas-3.0"

provides="lua-5.0"

provides="swig"

During installation of a package WPM tries to resolve the required package(s) in
the following order

1. Name-Version-Release

2. Name-Version

3. provides

These header variables are also part of the wspec file; see 4.3.

4.5 Signature

The Whirlpool algorithm was developed by Paulo S.L.M. Barreto and Vincent Rij-
men [The WHIRLPOOL Hash Function13]. With this algorithm the packager gen-
erates an unique (hopefully) fingerprint of the tarball. If the package manager
downlowds a tarball during an installtion task, WPM will generate a fingerprint
from this file and will compare this signatur with the expected one. Not all software
providers take care about the versions. However, with this mechanism the user is
on the safe side.

The following command gereates an signatur from a file.

$ wpm chksum examples/web_location/chksum/chksum.tar.gz

Whirlpool digest: 2ca60aed7498d3c....

In order to perform the validation in the installation task, the packager must specify
the following wspec header variable with the result of wpm chksum.

Checksum="Whirlpool digest: 2ca60aed7498d3c...."

13See URL: http://paginas.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html or
ISO/IEC 10118-3:2004

4 WPM and developers 33

4.6 Examples

The examples of this Section are also included in the example folder of WPM.

4.6.1 Source package of a library

The packager can use the steps described in Section 4.1 as a practical guideline. In
this Section we explain the steps on the basis of the package levmar14.

Write the wspec file

First we download the tarball levmar-2.1.3.tgz and generate a signature of this
file as described in Section 4.5.

$ wpm chksum levmar-2.1.3.tgz

Whirlpool digest: f1d388f2ce7aeb27....

Now we copy the template_web_source.wspec to levmar-2.1.3-1/levmar.wspec

and modify the header of them as follows

Summary="levmar - Levenberg-Marquardt nonlinear least squares algorithms"

Name="levmar"

Version="2.1.3"

Release="1"

Copyright="GNU General Public License"

Source="levmar-2.1.3.tgz"

Checksum="Whirlpool digest: f1d388f2ce7aeb27...."

GetDirs="http://www.ics.forth.gr/~lourakis/levmar"

SourceFiles=""

SourceSubDir="levmar-2.1.3"

requires=""

provides="levmar-2.1.3"

URL="http://www.ics.forth.gr/~lourakis/levmar"

Distribution=""

Vendor="M.I.A. Lourakis"

Packager="Timo Streckenbach <strecken@wias-berlin.de>"

The wspec section of the copy should be removed. We only want to package the
library of levmar and not a executable program. That is why the header variable
requires leaved empty (details in Section 4.4).

14Levenberg-Marquardt nonlinear least squares algorithms in C/C++, URL:
http://www.ics.forth.gr/ lourakis/levmar

4 WPM and developers 34

In this example the library should only contain the compilation of the following
source files

lm.c Axb.c misc.c lmlec.c lmbc.c

And we plan to use an external lapack library as dependency. This requires the def-
inition of the preprocessor variable HAVE_LAPACK during compile time of the source
files.

In the next we make a test compilation of the desired source files. Ensure that your
compiler vendor will work with wpm-build check (details in Section 2.7). Now the
first try of

$ wpm-build flags --cc -opt --cflags

gcc -ansi -pedantic -Wall -O3

$ gcc -ansi -pedantic -Wall -O3 -DHAVE_LAPACK -c \

lm.c Axb.c misc.c lmlec.c lmbc.c

will produce an compilation error. This indicates that the C source code is not
written in clean ANSI standard. Here we decide to reduce this restriction with

$ wpm-build flags --cc -opt --cflags_min

gcc -O3

$ gcc -O3 -DHAVE_LAPACK -c lm.c Axb.c misc.c lmlec.c lmbc.c

This was the critical part. If the build of a software is more complicated, the packager
often can not avoid to use the software build system. For this example the sections
locals, prep, configure and patch are not required. The packager must fill the
body of those with a : in an own line.

Now we can write the build and clean sections as follows

build_require_wpm_com="yes"

build()

{

‘$WPM_COM --cc -opt --cflags_min‘ -DHAVE_LAPACK -c \

lm.c Axb.c misc.c lmlec.c lmbc.c

‘$WPM_COM --ar --arflags‘ liblevmar.a lm.o Axb.o misc.o lmlec.o lmbc.o

‘$WPM_COM --ranlib‘ liblevmar.a

}

clean()

{

rm -f lm.o Axb.o misc.o lmlec.o lmbc.o

}

4 WPM and developers 35

The compilation line beginning with WPM_COM is equivalent to the manual command-
line build. And the archive will be created in the standard way as described in the
example in Section 2.4. From the point of the build system this wspec section is
portable. But maybe the source code itself not. To ensure this, the packager must
repeat the last build steps on all desired systems and vendors.

The following section install installs the built library liblevmar.a and two header
files

install()

{

cp $WPM_BUILD_DIR/liblevmar.a $WPM_INSTDIR_lib

‘$WPM_COM --ranlib‘ $WPM_INSTDIR_lib/liblevmar.a

mkdir_p $WPM_INSTDIR_include/levmar-2.1.3

cp $WPM_BUILD_DIR/lm.h $WPM_INSTDIR_include/levmar-2.1.3/lm.h

cp $WPM_BUILD_DIR/misc.h $WPM_INSTDIR_include/levmar-2.1.3/misc.h

}

Only a copy of the library is not enough. For example on Apple Mac OS X the
indexing with ranlib must happen after the copy command. The WPM shell function
mkdir_p forces the existence of the destination subdirectory levmar-2.1.3 for the
header files.

The following part of the wspec file tells WPM which files will be installed. WPM
defines the variables WPM_INSTDIR_lib and WPM_INSTDIR_include and creates these
folders depending from section files. Furthermore depending from files the sec-
tions files_lib and files_include must be specified. WPM uses this sections to
perform a conflict check before files are copied to the target directories and adds
this into the WPM database.

files="lib include"

files_lib()

{

cat <<EOF

liblevmar.a

EOF

}

files_include()

{

cat <<EOF

levmar-2.1.3/lm.h

levmar-2.1.3/misc.h

4 WPM and developers 36

EOF

}

Remark: This sections must be written carefully. They must exactly match the
files installed by the install section. If the packager forgets one file, the conflict
check leaks and the subprogram wpm uninstall can not clean-up.

At the end we define the sections which act as the user build interface via the
wpm query subcommand.

package_flags()

{

echo "-I$WPM_INSTDIR_include"

}

package_FLAGS()

{

package_flags

}

package_libs()

{

echo "$WPM_INSTDIR_lib/liblevmar.a"

}

package_LIBS()

{

package_libs

}

Build the wpm package

Now mainly steps from Section 4.2 are important. First we create the file levmar-2.1.3-1/setup.wini
with the following content

nosource="yes"

wspec="levmar.wspec"

This instructs wpm setup that the software source is not inside the WPM package.
Perform the set up step with

$ wpm setup ./levmar-2.1.3-1/

Test the wpm package

We prepare a test database only for this purpose with

$ export WPM_DBPATH=$HOME/wpm-levmar-test/db

$ wpm initdb WPM_INSTDIR=$HOME/wpm-levmar-test/local --nonfs

4 WPM and developers 37

nfs : no

multi-pkg : yes

WPM performs the build and installation of levmar with the following command

$ wpm install levmar-2.1.3-1.wpm

The target directory ~/wpm-levmar-test/local/levmar-2.1.3-1 contains the files

include/levmar-2.1.3/lm.h

include/levmar-2.1.3/misc.h

lib/liblevmar.a

If this is the case, the wspec sections build, install and files seems to be ok. Now
we check files_lib and files_include with the subcommand wpm uninstall as
follows

$ wpm uninstall pkg=levmar-2.1.3-1

This step must end up with an empty but existing directory

~/wpm-levmar-test/local/levmar-2.1.3-1.

4.6.2 Source package of an application

This example mainly deals with difficulties of patch and configure of the software
Lua15. It is recommend to read the last example in Section 4.6.1 first.

Write the wspec file

First we download the tarball lua-5.0.tar.gz and generate a signature of this file.
The header may look as follows

Summary="Lua - light-weight programming language"

Name="lua"

Version="5.0"

Release="1"

Copyright="1994-2006 Lua.org, PUC-Rio"

Source="lua-5.0.tar.gz"

Checksum="Whirlpool digest: 23bf42ed99cd"

GetDirs="http://www.lua.org/ftp"

SourceFiles=""

requires="[dlopen] math"

provides="lua-5.0"

15Lua - light-weight programming language, URL: http://www.lua.org

4 WPM and developers 38

URL="http://www.lua.org"

Distribution=""

Vendor="Tecgraf PUC-Rio"

Packager="Timo Streckenbach <strecken@wias-berlin.de>"

We want to package the library and the executable program of Lua. The executable
requires a math library -lm which is defined in the prototype file lua-5.0/config of
the software. And furthermore Lua supports loading of dynamic libraries optionally
(requires -ldl).

To satisfy these dependencies in a portable way, we defined the header varible
requires above. If the dependency dlopen is available, the package should pass
this to the software and math is not an optional dependency16.

A suitable way to build this software with WPM is the following

1. copy the prototype file lua-5.0/config into the WPM_SOURCE_DIR

2. replace the prototype setting with Makefile varibales WPM_<name>

3. prepend the definitions to this file during configure time and replace the pro-
totype lua-5.0/config

4. start the compilation with make in WPM_BUILD_DIR

Before we will write the wspec file it is recommend to make a test compilation of the
desired source files. Ensure that your compiler vendor will work with wpm-build check

(details in Section 2.7). Retrieve the build tools and flags with wpm-build flags

as described in the last example of Section 4.6.1 and put it inside the prototype file
lua-5.0/config. For example replace the value of variable CC as follows

CC = ‘wpm-build flags --cc‘

Then try to compile the software with

$ cd lua-5.0

$ make

We now write the the wspec section configure as follows, which realizes the third
step

configure_require_wpm_com="yes"

configure()

{

local_PCFG="$WPM_BUILD_DIR/config"

16The next example in Section 4.6.3 deals with this dependencies.

4 WPM and developers 39

echo "### BEGIN generated from WPM" > $local_PCFG

cat >>$local_PCFG <<EOF

WPM_ranlib = ‘$WPM_COM --ranlib‘

WPM_ar = ‘$WPM_COM --ar --arflags‘

WPM_cc = ‘$WPM_COM --cc‘

WPM_cflags = ‘$WPM_COM --cflags‘

WPM_LDFLAGS = ‘$WPM_COM --ldflags‘

WPM_warn =

EOF

case $WPM_HOST in

cygwin|*mingw*)

echo "WPM_loadlib = -DUSE_DLL" >> $local_PCFG

echo "WPM_libs = ‘$WPM_QUERY_math --libs‘" >> $local_PCFG

;;

*)

if test -x "$WPM_QUERY_dlopen" ; then

echo "WPM_loadlib = -DUSE_DLOPEN" >> $local_PCFG

echo "WPM_libs = ‘$WPM_QUERY_dlopen --libs‘ \\" >> $local_PCFG

echo " ‘$WPM_QUERY_math --libs‘" >> $local_PCFG

else

echo "WPM_libs = ‘$WPM_QUERY_math --libs‘" >> $local_PCFG

fi

;;

esac

cat >>$local_PCFG <<EOF

WPM_HOME = $WPM_SOURCE_DIR

WPM_BINDIR = $WPM_INSTDIR_bin

WPM_LIBDIR = $WPM_INSTDIR_lib

WPM_INCDIR = $WPM_INSTDIR_include

WPM_MANDIR = $WPM_INSTDIR_man

EOF

cat $WPM_SOURCE_DIR/config_opt >> $local_PCFG

}

The first part sets the WPM standard build tools and flags and the last part prepares
the installation. And the mid part handles the requirements. The math dependency
is always presented with WPM_QUERY_math, but the support of dynamic libraries

4 WPM and developers 40

is optionally and depends from the system indicated by WPM_HOST. Basically the
packager can figure out the existence of a dependency in a wspec section in the
following way

if test -x "$WPM_QUERY_dlopen" ; then

... available ...

else

... missing ...

fi

The following sections are more or less standard usage of make. Only the command
make install needs some postprocessing.

build()

{

make all

}

clean()

{

make clean

}

install()

{

make install

‘$WPM_COM --ranlib‘ $WPM_INSTDIR_lib/liblua*.a

chmod a+x $WPM_INSTDIR_bin/lua$WPM_EXEEXT

chmod a+x $WPM_INSTDIR_bin/luac$WPM_EXEEXT

(cd etc; make bin2c)

mv $WPM_BUILD_DIR/etc/bin2c$WPM_EXEEXT $WPM_INSTDIR_bin

chmod +x $WPM_INSTDIR_bin/bin2c$WPM_EXEEXT

}

Like the example in the last Section the following part of the wspec file tells WPM
which files will be installed. WPM defines the variables WPM_INSTDIR_include,
WPM_INSTDIR_man, WPM_INSTDIR_lib, WPM_INSTDIR_bin and WPM_INSTDIR_include

and creates these folders depending from section files. Furthermore depending
from files the sections files_include, files_man, files_lib, files_bin and
files_include must be specified. WPM uses this sections to perform a conflict
check before files are copied to the target directories and adds this into the WPM
database.

4 WPM and developers 41

files="include man lib bin"

files_include()

{

cat <<EOF

lua/lua.h

lua/lualib.h

lua/lauxlib.h

EOF

}

files_man()

{

cat <<EOF

man1/lua.1

man1/luac.1

EOF

}

files_lib()

{

cat <<EOF

liblua.a

liblualib.a

EOF

}

files_bin()

{

cat <<EOF

lua$WPM_EXEEXT

luac$WPM_EXEEXT

bin2c$WPM_EXEEXT

EOF

}

The following section files_source is only relevant for degugging this software
and will be installed automatically if the user specifies the WPM_CONFIG=dbg; see
also 3.4.1.

files_source()

{

cat <<EOF

src/lapi.h

src/lcode.h

...

src/lapi.c

src/lcode.c

...

EOF

}

Remark: This sections must be written carefully. They must exactly match the
files installed by the install section. If the packager forgets one file, the conflict
check leaks and the subprogram wpm uninstall can not clean-up.

At the end we define the sections which act as the user build interface via the
wpm query subcommand.

package_flags()

{

echo "-I$WPM_INSTDIR_include -I$WPM_INSTDIR_include/lua"

4 WPM and developers 42

}

package_FLAGS()

{

package_flags

}

package_libs()

{

echo "$WPM_INSTDIR_lib/liblua.a $WPM_INSTDIR_lib/liblualib.a"

}

package_LIBS()

{

if test -x "$WPM_QUERY_dlopen" ; then

echo "‘package_libs‘ ‘$WPM_QUERY_dlopen --libs‘ \

‘$WPM_QUERY_math --libs‘"

else

echo "‘package_libs‘ ‘$WPM_QUERY_math --libs‘"

fi

}

Build the wpm package

Like described is the last example we now first create the file lua-5.0-1/setup.wini
with the following content

nosource="yes"

files="config_opt:README"

wspec="lua.wspec"

This instructs wpm setup that the software source is not inside the WPM package,
but we put two additional files config_opt and README into the WPM package.
Perform the set up step with

$ wpm setup ./lua-5.0-1/

Test the wpm package

Repeat the same steps as described in the last example (s. Section 4.6.1). On some
systems the linker will properly fail because of missing CFLAGS in the Makefile’s in
lua-5.0/src/lua and lua-5.0/src/luac. A possible workaround is to patch the
desired files as follows

patch()

{

local_patch_file="$WPM_BUILD_DIR/src/lua/Makefile"

4 WPM and developers 43

if test ! -f ${local_patch_file}.patch ; then

cp $local_patch_file ${local_patch_file}.patch

cat ${local_patch_file}.patch | \

sed -e "s/\$(CC) -o/\$(CC) \$(CFLAGS) -o/g" > $local_patch_file

echo "patch installed (for $local_patch_file)"

fi

local_patch_file="$WPM_BUILD_DIR/src/luac/Makefile"

if test ! -f ${local_patch_file}.patch ; then

cp $local_patch_file ${local_patch_file}.patch

cat ${local_patch_file}.patch | \

sed -e "s/\$(CC) -o/\$(CC) \$(CFLAGS) -o/g" > $local_patch_file

echo "patch installed (for $local_patch_file)"

fi

}

This wspec section will backup both files to Makefil.patch and edits the original
files with sed17.

4.6.3 Virtual package

As mentioned in Section 4 a virtual package doesn’t build and install software. This
package tries to package the following system software and make this accessable with
wpm query.

provides description
pthread POSIX Threads Programming
gl OpenGL (Open Graphics Library) and Utility Library (GLU)
dlopen gain access to an executable object file
math ISO C standard mathematical library
termcap text user interfaces (TUI)
lapackblas linear algebra package (lapack) and basic linear algebra sub-

programs (blas)

Here we deside to specify flags and libraries for each system software. During
package installation a configure script tries to link against this independently. If
configure fails on a system package, it will be ignored and the script continues
with the next one. All special options of the system packages are defined in the
file pkg_config/arch_defaults.sh_inc. The file pkg_config.m4 contains macros
which are required by the autoconf source file configure.ac. If the packager makes

17Unix Stream EDitor.

4 WPM and developers 44

changes in one of these files, then a regeneration of the configure script should be
done by calling

$ cd ./vsys-1.0-1/pkg_config

$./bootstrap.sh

Write the wspec file

The header may look as follows

Summary="virtual system-package"

Name="vsys"

Version="1.0"

Release="1"

Copyright=""

Source="README"

GetDirs=""

SourceFiles="pkg_config"

SourceSubDir="pkg_config"

requires=""

provides="vsys-1.0"

URL=""

Distribution=""

Vendor="Timo Streckenbach"

Packager="Timo Streckenbach <strecken@wias-berlin.de>"

The next wspec sections becomes more important.

configure_require_wpm_com="yes"

configure()

{

export WPM_COM

export WPM_HOST

export WPM_VENDOR

SH_LIBDIR="$wpm_abs_bindir/‘basename $ld_libdir‘" ; export SH_LIBDIR

if ./configure ; then : ; else exit 1 ; fi

post-set

WPM_REQUIRES="‘$WPM_BUILD_DIR/pkg_config --check_ok‘"

if test -z "$WPM_REQUIRES" ; then

echo "error: no packages found!"

4 WPM and developers 45

exit 1

fi

for local_configure_rq in $WPM_REQUIRES ; do

wpm_dependency_built_with_packages=\

"$wpm_dependency_built_with_packages $local_configure_rq-sys"

done

}

This section makes some WPM variables public in configure and starts the script.
The script will perform checking the desired system packages and generates WPM
database files. Finally configure generates an executable script pkg_config which
contains the list of successful detected system software. The rest of the section be-
ginning with the comment post-set checks the result and modifies a WPM inter-
nal dependency variable for filling the flag --requires_resolved; see also Section
3.3.3.

The last non empty section will be the following, which simply puts the generated
WPM database files in the database folder.

install()

{

cp wpm-*.sh $WPM_DBPATH

}

Build the wpm package

We don’t need a setup.wini for this package. All information to package is included
in the wspec file. Hence we call

$ wpm setup ./vsys-1.0-1/virtual.wspec

Test the wpm package

WPM performs the installation of the virtual package in the specified WPM_DBPATH

with the following command.

$ wpm install vsys-1.0-1.wpm

After success the packager should get a list as follows

$ wpm query

dlopen-sys

gl-sys

lapackblas-sys

math-sys

pthread-sys

5 How do I ... 46

termcap-sys

vsys-1.0-1

The system packages named with a trailing -sys are required by vsys-1.0-1. So
an attempt to uninstall one should give the following result

$ wpm uninstall pkg=gl-sys

name : gl

version : sys

release : 1

provides: gl

uninstall failed: depending package(s) <vsys-1.0-1>

The packager must first uninstall vsys-1.0-1 and after that an uninstall of each
system package is possible.

5 How do I ...

5.1 install a wpm package?

This Section is mainly a short overview of Section 3. Also a good getting started is
the example Section 3.6, which contains more details.

If you start from zero you first need to initialize a WPM database as described in
Section 3.1. Call the default

$ wpm initdb

WPM_DBPATH: <HOME>/wpm-db

nfs : yes

multi-pkg : yes

WPM creates only a database if the directory ~/wpm-db doesn’t exist. Now it is
recommend to check the default vendor of your system with

$ wpm-build check

If this step fails, you may try a different vendor; see Section 2.7 for more details.
The next command performs an installation of a package

$ wpm install <package>.wpm

The default target directory is ~/loacl.

5 How do I ... 47

5.2 create a wpm package from a software?

The Section 4 deals with this question. Especially if you read the guidline at the
beginning (Section 4.1), you will see the general steps. Depending from the question
which type of package should be created, the examples in Section 4.6 are a good
getting started. It is recommend to start with the example in Section 4.6.1.

5.3 add a new compiler to WPM?

The Section 2.8 describes the the way how to write your own vendor file. If you
prefer testing of your own extension is a Makefile, the example in Section 2.4 is a
good choice.

5.4 add a new system to WPM?

The supported systems are represented by subdirectories lacated in the WPM soft-
ware

$ ls wpm/sys

aix cygwin mingw ...

Change to your desired system an call the following command to determine the
system string

$ cd wpm

$./config.guess

powerpc-apple-darwin8.11.0

Then you must map your system string or a part of them to the new subdirectory
name. This must be specified in the Bourne Shell function wpm_dispatcher_arch2dir

of the file wpm/sys/arch_dispatcher.sh_inc. We got the system string

powerpc-apple-darwin8.11.0

here, which matches the following line

powerpc*-darwin*) echo "powerpc_darwin" ;;

For example if you need to separate these special version, you must insert a line
before the more general one.

powerpc*-darwin*8.11.*) echo "powerpc_darwin_811" ;;

powerpc*-darwin*) echo "powerpc_darwin" ;;

A Apple bundle with wpm-bundle 48

This expects the system subdirectory powerpc_darwin_811. Now you may follow
the Section 2.8 to write a new vendor file or simply copy one from other existing
system directories and modify them. After this don’t forget to create the file default
in your system subdirectory. The must contain a valid vendor name.

5.5 change the vendor default?

Figure out the current system subdirectory with the command wpm-build flags.
For example

$ wpm-build flags --cfg_file

... wpm/sys/powerpc_darwin/gnu40gfortran.sh_inc

Now change the valid vendor name to another one in the file

... wpm/sys/powerpc_darwin/default

The following command returns a valid list of valid vendor names

$ wpm-build list

A Apple bundle with wpm-bundle

The program wpm-bundle is a command-line tool designed to create Mac OS X
application bundles. Bundles are directory hierarchies in the file system and contains
real files that can be manipulated by all file-based services [developer.apple.com,
Bundle Programming Guide].

The command wpm-bundle [Flags] <main-exe> creates an application bundle di-
rectory with extension .app and copies the specified file main-exe into the folder

<bundle>.app/Contents/MacOS

Furthermore the information property list file will be created automatically at

<bundle>.app/Contents/Info.plist

and the bundle resource files will be stored in the folder

<bundle>.app/Contents/Resources

Details of the command-line tool are following now:

• wpm-bundle [options] <main-exe>...

A Apple bundle with wpm-bundle 49

Available options

...--help list of flags

...-bundle <name> creates a bundle <name>.app and defines CFBundleName
in Info.plist (default: <main-exe>.app).

...-info <string> sets info string by defining CFBundleGetInfoString in
Info.plist.

...-Vs <vers s> sets short version by defining
CFBundleShortVersionString in Info.plist (default:
1.0).

...-Vb <vers b> sets bundle version by defining
CFBundleShortVersionString in Info.plist (default:
--vers_s)

...-icon <file> copy icons file (extension .icns) into bundle and defines
CFBundleIconFile in Info.plist.

...-res <dir> copy content of directory dir into bundle resource di-
rectory. If dir ends with the subfolder Resources, then
the hole bundle resource directory will be replaced by
dir. Multiple usage of this flag is allowed. The bundle
directory will be cleaned form .svn and *~ by this flag.

...-rescp <file> copy file into bundle resource directory.

