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Abstract

There exists a variety of software tools for analyzing functional Magnetic Resonance Imag-

ing data. A very popular one is the freely available SPM package by the Functional Imaging

Laboratory at the Wellcome Department of Imaging Neuroscience. In order to enhance the

signal-to-noise ratio it provides the possibility to smooth the data in a pre-processing step

by a Gaussian filter. However, this comes at the cost of reducing the effective resolution.

In a series of recent papers it has been shown, that using a structural adaptive smoothing

algorithm based on the Propagation-Separation method allows for enhanced signal detection

while preserving the shape and spatial extent of the activation areas. Here, we describe our

implementation of this algorithm as a toolbox for SPM.

1 Theoretical background

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive tool for studying the functionality

of the brain, searching for brain activation, and localizing cognitive functions. In the past decades,

it has become increasingly important in neurosciences as well as for clinical applications such as

presurgical planning. However, activation in brain is not subject to direct measurement. Second

level characteristics are therefore used as indication of brain activity. One of them is the change

in blood oxygenation (BOLD response) [6, 7] connected with some task the subject is to perform

during the scan. A higher oxygenation level is associated with increased neuronal activity necessary

to solve the task.

In a typical block-design fMRI experiment the subject has to perform one or several tasks alternated

by some period of rest. In the following we review the analysis of such fMRI data using a linear

model for the expected BOLD response and show, how to include structural adaptive smoothing

into this analysis. The original work has been published in [13]. In a series of papers the use of

this smoothing algorithm in several applications [10, 12, 14] has been demonstrated.

1.1 fMRI analysis using linear modeling

In fMRI, the BOLD effect can be used as a natural contrast employing the fact that voxels with

increased neuronal activity are characterized by a higher oxygenation level [6, 7]. The expected

BOLD response can be modeled by a convolution of the task indicator function with the hemo-

dynamic response function. This function accounts for the fact that blood oxygenation is subject

to some delay and shows a more complex structure than a simple indicator function [3]. For the

rest of this paper we simply assume that we are able to model the expected BOLD-response as the

specific model is not relevant for all considerations henceforth.

Here, we adopt the common view [2, 15, 18], of a linear model

Yi = Xβi + εi, (1)

for the time series Yi = (Yit)t=1...T at each voxel i after reconstruction of the raw data, where X

denotes the design matrix. The first q columns of X contain the expected BOLD response for the
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q different stimuli evaluated at scan acquisition times. The other p − q columns may account for

a slowly varying drift and possible other effects. The error vector εi = (εit)t=1...T is assumed to

have zero expectation and is generally correlated in time t. In order to assess the variability of

the estimates of βi correctly we have to take the correlation structure of the error vector εi into

account. An AR(1) model at each voxel i seems to be sufficient for commonly used MRI scanners

[17]. After determing the correlation coefficients at each i, prewhitening transforms the model (1)

into a corresponding one with approximately independent errors. We therefore henceforth assume

Var εi = σ2
i IT in (1) with the unit matrix IT of size T × T and X = Xi.

Under these assumptions we obtain least squares estimates β̂i at each voxel i from model (1) as

β̂i = (Xi
T Xi)−1Xi

T Yi. (2)

The error variance σ2
i is estimated from the residuals ri = (rit)t=1...T of the linear model (1) as

σ̂2
i =

∑T
t=1 r2

it/(T − p) leading to estimated p× p covariance matrices

Var β̂i = σ̂i
2(Xi

T Xi)−1. (3)

Let c be a vector of contrasts that defines the effect of interest. The estimated effects γ̂i = cT β̂i

and their estimated standard deviations ŝi =
√

cT Var β̂ic are three dimensional arrays Γ̂ and Ŝ.

The voxelwise quotient θi = γ̂i/ŝi of both arrays forms a statistical parametric map (SPM) Θ.

This map is approximately a random t-field with T − p degrees of freedom, see [16]. All these

arrays carry a correlation structure induced by the spatial correlation in the fMRI data. This leads

effectively to a lower number of degrees of freedom for Θ, see [17].

Signal detection may be based on the SPM Θ. We consider a voxel i as activated if the correspond-

ing value θi exceeds a critical value or threshold. The definition of the threshold involves a severe

multiple test problem. Voxelwise thresholds based on a t-distribution for θi with a corresponding

number of degrees of freedom lead to a large number of false positive activations due to the large

number of voxels in the data cube. On the other hand the application of the Bonferroni correction

does not account for the spatial correlation structure of the data. Random Field Theory [1] set-

ting a family-wise error (FWE) can therefore be used to correct the thresholds for the number of

independent tests in the data [16]. However, due to the low signal-to-noise ratio, this may fail to

detect many of the activations: The high noise level σi may lead to values θi below the threshold,

although there is activation at voxel i. In situations where activations have a spatial extent, spatial

smoothing and thus reducing σ̂i has the potential to improve both overall sensitivity and specificity

of signal detection.

1.2 Smoothing functional MRI data

The application of a Gaussian filter to the three dimensional images of the fMRI scan as imple-

mented in SPM [4] has mainly two effects. First, if the activation has a spatial extent adjacent

voxel will contain similar time courses and thus the averaging lowers the noise level σi while con-

serving the signal. Second, it increases the smoothness of the random field Θ and thus lowers
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the number of independent tests as well as the corresponding global thresholds. However, with

Gaussian smoothing we can achieve a reduction in the signal-to-noise ratio at the cost of a possible

bias at the border of the activated regions only. This leads to an increased power of the tests and

therefore more sensitivity and specificity of signal detection in all voxel except in a neighborhood

of the border of the region. The size of this neighborhood depends on the amount of smoothing

that is applied. In this neighborhood specificity of signal detection may decrease. The optimal

amount of smoothing depends on both signal strength and spatial extent, see e.g. [15].

In [8] the basic principles of a novel type of structural adaptive smoothing procedures have been

developed. [13] designed an algorithm for structural adaptive smoothing fMRI data based on

the Propagation Separation approach discussed there. The algorithm is shortly reviewed in the

next subsection. The idea behind structural adaptive smoothing is to use information on the

structures of interest in the smoothing algorithm for locally modeling the data. If, for example,

an anatomical image is disturbed by noise, the interesting structures may be the different tissues,

which are characterized by a certain grey level value. Thus, locally the data can be described by

a constant. This information can be used in our structural adaptive smoothing algorithm, which

preserves shape and border of the interesting structures. For fMRI, the structures of interest can

not be found in a single three dimensional image of the time series, rather than in the value of the

BOLD parameter or the estimated effect γ̂i. We expect this parameter to differ significantly from

zero in activated areas and to be consistent with zero elsewhere. [13] therefore suggested to apply

the structural adaptive smoothing to γ̂i after estimating the parameters from the linear model.

Spatial smoothing is usually applied to the original images in the fMRI time series before estimating

the parameters βi in the linear model. Except for effects from prewhitening this order is arbitrary

for parameter estimation. The temporal and spatial smoothing can be interchanged if the temporal

correlations are spatially homogeneous. For structural adaptive smoothing the order of both steps

is important. The quality of adaptation heavily depends on the signal to noise ratio present in

the data. Parameter estimation in the linear model serves as a variance and dimension reduction

step prior to spatial smoothing and therefore allows for a much better adaptation. The use of the

variance estimates in the algorithm uses much more information on the SPM, than simple Gaussian

filtering.

1.3 Structural adaptive smoothing fMRI data

In this subsection we shortly review the structural adaptive smoothing algorithm for the parameter

maps Γ̂ as proposed in [13].

Let us assume that for each voxel with coordinates i = (ix, iy, iz) the true parameter γi can

be well approximated by a constant within a local vicinity U(i) of voxel i. This serves as our

structural assumption and represents the fact, that activation is usually spatially extended and

that the BOLD parameter in adjacent voxels is approximately equal. This is especially true for

the non-activated voxels, where the BOLD parameter is expected to be consistent with zero.

In order to efficiently estimate the parameter γi from the local neighborhood we want to describe
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a local model, that is, to assign weights Wi = {wi1, . . . , win}. If we knew the neighborhood U(i),

we would define local weights as wij = Ij∈U(i) with the indicator funtion I and use the weighted

least squares estimate ∑
j

w̃ij γ̃j/
∑

j

w̃ij with w̃ij = wij/s2
j (4)

as an estimate of γi. On the other hand, if we had good estimates of γj , we could use this

information to infer on the set U(i) by testing the hypothesis

H : γj = γi. (5)

A weight wij can be specified based on the value of a test statistic Tij , assigning zero weights if

γj and γi are significantly different. This provides us with a set of weights Wi that determines a

local model in voxel i. These weights can then be used to obtain new estimates of the parameter

function γ in each voxel i by (4).

We utilize both steps, estimation of parameters and testing homogeneity, in an iterative procedure.

First we define a geometric sequence (h(k))k=0,...k? of increasing bandwidths with h(0) = 1. Using

the ratio rx, ry, rz = vx, vy, vz/min(vx, vy, vz) of the voxel extensions vx, vy, vz, which may be

anisotropic, in the three coordinate directions to its smallest value, we define the distance between

two voxels i and j:

∆(i, j) =
√

(ix − jx)2/r2
x + (iy − jy)2/r2

y + (iz − jz)2/r2
z

We start with a very local model in each voxel i given by weights

w̃
(0)
ij = Kloc(∆(i, j)/h(0))/s2

j . (6)

Kloc is a non-increasing kernel with compact support on [0, 1]. Initial estimates γ̂
(0)
i are then

generated using (4).

In the kth iteration new weights are generated as

w̃
(k)
ij = Kloc(∆(i, j)/h(k))Kst(ζ

(k)
ij )/s2

j with ζ
(k)
ij = T

(k)
ij /λ (7)

and a non-increasing kernel Kst with compact support on [0, 1]. The term

T
(k)
ij = N

(k−1)
i (γ̂(k−1)

i − γ̂
(k−1)
j )2

with N
(k−1)
i =

∑
j w̃

(k−1)
ij is used as a test statistic for the homogeneity hypotheses (5) and λ is

the main parameter in our approach, see [13, 8].

Then we recompute the estimates employing the just defined weights as

γ̂
(k)
i =

1

N
(k)
i

∑
j

w̃
(k)
ij γ̂j (8)

where N
(k)
i =

∑
j w̃

(k)
ij .

The resulting procedure is essentially a multiscale procedure. In each iteration we allow for a

different amount of smoothing by increasing the bandwidth h(k). The resulting weighting scheme
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excludes observations in voxel j from being used in estimating at voxel i as soon as they are

detected to have significantly different expectations in one of the iteration steps. The weighting

scheme ensures that, with a high probability, such decisions are kept within the following iterations.

We refer to [8] for detailed properties of the weighting scheme.

Without spatial correlation γ̂
(k)
i has the variance

V
(k)
i = Q

(k)
i

/
(N (k)

i )2 ≤ 1/N
(k)
i with Q

(k)
i =

∑
j

(w̃(k)
ij )2s̃2

j , (9)

that is, the term 1/N
(k)
i approximately reflects the variability of γ̂

(k)
i . Spatial correlation in the

data leads to incorrect assignment of the parameter variance and thus possible incorrect adaptation,

see [13] how to correct for this.

1.4 Signal detection using the smoothed statistical parametric map

Structural adaptive smoothing results in arrays Γ̂? = (γ̂?
i ) and Ŝ? = (ŝ?

i ). If no activation is present

in any voxel, i.e the hypothesis H: γi = 0 holds for all i, choosing the smoothing parameter λ by the

propagation condition [13, 8] ensures the properties of Γ̂? and Ŝ? to approximately coincide with

properties of the corresponding arrays obtained by nonadaptive smoothing employing the kernel

Kloc with bandwidth h(k∗).

Furthermore, through smoothing the variance of the parameter estimates has been reduced. In

spatially extended activated areas this leads to larger values for the t-statistics, which eventually

may be larger than the threshold and thus the correspondiong voxels also be detected as activ.

On the other hand, the smoothness of the random field has been increased, which weakens the

multiple test problem due to the reduction of number of independent tests. Interchanging the

order of smoothing and linear modeling leads to an increased number of degrees of freedom for the

t-field making it more Gaussian [13]. Inference can now be based on the smoothed map Θ?.
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2 The toolbox aws4SPM

In this section we describe in detail our implementation of the structural adaptive smoothing

method described above as a toolbox in SPM [4] and show examples of its use. This document

refers to version 0.4.0 of the toolbox. An implementation [9, 10] of this algorithm in R [11] which

has more features is under constant development.

NOTE! This toolbox comes with absolutely no warranty! It is not intended for

clinical use, but for evaluation purpose only.

Although we carefully tested our implementation, the absence of bugs cannot be guaranteed.

Since the toolbox is under development, some theoretically required corrections and calculations

may not yet be fully implemented or described in this document. For more information see http:

//www.wias-berlin.de/software/aws4SPM.

2.1 Downloading and installing the toolbox

The toolbox aws4SPM requires Matlab [5] and SPM [4] to be installed on your computer. The tool-

box can be downloaded at http://www.wias-berlin.de/software/aws4SPM. After downloading

the toolbox archive, extract the files into your SPM working directory. The archive contains a

C-file ”smAd.c” which has to be compiled before using. In order to do this launch Matlab in your

working directory. Compile the source file by entering the command

mex smAd.c

which finishes the installation. You can now start SPM and use the toolbox.

2.2 Step-by-step

This section goes step-by-step through an example analysis. Note, that currently the toolbox can

only handle single-subject studies using t-contrasts. The extension for multi-subject studies is still

under development and will possibly be included in a future version of the toolbox.

For our example we choose the FIAC (functional image analysis contest) data set. The original

fMRI experiment investigated the sensitivity of cortical regions to auditory sentence comprehension

as well as the voice of the speaker. The participants passively listened to auditory sentences in

four conditions with different and repeated sentences and speakers. The experiment was run four

times for each subject. In the blocked design, each 20s block (6 sentences, one every 3333 ms, with

variable silence between sentences due to variation of sentence length) of sentences was separated

by a 9 sec block of silent rest. For our example we used run 1 from subject0.

After downloading and installing the toolbox aws4SPM in your working directory start Matlab

and SPM. Define the fMRI design with the four conditions and the unsmoothed (!) data as usual
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by selecting the ”fMRI time-series”-button. Now estimate the parameters of the defined linear

model pressing the ”Estimate”-button. Select the just created ”SPM.mat” file and press ”done”

and thereafter ”continue”. If you want to use the adaptive smoothing procedure, confirm that you

want to smooth additionally.

It is important to note, that you have to define a t-contrast before smoothing. The reason is, that

our adaptive smoothing procedure operates on the volume of estimated parameters. This is in

contrast to the common procedure of smoothing the volumes at every time step separately before

estimating the parameters of the linear model (see section 1 and [13] for details). In our example we

choose the contrast vector cT = (1, 0, 0, 0, 0) just for demonstration, not for any scientific purpose.

Adaptive smoothing requires a few pa-

Figure 1: Extra box with the example’s smoothing set-

tings after choosing adaptive smoothing.

rameters to choose (see Fig. 1). The most

important parameter is the maximum band-

width hmax for the smoothing (see sec-

tion 1). It defines both the smoothness in

homogenous regions of the estimated pa-

rameter contrast γ = cT β from the linear

model (1) and the complexity of the al-

gorithm. Choosing higher bandwiths in-

creases the computation time. In fact, the time is approximately propertional to the third power of

hmax. Since the smoothing naturally adapts to the structures in the smoothed volume, oversmooth-

ing of the borders of activation areas is not expected. However, the notion of border of activation

area for the BOLD-response may not be well defined. A reasonable choice of hmax is therefore a

value in the order of the largest expected activation areas. Note that hmax is given in voxel units

not in mm and refers to the support interval of the kernel function. If you choose a Gaussian

kernel and want to achieve a specific FWHM bandwidth (in voxels), use hmax = 0.43FWHM .

The second item to be choosen is the location kernel Kloc which has only minor influence on the

smoothing result. Thus it is reasonable to use a computationally simple kernel function rather

than the Gaussian kernel. For our example, we used hmax = 3.0, Kloc = Epanechnikov.

The smoothing will take about two minutes on common computer hardware. To view the results

click ”Results”. Select the ”SPM.mat” and your earlier created contrast and choose the required

settings. In our example we used no masking with other contrasts and a p-value of 0.05 for

the family-wise-error (FWE) and get the result in Fig. 2. Two main clusters can be seen, one

containing 232 voxels, the second 109 voxels, and with maximal t-values of about 7-10. The

computed threshold, with a (FWE) of 0.05, is 4.75.

Figure 3 shows the signal detection in several slices of the unsmoothed data (left), of the smoothed

data using non-adaptive smoothing (center) (Gaussian Kernel, bandwidth = 3.0) and of adaptively

smoothed data (right). For this figure, we used the Matlab function display slices, which can be

downloaded at http://imaging.mrc-cbu.cam.ac.uk/imaging/DisplaySlices. Smoothing the

data increases the signal-to-noise and mainly two activation areas show up. The main difference

between the center and the right part of the figure is the apparent blurring for the non-adaptive
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Figure 2: Results of the fmri analysis of the FIAC data set with additional adaptive smoothing, examining

the contrast cT = (1, 0, 0, 0, 0). Settings for smoothing: hmax = 3.0, Kloc = Epanechnikov.
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Figure 3: Signal detection in representative slices of (left) unsmoothed data, (center) smoothed data using

non-adaptive smoothing and (right) adaptively smoothed data.

smoothing, whereas for structural adaptive smoothing the boundary is more detailed.

Note again, that if you want to consider another contrast for your analysis, you have to re-estimate

the linear model, since per design of the current version of the toolbox, the unsmoothed parameter

values are over-written.

2.3 Documentation of the implemented algorithm

The toolbox archive contains three files, namely smAd.c, spm smooth gamma.m and spm spm.m.

The latter is an updated file from the standard SPM installation to enter the structural adaptive

smoothing procedure if requested. The other two files contain the implementation of the struc-

tural adaptive smoothing algorithm. Fig. 4 the various steps in the calculation, starting with the

estimation of the parameters of the linear model.

1. Spm spm.m is accessed by starting the fMRI estimation via the ”Estimate” button of the main

SPM window. Our toolbox extends the fMRI analysis by the possibility of structural adaptive

smoothing a defined contrast of parameters of the linear model. The changes in this file compared

to the standard SPM version add a new choice after estimating the parameters of the linear model

and a new window for the selection of the settings for the smoothing procedure pops up (see Fig. 1).

Note, that triggering the adaptive smoothing requires a contrast vector to be set. In the common

SPM analysis this has to be chosen later, namely when viewing the results.
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2. With these settings the function spm smooth gamma() is called. The function reads all esti-

mated β-volumes and the sum of the squared residual of the linear model as 3D arrays from the

files produced by SPM during estimation. Using the choosen contrast c a new array of estimated

effect γ = cT β is calculated. This is the 3D volume that is subject to the structural adaptive

smoothing procedure (see section 1 for details). The variance V arβ of these parameter estimates

are calculated from the sum of squared residuals using (3). The data of both arrays is, because of

dimension restrictions of Matlab, stored in 2D matrices (without loss), and passed to smAd.

3. In smAd (cf. Fig. 5) the structural adaptive smoothing is per-

Figure 4: Sketch of the var-

ious calculation steps of the

aws4SPM toolbox, see text

for details.

formed. The entry point in this file is, like in every Matlab C-file, the

mex() method. First of all, the input data is transformed to suiting

data types. For this purpose mainly float pointers are used. With

the settings declared by the user in the dialog box in Fig. 1 and addi-

tional required data (γ, V arβ, see Fig. 5) smoothAdaptive() is called,

which forms the heart of the algorithm. After some preparation like

initializing the starting weights ω
(0)
i , see Eq. (6), the main loop of

the iteration is called, see Eqs. (7) and (8). At each step k of the

iteration new estimates for γ
(k)
i and new weights ω

(k)
i at each voxel

are computed using Eqs. (8) and (7). For this, calculateGammaI() or

calculateGammaIGauss() are called, depending on the chosen kernel

Kloc. Both sum up the weights ω
(k)
ij for each voxel i and hence cal-

culate a new estimate for γ
(k)
i . To optimize the program’s speed we

exploit the fact that the kernel functions have compact support (for

the Gaussian kernel we use a cut-off at 4 standard deviations) with no

influences on the result. Also, due to that reason, we implemented the

Gaussian Kernel variant for the location kernel Kloc in a separate function. Selecting the Gaussian

kernel as location kernel, the adaptive smoothing will take more time. CalculateGammaI(Gauss)

calls the kernV al() to calculate the kernel values. It is used to calculate the location penalty Kloc

as well as the statistical penalty Kst. Several kernels like the Epachnenikov and Plateau kernel

are implemented and can be selected in the user menu in Fig. 1. In the final iteration k = k? the

variances of the final estimates γ
(k?)
i are calculated, see Eq. (9).

4. Both volumes, the smoothed parameter map and its variances, are returned from smoothAdaptive()

to mex() after the final iteration k?. Again, both are tranformed to 2D arrays (without any infor-

mation loss) and returned to spm smooth gamma().

5. Following the road in backward direction, the variances from the final iteration are used to

compute new squared residuals, see Eq.(3), and saved in the file ResMS.img. Therefore the signal

detection can now be done as usual in SPM, which uses the squared residuals to calculate the

variances. Note: With a slight abuse of the file the new smoothed parameter map γ is saved in

the file beta 0001.img, although there may be more than one stimulus. To continue working with

the smoothed data it is therefore necessary to choose the trivial contrast c = (1). Since smoothing

operates on the contrast of parameters, changing the contrast of interest requires re-estimating the
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Figure 5: Interfaces of the main functions of the aws4SPM -toolbox, especially smAd and

spm smooth gamma. Input and output parameters of the functions are shown together with their in-

terpretation.

linear model!
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