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An Operator–Splitting Finite–Element Approach
to an 8:1 Thermal Cavity Problem 1

Dominic Davis, Eberhard Bänsch

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany

Abstract

This article describes the methodology for, and results obtained from, our contribution to a
thermal-cavity benchmark test, described in [2]. Our solutions were obtained on graded rect-
angular grids for two different time-discretisation schemes by applying a finite-element pro-
cedure to the model equations, and a combination of conjugated-gradient (CG) and GMRES
solvers to the resulting matrix systems.

Keywords: finite-element, advection, Navier–Stokes, CG method, GMRES, Galerkin

1 Introduction

Here we describe our contribution to a thermal-cavity benchmark problem held at the First
MIT Conference on Computational Fluid and Solid Mechanics 2001. A full detailed account
of the problem can be found in [2], but for the sake of self-containment we re-iterate the main
details and motivation here. The chief aim of the benchmark test was to assess the relia-
bility of computational predictions for the behaviour of a slightly supercritical flow in an
air-filled (Prandtl number=0.71), differentially-heated, non-porous cavity of vertical aspect
ratio 8, with adiabatic top and bottom walls. With the knowledge that the unstable eigen-
mode is unique within an approximate range of Rayleigh numbers 3:20�105�3:50�105 [8],
a Rayleigh number of 3:4� 105 was selected. Furthermore, this mode is known a priori to
possess the skew-symmetry property of the base flow. Several aspects make this seemingly
"straightforward" problem surprisingly challenging: firstly, within a relatively small range of
Rayleigh numbers (3:06�105�4:00�105) there exist four distinct unstable modes; although
these do not all appear simultaneously for a given Rayleigh number in this range, multiple
branches consisting of two or three of these occur for Rayleigh numbers in the ranges 3:06�
105� 3:20� 105 and 3:50� 105� 4:00� 105; secondly, the relatively large Rayleigh number
produces small diffusion coefficients in both momentum and energy equations, making the
simulation susceptible to numerical damping and/or dispersion either occurring naturally
through inappropriate time discretisation methods for advection-dominated flows (such as

1based on a contribution to a benchmark test held at the First MIT Conference on Computational Fluid and
Solid Mechanics 2001
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first-order backward Euler), or else as a casualty of over-damping of spurious pressure modes
(such as with upwinding).

The non-dimensional governing equations are the incompressible Navier–Stokes equations
with Boussinesq approximation, the mass-conservation equation and the energy equation:

∂u
∂ t

+(u � ∇ )u�
r

Pr
Ra

∆u+ ∇ p�T êy = 0 in Ω, (1.1a)

∇ �u = 0 in Ω; (1.1b)

and
∂T
∂ t

+(u � ∇ )T � 1p
RaPr

∆T = 0 in Ω; (1.1c)

where u= uêx+vêy; p and T are the velocity, pressure and temperature respectively, and êx; êy

are the unit vectors in the x– and y–directions; the parameters Ra and Pr are the Rayleigh
number and the Prandtl number, in turn, while Ω = [0;1]� [0;8] denotes the dimensionless
cavity.

The non-dimensional boundary conditions are:

u = 0 on ∂Ω, (1.2a)
T = 0:5=�0:5 on left/right vertical walls (x = 0=x = 1); (1.2b)

∂T
∂y

= 0 on horizontal walls (y = 0;8): (1.2c)

To close the system, the initial conditions:

u = u0 = 0; T = T0 = 0 in Ω at t = 0 (1.3a,b)

were chosen.

2 Numerical Approximation

2.1 Temporal Discretisation

In order to meet the demands of efficiency and accuracy, and avoid problems caused by nu-
merical damping and/or over-smoothing, the time-discretisation procedure for the govern-
ing system requires judicious selection. The methods employed for the Navier–Stokes and
energy equations are described in the following subsections.

2.1.1 Navier–Stokes part

Given the nature of the flow problem, i.e. advection-dominated, it was necessary to choose
an appropriate method of time discretisation which could be both A-stable and non-dissipati-
ve, as well being inherently accurate (preferably, second-order).

The fractional θ–scheme with operator splitting as variant ([3], [1]) seemed therefore a suit-
able option, and in addition led to a favourable decoupling of the incompressibility constraint
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and the nonlinearity. The underlying mechanism of this procedure can perhaps best be ob-
served by considering the following N–dimensional, first-order equation:

dq
dt

+Aq = 0 for t > 0, (2.1a)

with initial condition
q(0) = q0; (2.1b)

where A is a known N�N matrix, q0 is a known N–vector, and, for t > 0; q(t) is an unknown
N–vector to be determined. To solve (2.1a,b) computationally, we first break the integration
step into three smaller sub-steps [tn; tn +θτn], [tn +θτn; tn +(1�θ)τn] and [tn +(1�θ)τn; tn+1]

with τn := tn+1� tn denoting the total timestep, and θ 2 (0;0:5) an arbitrary parameter. Then,
for each interval, we ‘split’ the matrix-vector term into an implicit and an explicit part, with
each part a non-trivial linear multiple of the original term evaluated at the ’current’ and ‘pre-
vious’ time, respectively; this is performed in the following manner:

qn+θ �qn

θτn
+α Aqn+θ +(1�α )Aqn = 0; (2.2a)

qn+1�θ �qn+θ

(1�2θ)τn
+α Aqn+θ +(1�α )Aqn+1�θ = 0; (2.2b)

qn+1�qn+1�θ

θτn
+α Aqn+1 +(1�α )Aqn+1�θ = 0; (2.2c)

where α 2 (1=2;1) is the single parameter controlling the splitting of the matrix-vector term.

With the choice θ = 1�p2=2(� 0:293);we obtain a second-order accurate method, which for
positive-defi nite matrices A is unconditionally stable. Furthermore, choosing α = (1�2θ)=(1�
θ)(� 0:586); ensures identical implicit operators for each of the three sub-intervals, which
eases computation.

Another important advantage of the fractional θ–scheme is that eigenmodes are uniformly
damped, allowing steady-state flows (or ‘near- steady-state flows’, as is relevant here) to be
more reliably calculated.

In [3], the fractional θ–scheme was applied with operator splitting as variant to the Navier–
Stokes equations (1:1a;b;1:2a;1:3a) in the following manner:

un+θ �un

θτn
�α

r
Pr
Ra

∆un+θ
+ ∇ pn+θ

= T nêy +(1�α )

r
Pr
Ra

∆un

� (un � ∇ )un in Ω,

∇ �un+θ = 0 in Ω,

un+θ = 0 on δΩ;

(2.3a-c)

un+1�θ �un+θ

(1�2θ)τn
+(1�α )

r
Pr
Ra

∆un+1�θ +(un+1�θ � ∇ )un+1�θ

= T nêy +α
r

Pr
Ra

∆un+θ � ∇ pn+θ in Ω,

un+θ
= 0 on δΩ;

(2.4a-c)
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un+1�un+1�θ

θτn
�α

r
Pr
Ra

∆un+1
+ ∇ pn+1

= T nêy

+(1�α )

r
Pr
Ra

∆un+1�θ � (un+1�θ � ∇ )un+1�θ in Ω,

∇ �un+1 = 0 in Ω,

un+1
= 0 on δΩ;

(2.5a-c)

In the above we note that the nonlinear convection term is treated explicitly in the first and
third steps, but implicitly in the second step; these rôles are exactly reversed for the pressure
gradient, while the incompressibility constraint is relaxed in the second step. The general up-
shot of this form of discretisation is to produce two distinct types of sub-problem: (i) a self-
adjoint, quasi-linear, Stokes system for unknown velocity and pressure; and (ii) an asymmet-
ric, nonlinear system for velocity only. These subproblems are addressed in Section 3 below.

Finally, we note that the thermal source terms are approximated using the (explicit) temper-
ature value at time tn, for each of the three steps. This simple discretisation generally leads
to the above scheme being only first-order accurate, but we apply this nonetheless, since the
overall system (due to the ‘first-order accuracy only’ of the two types of energy-equation time
discretisations considered – see below) is forced to have this degree of accuracy anyway.

2.1.2 Energy Equation

To assess and compare the effectiveness of different forms of time discretisation for the en-
ergy equation, we considered two possibilities: a first-order backward–Euler scheme and a
Crank–Nicholson scheme, both with first-order velocity coupling.

(a) Backward– Euler/Semi– Implicit Advection (BE)

With τn defined as above, we determine T n+1, for given T n
; un, from:

T n+1�T n

τn
+(un � ∇ )T n+1� 1p

RaPr
∆T n+1 = 0: (2.6)

Here we note that the advection term is treated in a semi-implicit fashion, using the previous
velocity value (un) in its approximation. Although simple to implement and naturally stable
(unconditionally, moreover), this scheme suffers from numerical dissipation, as well as being
only first-order accurate – hence, not ideally suited to the nature of the problem in hand (as
reflected to a certain extent in the results below).

(b) Crank– Nicholson/Semi– Implicit Advection (CN)

In this instance, our time-discretised equations adopt the form:

T n+1�T n

τn
+(un � ∇ )

�
T n+1 +T n

2

�
� 1p

RaPr
∆
�

T n+1 +T n

2

�
= 0: (2.7)

As in (a), the velocity part of the advection term is treated explicitly, making the scheme first-
order overall. An important distinction however is the inherent property of non-dissipative-
ness associated with Crank–Nicholson-type schemes.
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We note that both schemes lead to asymmetric systems, whose solution procedure will be
described in Subsection 3.2 below.

2.2 Finite–Element Discretisation

For the spatial discretisation of the governing equations (1:1�1:3), a standard Bubnov–Galer-
kin finite-element method was applied using continuous, piecewise bi-quadratic basis func-
tions for the discrete velocity and temperature spaces (:=Vh), and continuous, piecewise bi-
linear basis functions for the discrete pressure space (:= Wh), i.e. the Taylor–Hood element.
This element, fulfilling the requirements of the inf–sup (LBB) stability constraint, avoids any
possible complications with spurious pressure modes, and, as well as being relatively straigh-
tforward to implement, gives a good balance between efficiency of computation and accu-
racy. For this element, the velocity and temperature are of second-order spatial accuracy,
while pressure is of first-order spatial accuracy.

2.3 Computational Procedure

Before describing the solution methods for the two subproblems stemming from the time
discretisation, we first recapitulate the main aspects of the numerical solution procedure, in
order of application:

(a) Specify u0;T0. (Both are zero-valued here.)

For n� 0 :

(b) Solve the energy equation for tn ! tn+1.

(c) Solve the Navier–Stokes equations with incompressibility constraint for:

(i) tn ! tn+θ ,

(ii) tn+θ ! tn+1�θ ,

(iii) tn+1�θ ! tn+1:

(d) Repeat (b),(c) until end-time = tE .

3 Algebraic Subproblems

3.1 Quasi–Steady Stokes System

As demonstrated in the previous section, the application of the fractional θ–scheme to the
Navier–Stokes part of our model equations renders a linear, self-adjoint system for the first
and third substeps, these resembling the steady Stokes equations. After full (time and space)
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discretisation, we need to solve a matrix system of the form:�
A(γn) B

BT 0

��
uc

h
pc

h

�
=

�
f c
h
0

�
: (3.1)

Here A(γn) is the symmetric, positive-definite (SPD) stiffness matrix for the discrete velocity
uh = (uh;vh) whose corresponding coordinate vector (with respect to the given basis func-

tions of the discrete velocity space, Vh) is uc
h =

h
u1

h; � � � ;u
Nv
h jv1

h; � � � ;v
Nv
h

i
, with Nv denoting the

dimension of Vh, i.e. the number of velocity ‘nodes’. The matrix A depends on the discretisa-
tion parameter γn := θτnα

p
Pr=Ra; which we note is small in the problem under observation,

(e.g. γn = 2:48� 10�5 for a time-step as large as 0:1). Also in (3.1), we have the discrete gra-
dient matrix B, its transpose (which represents discrete divergence), and the pressure vector,

which has an analogous definition to that for velocity, i.e. pc
h =

h
p1

h; � � � ; p
Np

h

i
, with Np the num-

ber of pressure ‘nodes’. Finally f c
h denotes the coordinate vector of the discrete momentum

source term fh. For brevity, we have dispensed with the timestep superscripts on the vector
quantities.

Since A is invertible, we can form the Schur complement equation for the pressure vector as
follows:

C(γn)pc
h :=

�
BT A�1(γn)B

�
pc

h = A�1 f c
h : (3.2)

Moreover, since B has full rank and, owing to the relatively small pressure space (dimWh <

dimVh) for the Taylor–Hood element, has more rows than columns, it follows that C is SPD for
any given (positive) γn. Unfortunately, however, its condition number explodes as γn ! 0+,
precluding the possibility of applying a suitable minimisation solver, such as the method
of conjugated gradients (CG method). To circumvent the problem of large condition num-
ber, we apply a special type of preconditioner, as first proposed in [3]. For the spatially-
continuous analogue of the problem here, this amounts to applying the operator S given by:

Sq := γnq+φq; (3.3)

where S : L2(Ω)=R! L2(Ω)=R;
q =�∇ �u; (3.4)

and φq is the unique solution of:

�∆φq = q in Ω,
∂φq

∂n
= 0 on ∂Ω,

Z

Ω

φqdΩ = 0:

(3.5a-c)

We can similarly define a preconditioner in our discrete problem, i.e. Sh : Wh !Wh; with anal-
ogous properties; the only fundamental modification required is in the definition of qh, the
discrete version of q, since, in general, ∇ �uh 62Wh: To this end, we define qh to be the projection
of (�uh) onto Wh, i.e. qh satisfies:

(qh;ψi) =�(∇ �uh;ψi); (3.6)

for i = 1; � � � ;Np, where (�; �) denotes the L2(Ω) inner product.
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Utilising the above preconditioner leads to three matrix systems, all involving SPD matrices,
and all solved by the CG method: firstly, for fixed pressure, we solve for velocity, via the
momentum equation

A(γn)u
c
h = f c

h �Bpc
h; (3.7)

secondly, the pressure projection system (3.6) is solved; finally, the updated pressure value
is obtained after solving the discrete form of the Poisson problem (3.5a-c). If the velocity
is not discretely ‘divergence-free’ (in practice, smaller than a given tolerance value), then
this pressure value is substituted into (3.7) and the cycle is repeated continuously until the
‘divergence-free’ criterion is fulfilled.

3.2 Asymmetric Advection System

This system, which arises from the spatially-discretised form of the second step of the frac-
tional θ–scheme for the Navier–Stokes equations, as well as from the full discretisation of the
energy equation, has the general form:

Mxc
h = gc

h; (3.8)

where M is an asymmetric 2Nv� 2Nv (or Nv�Nv, as appropriate) stiffness matrix for the coef-

ficient vector xc
h =

h
u1

h; � � � ;u
Nv
h jv1

h; � � � ;v
Nv
h

i �
or
h
T 1

h ; � � � ;T
Nv

h

i�
, and gc

h the source term. Further-
more, we note that M is variable dependent, in the former case. To solve this matrix system,
we applied the GMRES solver [6] using a Krylov subspace dimension of 15. In addition, for
the velocity solver, the ‘current’ velocity value was periodically used to update the matrix M.

4 Grid Generation

Following the guidelines suggested in the Special Session Document [2], we selected grids
aligned with the coordinate directions and composed of Ex elements in the x–direction and
Ey elements in the y–direction with Ex : Ey � 1 : 5 (! 1 : 5; as Ex; Ey ! ∞.) Specifically, we
ran our computations on three different grids with increasing refinement: 11� 51 elements
(’coarse’), 21�101 elements (’medium’) and 41�201 elements (’fine’).

Owing to the rapid flow-variable changes near the walls, in particular the presence of strong
thermal boundary layers on the vertical walls (see Figure 1, for example), the grid required
appropriate grading in these regions. For this purpose, we defined the following functions:

h1( j) =

0
BBB@ ĥ1( j)

Ex

∑
j1=1

ĥ1( j1)

1
CCCAW; for j = 1; � � � ;Ex; (4.1a)

h2(k) =

0
BBB@ ĥ2(k)

Ey

∑
k1=1

ĥ2(k1)

1
CCCAH; for k = 1; � � � ;Ey: (4.1b)
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Temperature contours at t =1000
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Figure 1: Temperature contours for non-dimensional time t = 1000

These functions determine the width of the jth element in the horizontal direction, and the
length of the kth element in the vertical direction, respectively, where W (= 1) denotes cavity
width and H(= 8) cavity height.

Here
ĥ1( j) =

1

h̄1(Ex +1�2 j)2 +2
; for j = 1; � � � ;Ex; (4.2a)

and
ĥ2(k) =

1

h̄2jEy +1�2kj+2
; for k = 1; � � � ;Ey; (4.2b)

control the element width and length distributions, respectively, for given Ex, Ey, where:

h̄1 :=W=Ex; h̄2 := H=Ey; (4.3a,b)

are the average element width and average element height, in turn.

In Figure 2a a graded grid of medium refinement is displayed, revealing, in particular,the
relative fineness at the walls; this is shown in greater detail for the south-west corner of the
cavity in Figure 2b, where the minimal element size is 0:012�0:04: This region of the cavity,
together with its north-east counterpart (due to skew symmetry), was found to be the most
sensitive location in general, as regards rapid physical flow changes within the cavity. This
is evidenced, for example, by the strong thermal boundary layers of Figure 1 (allowing for
the five-fold vertical compression); indeed, we based our verification that the grids were suf-
ficiently graded near the walls, on whether or not the temperature profile was sufficiently
‘smooth’ near the horizontal and vertical walls. All three grid types (coarse, medium and
fine) were adjudged to pass this ‘test’ for the given grid functions defined in (4.1). Further-
more, with simple real analysis it can be shown that near the horizontal and vertical walls:

h1 �
 

2
p

2W
π

!
E�3=2

x ; h2 �
�

H2

(H +2) log(1+H=2)

�
E�1

y ; (4.4a,b)

as Ex ! ∞;Ey ! ∞; respectively.
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Figure 2: Graded grid of a medium level of refinement; (a) the whole domain; (b) a close-up
of the south-west corner.

5 Results

Computational results were obtained for each of the three grid types, and for both types of
energy solver – hence, a total of six cases. Based on the time history of the flow solution at
various ‘points’ in the cavity (see Table 1), the computations reveal an initial ‘active’ transient
state lasting approximately 500 non-dimensional time units preceding a single-frequency pe-
riodic state, as illustrated, for example, by Figure 3. Here the temperature and velocity com-
ponents in point 1, and the pressure difference between points 1 and 4 are shown. These same
flow quantities are then depicted over a number of periods in Figure 4.

Point x–coordinate y–coordinate

1 0.1810 7.3700
2 0.8190 0.6300
3 0.1810 0.6300
4 0.8190 7.3700
5 0.1810 4.0000

Table 1: Point locations in cavity

Three different forms of data were required for the benchmark test, the first of these being
’point data’, based on the measurement of flow quantities at the given points in the cavity.
The measurement here is based on the average, amplitude (half peak-to-valley) and the pe-
riod of the flow quantity under scrutiny. Before recording measurements however, the pe-
riod and amplitude per cycle were first checked for consistency over ten cycles, to ensure that
the flow was truly periodic. To calculate the average of the flow quantity we used Matlab’s
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internal function. Tables 2 and 3 show point data for the energy-equation solvers BE and
CN. An immediate observation from the tables is that both solvers fail to produce oscilla-
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Figure 3: Time histories of dimensionless flow quantities; (a) temperature in point 1; (b) x–
velocity component in point 1; (c) y–velocity component in point 1; (d) pressure difference
between points 1 and 4.

tory motion for the coarse grid case – this merely confirms one of the known disadvantages
of working with the Taylor–Hood Q2�Q1 element, i.e. its inaccuracy on coarse grids (see
[4],pp 750–767 for a comparison of accuracy between various quadrilateral finite elements).
The averages of the flow quantities can be seen to be most consistent, while the amplitudes
are the least consistent; there is also a discrepancy between the values for the amplitudes ob-
tained for the BE and CN cases – our belief however (given the theoretical knowledge on the
types of solver) is that this is principally due to the numerical damping effects present in the
former case, and therefore we put more faith in our calculated amplitudes for CN (which
theoretically has no numerical dissipative effects) – this was later confirmed by the accepted
‘true’ numerical values from [8]. Other noticeable features include the negligible skewness
(defined as the average of the temperature values at points 1 and 2) found in all cases, and
implying the expected antisymmetric nature of the perturbation. Finally, we can see that the
calculated period differs only slightly from the medium grid to the fine grid; our ‘best’ predic-
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tion of this was 3:412, (based on the fine grid of CN), and this turned out to have a deviation
of just 0:015% from the ‘true’ solution of [8].
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Figure 4: Oscillatory behaviour of flow quantities during periodic phase; (a) temperature in
point 1; (b) x–velocity component in point 1; (c) y–velocity component in point 1; (d) pressure
difference between points 1 and 4.

Next, ‘wall data’ values were recorded, specifically, the Nusselt numbers on the vertical walls,

Nu(t) :=
1
H

Z H

0

�
∂θ
∂x

�
x=0;W

dy: (5.1)

We firstly note that the anti-symmetry of the flow perturbation should ensure that the values
are identical on each wall – this proved to be the case. Figure 5 shows the time history de-
pendence of the Nusselt number on either vertical wall, and reveals very strong initial wall
gradients becoming heavily damped before the periodic phase is reached. This again under-
lines the need for careful grading on the walls, especially during the initial stages of the tran-
sient phase. Table 4 shows the Nusselt values for the CN solver, and for the non-stationary
cases (medium and fine grids) we see that the average has a value around �4:58, while the
amplitude is relatively small at O(10�3).
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Finally, ‘global data’ in the form of a velocity metric, defined as the square root of the kinetic
energy (KE),

û(t) :=

r
1

2Ac

Z
Ω

u �udΩ; (5.2)

was computed, where Ac is the area of the cavity, i.e. Ac = W �H(= 8). Figure 6a shows the
time history of the velocity metric from a global perspective, and it can be seen that this quan-
tity appears to approach steady state, as the periodic phase is approached. In fact, closer
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Figure 5: Time history of the Nusselt number on vertical walls: (a) global profile; (b) local
oscillatory behaviour during periodic phase.
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Figure 6: Time history of the velocity metric (=
p

KE): (a) global profile; (b) local oscillatory
behaviour during periodic phase (zeroed on 0.2394).

inspection (Figure 6b) reveals that the velocity metric undergoes small periodic oscillations
during this phase. This behaviour is attributable to a weak viscous dissipation (� (Pr=Ra)1=2)
of the rate of change of KE, as can be verified directly by taking the L2(Ω) inner product of the
momentum terms and the velocity and implementing the incompressibility condition and
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the homogeneous velocity boundary conditions. In Table 5 the specific velocity metric val-
ues are tabulated and they indicate that a characteristic value for the speed of fluid in the
whole domain is about 0:240.

Grid resolution:11x51 Grid resolution:21x101 Grid resolution:41x201
Time duration: N/A Time duration: 50 Time duration: 50

Steps per period: N/A Steps per period: 344 Steps per period: 344

Quantity Ave Amp Per Ave Amp Per Ave Amp Per

X–velocity 0.055 S S 0.058 0.023 3.44 0.056 0.023 3.44

Y–velocity 0.463 T T 0.461 0.034 3.44 0.462 0.034 3.44

Temperature 0.264 E A 0.266 0.018 3.44 0.266 0.018 3.44

Skewness 0 A T 0 – – 0 – –

∆P14 -0.001 D E -0.002 0.009 3.44 -0.002 0.009 3.44

∆P51 -0.528 Y -0.534 0.010 3.44 -0.535 0.010 3.44

∆P35 0.529 0.536 0.004 3.43 0.537 0.004 3.44

Table 2: Point data computed using the BE solver

Grid resolution:11x51 Grid resolution:21x101 Grid resolution:41x201
Time duration: N/A Time duration: 50 Time duration: 50

Steps per period: N/A Steps per period: 341 Steps per period: 341

Quantity Ave Amp Per Ave Amp Per Ave Amp Per

X–velocity 0.0551 S S 0.0552 0.0247 3.408 0.0563 0.0271 3.412

Y–velocity 0.4632 T T 0.4613 0.0360 3.407 0.4617 0.0382 3.413

Temperature 0.2641 E A 0.2655 0.0198 3.407 0.2655 0.0211 3.412

Skewness 0 A T 0 – – 0 – –

∆P14 -0.0014 D E -0.0021 0.0096 3.407 -0.0018 0.0101 3.412

∆P51 -0.5279 Y -0.5343 0.0106 3.409 -0.5347 0.0111 3.413

∆P35 0.5293 0.5362 0.0046 3.407 0.5366 0.0050 3.412

Table 3: Point data computed using the CN solver
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Grid resolution:11x51 Grid resolution:21x101 Grid resolution:41x201
Time duration: N/A Time duration: 50 Time duration: 50

Steps per period: N/A Steps per period: 341 Steps per period: 341

Quantity Ave Amp Per Ave Amp Per Ave Amp Per

Nu (x = 0) -4.6217 ST. ST. -4.5819 0.0034 3.408 -4.5796 0.0035 3.412

Nu (x =W ) -4.6217 STATE STATE -4.5819 0.0034 3.408 -4.5796 0.0035 3.412

Table 4: Wall data computed using the CN solver

Grid resolution:11x51 Grid resolution:21x101 Grid resolution:41x201
Time duration: N/A Time duration: 50 Time duration: 50

Steps per period: N/A Steps per period: 341 Steps per period: 341

Quantity Ave Amp Per Ave Amp Per Ave Amp Per

1.49 1.65
û (=

p
KE) 0.2400 ST. STATE 0.2394 �10�5 3.407 0.2395 �10�5 3.412

Table 5: Global data computed using the CN solver

6 Benchmark Performance Metrics

In order to assess the comparative performances of the 30 contributions to the benchmark
test, a number of metrics based on the quantities shown in Tables 2–5 were defined; the values
obtained by each participant were compared against the accepted values of [8], and the devi-
ations from these latter values defined the metrics; hence, values as close to zero as possible
were the ’target’, whilst large metrics indicated high ’error’. A full transcript of these perfor-
mance metrics can be downloaded from http://wotan.me.unm.edu/˜christon/mit_convect-
ion/summary/. Here we just summarise our own performance, based on the six “overall
basis” metrics, namely:

(a) Average of the mean differences in Nu;u1;T1:

M1 :=
(ε̄Nu + ε̄u1 + ε̄T1)

3
(6.1)

(b) Average of amplitude/period (:= τ ) differences:

M2 :=
(ετT1

+ ε 0Nu + ε 0T1
+ ε 0u1

)

4
(6.2)

(c) Average of mean, amplitude and period:

M3 :=
(ε̄Nu + ε̄u1 + ε̄T1 + ε̄τT1

+ ε 0Nu + ε 0T1
+ ε 0u1

)

7
(6.3)
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(d) Metric in (c) weighted by grid resolution:

M4 := M3 � (# of nodes) (6.4)

(e) Metric in (c) weighted by algorithm timing:

M5 := M3 �
�

CPU
grid pt�timestep

� timestep
period

�
� specFP95 (6.5)

(f) Metric in (c) weighted by resolution and timing:

M6 := M3 � (# of nodes) �
�

CPU
grid pt�timestep

� timestep
period

�
� specFP95 (6.6)

Here ε̄q, ε 0q and εq denote the deviations in mean, amplitude and period of the given sub-
scripted flow quantity q, respectively. A summary of our performance using these metrics is
given in Table 6.

Metric Value Mean Standard Deviation Ranking

M1 0.0367% 2.8557% 6.2259% 2 (/30)
M2 0.9580% 14.6549% 19.0872% 2 (/30)
M3 0.5631% 9.6143% 13.0837% 2 (/30)
M4 9.017 169.997 228.758 5 (/28)
M5 144.04 2034.19 7888.57 12 (/24)
M6 574.62 3301.16 7783.79 12 (/24)

Table 6: Performance metrics

7 Computational Resources

The computations were performed on a Compaq XP1000 (single processor) machine with a
clock rate of 500MHz, total memory of 256MB, a peak flop of 500MFLOPs and a Specfp95
rating of 53.9. The CPU/grid point/time step was measured to be approximately 490µs/pt.
/step, while approximately 4KB of memory per grid point was required.

8 Conclusions

The computational results (as reflected, to a degree, in Tables 2 and 3) suggest that the am-
plitudes of the flow quantities are the most sensitive to timestep size and grid resolution,
compared to the averages and the periods. Despite this however, a timestep size of 0:01 on
the finest grid (41�201 elements) proved to be sufficient in obtaining a (timestep- and grid-)
converged and (based on the benchmark metrics 1–4 of Table 6) accurate solution.
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In general, the CN solver performed better (regarding accuracy) than the BE solver (and at
no extra cost in terms of computing time), and in view of the earlier comments on numerical
damping with advection-dominated problems, this is perhaps no surprise. However, both
solvers failed to yield a periodic solution after the transient phase on the coarsest grid (11�51
elements), although this is probably attributable to the intrinsic inaccuracy of the Q2�Q1 fi-
nite element on ‘too-coarse’ grids. (By comparison, the elements Q1�Q0 (bilinear velocity
and temperature, piecewise-constant pressure) and Q2�Q

�1 (biquadratic velocity and tem-
perature, piecewise-bilinear pressure) were reported to yield periodic solutions on a grid of
comparable coarseness to our ‘coarse’ version [5], although it should also be noted that these
elements fail the inf–sup stability condition. The accuracy of the Q2�Q1 element on suffi-
ciently fine grids was also reported by another benchmark contributor [7].)

Finally, we remark that we obtained virtually zero skewness in our calculations, a feature
consistent with the anti-symmetric nature of the instability mode [2].

References
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