Publications
Articles in Refereed Journals

H. Antil, M. Hintermüller, R.H. Nochetto, Th.M. Surowiec, D. Wegner, Finite horizon model predictive control of electrowetting on dielectric with pinning, Interfaces and Free Boundaries. Mathematical Modelling, Analysis and Computation, 19 (2017) pp. 130.

M. Hintermüller, C.N. Rautenberg, On the uniqueness and numerical approximation of solutions to certain parabolic quasivariational inequalities, Portugaliae Mathematica. A Journal of the Portuguese Mathematical Society, 74 (2017) pp. 135.
Abstract
A class of abstract nonlinear evolution quasivariational inequality (QVI) problems in function space is considered. The abstract framework developed in this paper includes constraint sets of obstacle and gradient type. The paper address the existence, uniqueness and approximation of solutions when the constraint set mapping is of a special form. Uniqueness is addressed through contractive behavior of a nonlinear mapping whose fixed points are solutions to the QVI. An axiomatic semidiscrete approximation scheme is developed, which is proven to be convergent and which is numerically implemented. The paper ends by a report on numerical tests for several nonlinear constraints of gradienttype. 
A. Alphonse, Ch.M. Elliott, Wellposedness of a fractional porous medium equation on an evolving surface, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods, 137 (2016) pp. 342.

K. Sturm, M. Hintermüller, D. Hömberg, Distortion compensation as a shape optimisation problem for a sharp interface model, Computational Optimization and Applications. An International Journal, 64 (2016) pp. 557588.
Abstract
We study a mechanical equilibrium problem for a material consisting of two components with different densities, which allows to change the outer shape by changing the interface between the subdomains. We formulate the shape design problem of compensating unwanted workpiece changes by controlling the interface, employ regularity results for transmission problems for a rigorous derivation of optimality conditions based on the speed method, and conclude with some numerical results based on a spline approximation of the interface. 
M. Hintermüller, S. Rösel, A dualitybased pathfollowing semismooth Newton method for elastoplastic contact problems, Journal of Computational and Applied Mathematics, 292 (2016) pp. 150173.

M. Hintermüller, Th. Surowiec, A bundlefree implicit programming approach for a class of elliptic MPECs in function space, Mathematical Programming Series A, 160 (2016) pp. 271305.
Preprints, Reports, Technical Reports

S. Hajian, M. Hintermüller, S. Ulbrich, Total variation diminishing schemes in optimal control of scalar conservation laws, Preprint no. 2383, WIAS, Berlin, 2017, DOI 10.20347/WIAS.PREPRINT.2383 .
Abstract, PDF (441 kByte)
n this paper, optimal control problems subject to a nonlinear scalar conservation law are studied. Such optimal control problems are challenging both at the continuous and at the discrete level since the controltostate operator poses difficulties as it is, e.g., not differentiable. Therefore discretization of the underlying optimal control problem should be designed with care. Here the discretizethenoptimize approach is employed where first the full discretization of the objective function as well as the underlying PDE is considered. Then, the derivative of the reduced objective is obtained by using an adjoint calculus. In this paper total variation diminishing RungeKutta (TVDRK) methods for the time discretization of such problems are studied. TVDRK methods, also called strong stability preserving (SSP), are originally designed to preserve total variation of the discrete solution. It is proven in this paper that providing an SSP state scheme, is enough to ensure stability of the discrete adjoint. However requiring SSP for both discrete state and adjoint is too strong. Also approximation properties that the discrete adjoint inherits from the discretization of the state equation are studied. Moreover order conditions are derived. In addition, optimal choices with respect to CFL constant are discussed and numerical experiments are presented. 
M. Hintermüller, A. Langer, C.N. Rautenberg, T. Wu, Adaptive regularization for image reconstruction from subsampled data, Preprint no. 2379, WIAS, Berlin, 2017, DOI 10.20347/WIAS.PREPRINT.2379 .
Abstract, PDF (1600 kByte)
Choices of regularization parameters are central to variational methods for image restoration. In this paper, a spatially adaptive (or distributed) regularization scheme is developed based on localized residuals, which properly balances the regularization weight between regions containing image details and homogeneous regions. Surrogate iterative methods are employed to handle given subsampled data in transformed domains, such as Fourier or wavelet data. In this respect, this work extends the spatially variant regularization technique previously established in [15], which depends on the fact that the given data are degraded images only. Numerical experiments for the reconstruction from partial Fourier data and for wavelet inpainting prove the efficiency of the newly proposed approach. 
L. Adam, M. Hintermüller, Th.M. Surowiec, A PDEconstrained optimization approach for topology optimization of strained photonic devices, Preprint no. 2377, WIAS, Berlin, 2017, DOI 10.20347/WIAS.PREPRINT.2377 .
Abstract, PDF (936 kByte)
Recent studies have demonstrated the potential of using tensilestrained, doped Germanium as a means of developing an integrated light source for (amongst other things) future microprocessors. In this work, a multimaterial phasefield approach to determine the optimal material configuration within a socalled GermaniumonSilicon microbridge is considered. Here, an ``optimal" configuration is one in which the strain in a predetermined minimal optical cavity within the Germanium is maximized according to an appropriately chosen objective functional. Due to manufacturing requirements, the emphasis here is on the crosssection of the device; i.e. a socalled aperture design. Here, the optimization is modeled as a nonlinear optimization problem with partial differential equation (PDE) and manufacturing constraints. The resulting problem is analyzed and solved numerically. The theory portion includes a proof of existence of an optimal topology, differential sensitivity analysis of the displacement with respect to the topology, and the derivation of first and secondorder optimality conditions. For the numerical experiments, an array of first and secondorder solution algorithms in functionspace are adapted to the current setting, tested, and compared. The numerical examples yield designs for which a significant increase in strain (as compared to an intuitive empirical design) is observed. 
M. Hintermüller, S. Rösel, Duality results and regularization schemes for PrandtlReuss perfect plasticity, Preprint no. 2376, WIAS, Berlin, 2017, DOI 10.20347/WIAS.PREPRINT.2376 .
Abstract, PDF (353 kByte)
We consider the timediscretized problem of the quasistatic evolution problem in perfect plasticity posed in a nonreflexive Banach space and we derive an equivalent version in a reflexive Banach space. A primaldual stabilization scheme is shown to be consistent with the initial problem. As a consequence, not only stresses, but also displacement and strains are shown to converge to a solution of the original problem in a suitable topology. This scheme gives rise to a welldefined Fenchel dual problem which is a modification of the usual stress problem in perfect plasticity. The dual problem has a simpler structure and turns out to be wellsuited for numerical purposes. For the corresponding subproblems an efficient algorithmic approach in the infinitedimensional setting based on the semismooth Newton method is proposed. 
A. Alphonse, Ch.M. Elliott, J. Terra, A coupled ligandreceptor bulksurface system on a moving domain: Well posedness, regularity and convergence to equilibrium, Preprint no. 2357, WIAS, Berlin, 2016, DOI 10.20347/WIAS.PREPRINT.2357 .
Abstract, PDF (536 kByte)
We prove existence, uniqueness, and regularity for a reactiondiffusion system of coupled bulksurface equations on a moving domain modelling receptorligand dynamics in cells. The nonlinear coupling between the three unknowns is through the Robin boundary condition for the bulk quantity and the right hand sides of the two surface equations. Our results are new even in the nonmoving setting, and in this case we also show exponential convergence to a steady state. The primary complications in the analysis are indeed the nonlinear coupling and the Robin boundary condition. For the well posedness and essential boundedness of solutions we use several De Giorgitype arguments, and we also develop some useful estimates to allow us to apply a Steklov averaging technique for timedependent operators to prove that solutions are strong. Some of these auxiliary results presented in this paper are of independent interest by themselves. 
L. Adam, M. Hintermüller, Th.M. Surowiec, A semismooth Newton method with analytical pathfollowing for the $H^1$projection onto the Gibbs simplex, Preprint no. 2340, WIAS, Berlin, 2016, DOI 10.20347/WIAS.PREPRINT.2340 .
Abstract, PDF (1345 kByte)
An efficient, functionspacebased secondorder method for the $H^1$projection onto the Gibbssimplex is presented. The method makes use of the theory of semismooth Newton methods in function spaces as well as MoreauYosida regularization and techniques from parametric optimization. A pathfollowing technique is considered for the regularization parameter updates. A rigorous first and secondorder sensitivity analysis of the value function for the regularized problem is provided to justify the update scheme. The viability of the algorithm is then demonstrated for two applications found in the literature: binary image inpainting and labeled data classification. In both cases, the algorithm exhibits meshindependent behavior. 
M. Hintermüller, C.N. Rautenberg, S. Rösel, Density of convex intersections and applications, Preprint no. 2333, WIAS, Berlin, 2016.
Abstract, PDF (361 kByte)
In this paper we address density properties of intersections of convex sets in several function spaces. Using the concept of Gammaconvergence, it is shown in a general framework, how these density issues naturally arise from the regularization, discretization or dualization of constrained optimization problems and from perturbed variational inequalities. A variety of density results (and counterexamples) for pointwise constraints in Sobolev spaces are presented and the corresponding regularity requirements on the upper bound are identified. The results are further discussed in the context of finite element discretizations of sets associated to convex constraints. Finally, two applications are provided, which include elastoplasticity and image restoration problems. 
M. Hintermüller, M. Hinze, Ch. Kahle, T. Keil, A goaloriented dualweighted adaptive finite element approach for the optimal control of a nonsmooth CahnHilliardNavierStokes system, Preprint no. 2311, WIAS, Berlin, 2016.
Abstract, PDF (640 kByte)
This paper is concerned with the development and implementation of an adaptive solution algorithm for the optimal control of a timediscrete CahnHilliardNavierStokes system with variable densities. The free energy density associated to the CahnHilliard system incorporates the doubleobstacle potential which yields an optimal control problem for a family of coupled systems in each time instant of a variational inequality of fourth order and the NavierStokes equation. A dualweighed residual approach for goaloriented adaptive finite elements is presented which is based on the concept of Cstationarity. The overall error representation depends on primal residual weighted by approximate dual quantities and vice versa as well as various complementary mismatch errors. Details on the numerical realization of the adaptive concept and a report on numerical tests are given. 
M. Hintermüller, K. Papafitsoros, C.N. Rautenberg, Analytical aspects of spatially adapted total variation regularisation, Preprint no. 2293, WIAS, Berlin, 2016.
Abstract, PDF (877 kByte)
In this paper we study the structure of solutions of the one dimensional weighted total variation regularisation problem, motivated by its application in signal recovery tasks. We study in depth the relationship between the weight function and the creation of new discontinuities in the solution. A partial semigroup property relating the weight function and the solution is shown and analytic solutions for simply data functions are computed. We prove that the weighted total variation minimisation problem is wellposed even in the case of vanishing weight function, despite the lack of coercivity. This is based on the fact that the total variation of the solution is bounded by the total variation of the data, a result that it also shown here. Finally the relationship to the corresponding weighted fidelity problem is explored, showing that the two problems can produce completely different solutions even for very simple data functions. 
M. Hintermüller, C.N. Rautenberg, M. Mohammadi, M. Kanitsar, Optimal sensor placement: A robust approach, Preprint no. 2287, WIAS, Berlin, 2016.
Abstract, PDF (4835 kByte)
We address the problem of optimally placing sensor networks for convectiondiffusion processes where the convective part is perturbed. The problem is formulated as an optimal control problem where the integral Riccati equation is a constraint and the design variables are sensor locations. The objective functional involves a term associated to the trace of the solution to the Riccati equation and a term given by a constrained optimization problem for the directional derivative of the previous quantity over a set of admissible perturbations. The paper addresses the existence of the derivative with respect to the convective part of the solution to the Riccati equation, the wellposedness of the optimization problem and finalizes with a range of numerical tests. 
H. Egger, Th. Kugler, N. Strogies, Parameter identification in a semilinear hyperbolic system, Preprint no. 2278, WIAS, Berlin, 2016.
Abstract, PDF (424 kByte)
We consider the identification of a nonlinear friction law in a onedimensional damped wave equation from additional boundary measurements. Wellposedness of the governing semilinear hyperbolic system is established via semigroup theory and contraction arguments. We then investigate the inverse problem of recovering the unknown nonlinear damping law from additional boundary measurements of the pressure drop along the pipe. This coefficient inverse problem is shown to be illposed and a variational regularization method is considered for its stable solution. We prove existence of minimizers for the Tikhonov functional and discuss the convergence of the regularized solutions under an approximate source condition. The meaning of this condition and some arguments for its validity are discussed in detail and numerical results are presented for illustration of the theoretical findings. 
M. Hintermüller, C.N. Rautenberg, T. Wu, A. Langer, Optimal selection of the regularization function in a generalized total variation model. Part II: Algorithm, its analysis and numerical tests, Preprint no. 2236, WIAS, Berlin, 2016.
Abstract, PDF (6570 kByte)
Based on the generalized total variation model and its analysis pursued in part I (WIAS Preprint no. 2235), in this paper a continuous, i.e., infinite dimensional, projected gradient algorithm and its convergence analysis are presented. The method computes a stationary point of a regularized bilevel optimization problem for simultaneously recovering the image as well as determining a spatially distributed regularization weight. Further, its numerical realization is discussed and results obtained for image denoising and deblurring as well as Fourier and wavelet inpainting are reported on. 
M. Hintermüller, C.N. Rautenberg, Optimal selection of the regularization function in a generalized total variation model. Part I: Modelling and theory, Preprint no. 2235, WIAS, Berlin, 2016.
Abstract, PDF (417 kByte)
A generalized total variation model with a spatially varying regularization weight is considered. Existence of a solution is shown, and the associated Fenchelpredual problem is derived. For automatically selecting the regularization function, a bilevel optimization framework is proposed. In this context, the lowerlevel problem, which is parameterized by the regularization weight, is the Fenchel predual of the generalized total variation model and the upperlevel objective penalizes violations of a variance corridor. The latter object relies on a localization of the image residual as well as on lower and upper bounds inspired by the statistics of the extremes.
Talks, Poster

T. Keil, Strong stationarity conditions for the optimal control of a CahnHilliardNavierStokes system, 14th International Conference on Free Boundary Problems: Theory and Applications, Theme Session 8 ``Optimization and Control of Interfaces'', July 9  14, 2017, Shanghai Jiao Tong University, China, July 10, 2017.

M. Hintermüller, (Pre)Dualization, dense embeddings of convex sets, and applications in image processing, HCM Workshop: Nonsmooth Optimization and its Applications, May 15  19, 2017, Hausdorff Center for Mathematics, Bonn, May 15, 2017.

M. Hintermüller, Adaptive finite element solvers for MPECs in function space, SIAM Conference on Optimization, Minisymposium MS122 ``Recent Trends in PDE Constrained Optimization'', May 22  25, 2017, Vancouver, British Columbia, Canada, May 25, 2017.

M. Hintermüller, Bericht, Halbjahrestagung des SFB/TRR 154, March 23  24, 2017, Herzogenaurach.

M. Hintermüller, Bilevel optimization and applications in imaging, Workshop ``Emerging Developments in Interfaces and Free Boundaries'', January 22  28, 2017, Mathematisches Forschungsinstitut Oberwolfach.

M. Hintermüller, Bilevel optimization and applications in imaging, Mathematisches Kolloquium, Universität Wien, Austria, January 18, 2017.

M. Hintermüller, Bilevel optimization and some ``parameter learning'' applications in image processing, LMS Workshop ``Variational Methods Meet Machine Learning'', September 18, 2017, University of Cambridge, Centre for Mathematical Sciences, UK, September 18, 2017.

M. Hintermüller, Generalized Nash equilibrium problems in Banach spaces: Theory, NikaidoIsodabased pathfollowing methods, and applications, The Third International Conference on Engineering and Computational Mathematics (ECM2017), Stream 3 ``Computational Optimization'', May 31  June 2, 2017, The Hong Kong Polytechnic University, China, June 2, 2017.

M. Hintermüller, Generalized Nash games with partial differential equations, Kolloquium Arbeitsgruppe Modellierung, Numerik, Differentialgleichungen, Technische Universität Berlin, June 20, 2017.

M. Hintermüller, Nonsmooth structures in PDEconstrained optimization, Mathematisches Kolloquium, Universität DuisburgEssen, Fakultät für Mathematik, Essen, January 11, 2017.

M. Hintermüller, Nonsmooth structures in PDE constrained optimization, Optimization Seminar, Chinese Academy of Sciences, State Key Laboratory of Scientific and Engineering Computing, Beijing, China, June 6, 2017.

M. Hintermüller, On (pre)dualization, dense embeddings of convex sets, and applications in image processing, Isaac Newton Institute, Cambridge, UK, August 30, 2017.

M. Hintermüller, Optimal control of multiphase fluids and droplets, Kolloquium, FriedrichAlexanderUniversität ErlangenNürnberg, Department Mathematik, Erlangen, May 2, 2017.

M. Hintermüller, Optimal control of multiphase fluids based on non smooth models, 14th International Conference on Free Boundary Problems: Theory and Applications, Theme Session 8 ``Optimization and Control of Interfaces'', July 9  14, 2017, Shanghai Jiao Tong University, China, July 10, 2017.

M. Hintermüller, Optimal control of nonsmooth phasefield models, DFGAIMS Workshop on ``Shape Optimization, Homogenization and Control'', March 13  16, 2017, Mbour, Senegal, March 14, 2017.

M. Hintermüller, Presentation of the GAMMrelated DFG Priority Programme 1962 ``Nonsmooth and Complementaritybased Distributed Parameter Systems: Simulation and Hierarchical Optimization'', 88th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM 2017), March 6  10, 2017, Bauhaus Universität Weimar/Technische Universität Ilmenau, Weimar, March 9, 2017.

M. Hintermüller, Recent trends in PDEconstrained optimization with nonsmooth structures, Fourth Conference on Numerical Analysis and Optimization (NAOIV2017), January 2  5, 2017, Sultan Qaboos University, Muscat, Oman, January 4, 2017.

M. Hintermüller, Total variation diminishing RungeKutta methods for the optimal control of conservation laws: Stability and orderconditions, SIAM Conference on Optimization, Minisymposium MS111 ``Optimization with Balance Laws on Graphs'', May 22  25, 2017, Vancouver, British Columbia, Canada, May 25, 2017.

A. Alphonse, Existence for a fractional porous medium equation on an evolving surface, Joint Research Seminar on Nonsmooth Variational Problems and Operator Equations / Mathematical Optimization, WIAS, Berlin, December 13, 2016.

T. Wu, Bilevel optimization and applications in imaging sciences, August 24  25, 2016, Shanghai Jiao Tong University, Institute of Natural Sciences, China.

K. Papafitsoros, Analytical aspects of spatially adapted total variation type regularisation, Seminar Nichtglatte Variationsprobleme und Operatorgleichungen, May 12, 2016.

M. Hintermüller, S. Hajian, N. Strogies, Subproject B02  Parameter id., sensor localization and quantification of uncertainties in switched PDE systems, Annual Meeting of the Collaborative Research Center/Transregio (TRR) 154 ``Mathematical Modeling, Simulation and Optimization Using the Example of Gas Networks'', Technische Universität Berlin, October 4  5, 2016.

M. Hintermüller, S. Hajian, N. Strogies, Subproject B02  Parameter id., sensor localization and quantification of uncertainties in switched PDE systems, Conference ``Mathematics of Gas Transport'', KonradZuseZentrum für Informationstechnik Berlin, October 6  7, 2016.

M. Hintermüller, K. Papafitsoros, C. Rautenberg, A fine scale analysis of spatially adapted total variation regularisation, Imaging, Vision and Learning based on Optimization and PDEs, Bergen, Norway, August 29  September 1, 2016.

M. Hintermüller, Adaptive finite elements in total variation based image denoising, SIAM Conference on Imaging Science, Minisymposium ``Leveraging Ideas from Imaging Science in PDEconstrained Optimization'', May 23  26, 2016, Albuquerque, USA, May 24, 2016.

M. Hintermüller, Bilevel optimization and applications in imaging, Imaging, Vision and Learning based on Optimization and PDEs, August 29  September 1, 2016, Bergen, Norway, August 30, 2016.

M. Hintermüller, Bilevel optimization for a generalized totalvariation model, SIAM Conference on Imaging Science, Minisymposium ``NonConvex Regularization Methods in Image Restoration'', May 23  26, 2016, Albuquerque, USA, May 26, 2016.

M. Hintermüller, Nonsmooth structures in PDE constrained optimization, 66th Workshop ``Advances in Convex Analysis and Optimization'', July 5  10, 2016, International Centre for Scientific Culture ``E. Majorana'', School of Mathematics ``G. Stampacchia'', Erice, Italy, July 9, 2016.

M. Hintermüller, Optimal control of multiphase fluids and droplets, WIASPGMO Workshop on Nonsmooth and Stochastic Optimization with Applications to Energy Management, May 10  12, 2016, WIAS Berlin, May 11, 2016.

M. Hintermüller, Optimal control of multiphase fluids and droplets, The Fifth International Conference on Continuous Optimization, Session: ``Recent Developments in PDEconstrained Optimization I'', August 6  11, 2016, Tokyo, Japan, August 10, 2016.

M. Hintermüller, Optimal control of multiphase fluids and droplets, Salzburg Mathematics Colloquium, Universität Salzburg, Fachbereich Mathematik, Austria, June 9, 2016.

M. Hintermüller, Optimal selection of the regularisation function in a localised TV model, SIAM Conference on Imaging Science, Minisymposium ``Analysis and Parameterisation of Derivative Based Regularisation'', May 23  26, 2016, Albuquerque, USA, May 24, 2016.

M. Hintermüller, Recent trends in optimal control problems with nonsmooth structures, Computational Methods for Control of Infinitedimensional Systems, March 14  18, 2016, Institute for Mathematics and its Applications, Minneapolis, USA, March 14, 2016.

M. Hintermüller, Shape and topological sensitivities in mathematical image processing, BMS Summer School ``Mathematical and Numerical Methods in Image Processing'', July 25  August 5, 2016, Berlin Mathematical School, Technische Universität Berlin, HumboldtUniversität zu Berlin, Berlin, August 4, 2016.

M. Hintermüller, Towards sharp stationarity conditions for classes of optimal control problems for variational inequalities of the second kind, International INdAM Conference ``Optimal Control for Evolutionary PDEs and Related Topics (OCERTO 2016)'', June 20  24, 2016, Cortona, Italy, June 20, 2016.
Research Groups
 Partial Differential Equations
 Laser Dynamics
 Numerical Mathematics and Scientific Computing
 Nonlinear Optimization and Inverse Problems
 Interacting Random Systems
 Stochastic Algorithms and Nonparametric Statistics
 Thermodynamic Modeling and Analysis of Phase Transitions
 Nonsmooth Variational Problems and Operator Equations