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Introduction

◮ Discontinuous Galerkin (dG) methods can be viewed as
◮ finite element methods allowing for discontinuous discrete

functions
◮ finite volume methods with more than one dof per mesh cell

◮ Advantages of such methods include
◮ a high level of flexibility (choice of basis functions, nonmatching

meshes, variable approximation order, local time stepping)
◮ the possibility to enforce locally basic conservation principles

◮ The main drawback is higher computational costs w.r.t. stabilized
FE or FV on a fixed mesh
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A brief historical perspective I
◮ DG methods were introduced almost 40 years ago

◮ moderate impact at that time

◮ Vigorous development over the last decade
◮ numerical analysis
◮ range of applications

◮ DG-related publications/year (Source: Mathscinet)
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A brief historical perspective II

First-order PDEs

◮ DG methods first coined for neutronics simulations [Reed & Hill ’73]

◮ Convergence analysis for steady advection-reaction
◮ O(hk) L2-error estimate if polynomials of degree k are used and

exact solution is smooth enough [Lesaint & Raviart ’74]
◮ sharper O(hk+1/2) estimate [Johnson & Pitkäranta ’86]

◮ Time-dependent conservation laws
◮ Runge–Kutta DG (RKDG) with slope limiter [Cockburn & Shu

’89-91]: formal accuracy in smooth regions, sharp shock resolution
◮ extension to multidimensional systems [Cockburn & Shu ’98] and

numerous applications
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A brief historical perspective III
Elliptic PDEs

◮ Boundary penalty methods [Nitsche ’71]

◮ Interior penalty methods [Babuška ’73, Douglas & Dupont ’75,
Baker ’77, Wheeler ’78, Arnold ’82]

◮ Further developments
◮ liftings and application to NS [Bassi, Rebay et al ’97]
◮ analysis for Poisson problem [Brezzi et al ’99]
◮ mixed dG approximation [Cockburn & Shu ’98]
◮ variations on symmetry [Oden, Babuška & Baumann ’98, Rivière,

Wheeler & Girault ’99]
◮ weighted averages for heterogeneous diffusion [ESZ ’09, DEG ’08]
◮ locally conservative diffusive flux reconstruction [NEV ’07]

◮ Unified analysis for Poisson problem [Arnold, Brezzi, Cockburn &
Marini ’01]

◮ Discrete functional analysis, convergence with minimal regularity
[Di Pietro & AE ’10]
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A brief historical perspective IV

Friedrichs systems

◮ Introduced by Friedrichs in ’58

◮ Linear systems of first-order PDE’s endowed by symmetry and
positivity (L2-coercivity) properties

◮ Encompass many important examples of elliptic and hyperbolic
PDE’s

◮ advection–reaction, diffusion(–AR), elasticity, Stokes, Maxwell in
diffusive regime, . . .

◮ Unified analysis of dG methods based on Friedrichs systems
[AE & Guermond, ’06–’08]
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Some basic notation I

◮ Mesh family {Th}h of computational domain Ω ⊂ Rd

◮ shape-regularity in the usual sense
◮ the meshes can be nonmatching (hanging nodes); some

contact-regularity is then enforced
◮ for simplicity, the meshes are affine and cover Ω exactly
◮ h: maximum mesh size

◮ Example of admissible mesh
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Some basic notation II

◮ Broken polynomial space (k ≥ 0)

Pk
d(Th) = {vh ∈ L2(Ω); ∀T ∈ Th, vh|T ∈ P

k
d(T )}

◮ Pk
d : polynomials in d variables of total degree ≤ k

◮ P0
d(Th) spanned by piecewise constant functions as in FV

◮ No matching condition at interfaces =⇒ dof’s can be taken
elementwise

◮ Other broken polynomial spaces can be considered, and also discrete
spaces not spanned by piecewise polynomials

◮ Broken Sobolev spaces Hs(Th) (s ≥ 0)

◮ Broken gradient (defined elementwise) ∇h : H1(Th)→ [L2(Ω)]d
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Some basic notation III

◮ Mesh faces collected into Fh = F i
h ∪ F

b
h (split into interfaces and

boundary faces)

◮ Discrete functions can be two-valued at interfaces

◮ Interface F i
h ∋ F = T1 ∩ T2, normal nF from T1 to T2

◮ Mean values and jumps at interfaces

{ϕ} = 1
2 (ϕ1 + ϕ2) [[ϕ]] = ϕ1 − ϕ2

T1

T2

F

◮ On the boundary, {ϕ} = [[ϕ]] = ϕ
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Outline

◮ Advection–reaction (Monday 11)

◮ The Laplacian (Wednesday 13)

◮ PDEs with diffusion (Friday 15)

◮ Incompressible Navier–Stokes (Wednesday 20)

◮ Most of the material (and much more!) can be found in a
forthcoming book:
Di Pietro & AE, Mathematical aspects of DG methods,
Springer Mathématiques et Applications, 2011
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Some topics not covered in these lectures

◮ Time-dependent problems
◮ abundant numerical techniques/recipes
◮ theoretical aspects are much less covered
◮ see [Zhang & Shu ’04, Burman, AE & Fernandez ’10]

◮ Implementation issues
◮ see, e.g., [Karniadakis & Spencer ’99, Hesthaven & Warburton ’08]

◮ A posteriori error analysis
◮ Laplacian [Becker, Hansbo & Larson ’03, Karakashian & Pascal ’03,

Ainsworth ’07]
◮ advection–diffusion-reaction [AE, Stephansen & Vohraĺık ’10]
◮ heat equation [AE & Vohraĺık ’10]
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Advection-reaction

◮ Continuous problem

◮ Abstract nonconforming error analysis

◮ Centered fluxes

◮ Upwind fluxes

◮ The material of this section can be generalized to Friedrichs systems
[AE & Guermond ’06–’08]
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Continuous problem I

◮ Let β ∈ [W 1,∞(Ω)]d and µ ∈ L∞(Ω)
◮ a weaker assumption on β can be β ∈ [L∞(Ω)]d , ∇·β ∈ L∞(Ω)

◮ Inflow and outflow parts of boundary ∂Ω

∂Ω± = {x ∈ ∂Ω | ± β(x)·n(x) > 0}

◮ Let f ∈ L2(Ω); the model problem is

{

µu + β·∇u = f in L2(Ω)

u = 0 on ∂Ω−
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Continuous problem II

◮ Graph space W = {v ∈ L2(Ω) | β·∇v ∈ L2(Ω)}

◮ Hilbert space with the norm ‖v‖2W = ‖v‖2
L2(Ω) + ‖β·∇v‖2

L2(Ω)

◮ Assume that ∂Ω− and ∂Ω+ are well-separated

◮ Then, there is a continuous trace operator from W onto

L2(|β·n|; ∂Ω) = {v is measurable on ∂Ω |
∫

∂Ω
|β·n|v2 < +∞}

◮ The separation assumption cannot be circumvented to work with
traces in L2(|β·n|; ∂Ω)
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Continuous problem III
◮ Define on W ×W the bilinear form

a(v ,w) =

∫

Ω

[µv + (β·∇v)]w +

∫

∂Ω

(β·n)⊖vw

where for x ∈ R, x⊕ = 1
2 (|x |+ x) and x⊖ = 1

2 (|x | − x)

◮ Assume that

∃µ0 > 0, µ− 1
2∇·β ≥ µ0 in Ω

◮ This implies L2-coercivity of a on W since

a(v , v) =

∫

Ω

(
µ− 1

2∇·β
)
v2 + 1

2

∫

∂Ω

(β·n)v2 +

∫

∂Ω

(β·n)⊖v2

≥ µ0‖v‖
2
L2(Ω) + 1

2

∫

∂Ω

|β·n|v2.
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Continuous problem IV

◮ Weak formulation Seek u ∈W s.t.

a(u,w) =

∫

Ω

fw ∀w ∈W

◮ BCs are weakly enforced
◮ same trial and test spaces

◮ Theorem. This problem is well-posed
◮ L2-coercivity implies uniqueness
◮ existence by inf-sup argument (using L2-coercivity of a)
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Nonconforming error analysis I

◮ Finite-dimensional space Wh

◮ Discrete bilinear form ah defined on Wh ×Wh

◮ Discrete problem Seek uh ∈Wh s.t.

ah(uh,wh) =

∫

Ω

fwh ∀wh ∈Wh

◮ Nonconforming setting Wh 6⊂W
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Nonconforming error analysis II

◮ We want to assert strong consistency by plugging the exact solution
u into ah

◮ This may not be possible in general for u ∈W ; some additional
smoothness is required, say

u ∈W† with W† ⊂W

◮ We assume that ah can be extended to W† ×Wh

◮ Approximation error (u − uh) belongs to W†h
def
= W† + Wh

◮ We work with two norms: |||·||| and |||·|||∗ both defined on W†h

◮ the approximation error will be estimated in the |||·|||-norm
◮ the |||·|||∗-norm controls the |||·|||-norm
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Discontinuous Galerkin methods



Introduction Advection-reaction The Laplacian PDEs with diffusion Incompressible NS

Nonconforming error analysis III
◮ Consistency (dG methods are consistent methods!)

∀wh ∈Wh, ah(u,wh) =

∫

Ω

fwh

◮ Stability

∀vh ∈Wh, |||vh||| . sup
wh∈Wh\{0}

ah(vh,wh)

|||wh|||

◮ ensures well-posedness of discrete problem
◮ a sufficient condition is discrete coercivity

◮ Boundedness

∀v ∈W†h, ∀wh ∈Wh, ah(v ,wh) . |||v |||∗|||wh|||
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Nonconforming error analysis IV

◮ Error estimate

|||u − uh||| . inf
yh∈Wh

|||u − yh|||∗

◮ Proof. Let yh ∈Wh.
◮ stability, consistency, and boundedness imply

|||uh − yh||| . sup
wh∈Wh\{0}

ah(uh − yh, wh)

|||wh|||

= sup
wh∈Wh\{0}

ah(u − yh, wh)

|||wh|||

. |||u − yh|||∗

◮ conclude using the triangle inequality
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Nonconforming error analysis V

◮ Recall that

|||u − uh||| . inf
yh∈Wh

|||u − yh|||∗

◮ The estimate is not optimal since different norms are used

◮ The estimate is quasi-optimal if the upper bound has the same CV
order as the optimal bound infyh∈Wh

|||u − yh|||; otherwise, the
estimate is suboptimal
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Centered fluxes I

◮ DG approximation in Wh = Pk
d(Th)

◮ Discrete problem Seek uh ∈Wh s.t.

ah(uh,wh) =

∫

Ω

fwh ∀wh ∈Wh

◮ Guidelines to design the discrete bilinear form ah

◮ consistency
◮ discrete L2-coercivity on Wh

◮ Assumptions on the exact solution u

◮ u has possibly two-valued traces on all mesh faces
◮ β·nF [[u]] = 0 on all F ∈ F i

h (mesh fitted to possible singularities)
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Centered fluxes II

◮ Step 1: Localize gradient

ah(vh,wh) =

∫

Ω

[µvhwh + (β·∇hvh)wh] +
∑

F∈Fb
h

∫

F

(β·n)⊖vhwh

◮ ah is not L2-coercive on Wh

ah(vh, vh) =

Z

Ω

[µv
2
h + (β·∇hvh)vh] +

X

F∈Fb
h

Z

F

(β·n)
⊖

v
2
h

=

Z

Ω

`

µ − 1
2∇·β

´

v
2
h +

X

T∈Th

Z

∂T

1
2 (β·nT )v

2
h +

X

F∈Fb
h

Z

F

(β·n)
⊖

v
2
h

=

Z

Ω

`

µ − 1
2∇·β

´

v
2
h +

X

F∈F i
h

Z

F

1
2 (β·nF )[[v

2
h ]] +

X

F∈Fb
h

Z

F

1
2 |β·n|v

2
h

and the second term has no sign a priori
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Centered fluxes III

◮ Step 2: Recover discrete L2-coercivity in a consistent way by setting

acf
h (vh,wh)

def
=

∫

Ω

[µvhwh + (β·∇hvh)wh] +
∑

F∈Fb
h

∫

F

(β·n)⊖vhwh

−
∑

F∈F i
h

∫

F

(β·nF )[[vh]]{wh}

since [[v2
h ]] = 2[[vh]]{vh}. This yields

acf
h (vh, vh) ≥ µ0‖vh‖

2
L2(Ω) +

∑

F∈Fb
h

∫

F

1
2 |β·n|v

2
h
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Centered fluxes IV

◮ For simplicity, assume µ and β of order unity

◮ Discrete coercivity: |||vh|||
2 . acf

h (vh, vh) with

|||vh|||
2 def

= ‖vh‖
2
L2(Ω) +

∑

F∈Fb
h

∫

F

1
2 |β·n|v

2
h

◮ Boundedness: acf
h (v ,wh) . |||v |||∗|||wh||| with

|||v |||2∗ = |||v |||2 +
∑

T∈Th

‖β·∇v‖2Ω +
∑

F∈F i
h

h−1
F

∫

F

|β·nF |[[v ]]2

◮ Error estimate
|||u − uh||| . inf

yh∈Wh

|||u − yh|||∗
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Discontinuous Galerkin methods



Introduction Advection-reaction The Laplacian PDEs with diffusion Incompressible NS

Centered fluxes V

◮ Local polynomial approximation: ∀z ∈ Hk+1(Th), ∀T ∈ Th,

‖z − πhz‖T

h
1/2
T ‖z − πhz‖∂T

hT‖∇(z − πhz)‖T







. hk+1
T ‖z‖Hk+1(T )

where πh is the L2-orthogonal projection onto Wh

◮ Convergence rate |||u − uh||| . hk if u ∈ Hk+1(Th)

◮ Convergence for k ≥ 1 and with suboptimal rate
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Centered fluxes VI

◮ Let T ∈ Th, let ξ ∈ Pk
d(T )

∫

T

[(µ−∇·β)uhξ − uh(β·∇ξ)] +
∑

F∈FT

ǫT ,F

∫

F

φF (uh)ξ =

∫

T

f ξ

with ǫT ,F = nT ·nF and the (consistent) numerical fluxes

φF (uh) =

{

β·nF{uh} (F ∈ F i
h)

(β·n)⊕uh (F ∈ Fb
h )

◮ ξ ≡ 1 yields the usual FV formulation

∫

T

(µ−∇·β)uh +
∑

F∈FT

ǫT ,F

∫

F

φF (uh) =

∫

T

f
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Upwind fluxes I

◮ Strengthen discrete stability by penalizing interface jumps in a
least-squares sense [Brezzi, Marini & Süli ’04]

ah(vh,wh)
def
= acf

h (vh,wh) + sh(vh,wh)

with (consistent) stabilization bilinear form

sh(vh,wh) =
∑

F∈F i
h

∫

F

η 1
2 |β·nF |[[vh]][[wh]]

and positive user-dependent parameter η
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Upwind fluxes II

◮ ah is consistent

◮ ah is coercive on Wh: |||vh|||
2
♭ . ah(vh, vh) with

|||v |||2♭
def
= ‖v‖2L2(Ω) +

∑

F∈Fb
h

∫

F

1
2 |β·n|v

2 +
∑

F∈F i
h

∫

F

η 1
2 |β·nF |[[v ]]2

◮ Variant: boundedness on orthogonal subscales (OSS)

ah(v − πhv ,wh) . |||v − πhv |||∗|||wh|||♭

where
|||y |||2∗ = |||y |||2♭ +

∑

T∈Th

‖y‖2L2(∂T )

◮ Rk. With upwinding, the |||·|||∗-norm is much “closer” to the
|||·|||♭-norm
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Upwind fluxes III

◮ Key technical point

∫

Ω

(v − πhv)β·∇hwh =
∑

T∈Th

∫

T

(v − πhv)(β − 〈β〉T )·∇wh

.
∑

T∈Th

‖v − πhv‖L2(T )hT‖∇wh‖[L2(T )]d

.
∑

T∈Th

‖v − πhv‖L2(T )‖wh‖L2(T )

≤ |||v − πhv |||♭|||wh|||♭

◮ Convergence rate |||u − uh|||♭ . |||u − πhu|||∗ . hk+1/2 if u ∈ Hk+1(Th)

◮ Convergence for k ≥ 0 and with quasi-optimal rate
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Upwind fluxes IV

Error estimate in the advective derivative

◮ Discrete stability with stronger norm

|||v |||2
def
= |||v |||2♭ +

∑

T∈Th

hT‖β·∇v‖2L2(T )

◮ Discrete inf-sup condition [Johnson & Pitkäranta ’86]

|||vh||| . sup
wh∈Wh\{0}

ah(vh,wh)

|||wh|||

◮ |||vh|||♭ is controlled by coercivity
◮ advective derivative is controlled by testing with wh|T = hT 〈β〉T ·∇vh
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Upwind fluxes V

◮ (Full) boundedness: ah(v ,wh) . |||v |||∗|||wh||| with

|||v |||2∗
def
= |||v |||2 +

∑

T∈Th

[‖v‖2L2(∂T ) + h−1
T ‖v‖

2
L2(T )]

◮ Convergence rate |||u − uh||| . hk+1/2 if u ∈ Hk+1(Th)

◮ Optimal estimate for advective derivative
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Upwind fluxes VI

◮ New numerical fluxes

φF (uh) =

{

β·nF{uh}+ 1
2η|β·nF |[[uh]] (F ∈ F i

h)

(β·n)⊕uh (F ∈ Fb
h )

◮ Particular choice η = 1 yields the upwind flux
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Salient points of this lecture

◮ Centered fluxes correspond to a basic design ensuring consistency
and discrete coercivity

◮ Upwinding can be interpreted as tightening discrete stability by
penalizing jumps

◮ Error estimates are similar to other stabilized methods with
continuous FEM

◮ subgrid viscosity [Guermond ’99]
◮ continuous interior penalty of gradient jumps [Burman & Hansbo ’04]
◮ local projection [Braack, Burman, John & Lube ’07, Knobloch &

Tobiska ’09]
◮ ...
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The Laplacian

◮ Model problem

◮ Symmetric Interior Penalty (SIP)

◮ Liftings and discrete gradients

◮ Diffusive flux reconstruction

◮ Variations on symmetry and penalty
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Model problem I

◮ Let f ∈ L2(Ω); seek u : Ω→ R s.t. −△u = f in Ω and u|∂Ω = 0

◮ Weak formulation: u ∈ V
def
= H1

0 (Ω) s.t.

a(u, v)
def
=

∫

Ω

∇u·∇v =

∫

Ω

fv ∀v ∈ V

◮ u is termed the potential and σ = −∇u the diffusive flux

◮ Since ∇·σ = f , the diffusive flux is in

H(div; Ω)
def
= {τ ∈ [L2(Ω)]d | ∇·τ ∈ L2(Ω)}

Physically, the normal component of σ is continuous across
any interface
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Model problem II

◮ Since u ∈ H1
0 (Ω), u admits a trace on each face F ∈ Fh and

[[u]] = 0 ∀F ∈ Fh

◮ We want to consider the normal gradient of u on each face

◮ ∇u ∈ H(div; Ω) only implies ∇u·n|∂T ∈ H−1/2(∂T ) for all T ∈ Th,
which cannot be simply localized to mesh faces

◮ A minimal assumption is ∇u·n|∂T ∈ L1(∂T ) for all T ∈ Th

◮ A simple sufficient condition is u ∈ V†
def
= H2(Th)

◮ more generally, u ∈ W 2,p(Th) with p > 1 if d = 2 and p > 6
5

if d = 3
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Model problem III

◮ Important property [[∇u]]·nF = 0 for all F ∈ F i
h

◮ Proof
◮ Let ϕ ∈ C∞

0 (Ω). For all T ∈ Th, since u ∈ V†,

Z

T

(−△u)ϕ =

Z

T

∇u·∇ϕ −

Z

∂T

(∇u·nT )ϕ

◮ Summing over T ∈ Th and using the weak formulation yields

X

F∈F i
h

Z

F

([[∇u]]·nF )ϕ = 0

◮ Choose the support of ϕ intersecting a single interface and use a
density argument
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Discontinuous Galerkin methods



Introduction Advection-reaction The Laplacian PDEs with diffusion Incompressible NS

SIP I

◮ Discrete space Vh
def
= Pk

d(Th) with k ≥ 1
◮ see [Di Pietro ’10] for cell-centered Galerkin methods with k = 0

◮ Discrete bilinear form [Arnold ’82]

ah(vh,wh)
def
=

∫

Ω

∇hvh·∇hwh −
∑

F∈Fh

∫

F

{∇hvh}·nF [[wh]]

−
∑

F∈Fh

∫

F

[[vh]]{∇hwh}·nF +
∑

F∈Fh

η

hF

∫

F

[[vh]][[wh]]

for user-dependent positive parameter η

◮ ah can be extended to V†h × V†h
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SIP II
◮ Elementwise integration by parts yields

∫

Ω

∇hv ·∇hw = −
∑

T∈Th

∫

T

(△v)w +
∑

T∈Th

∫

∂T

(∇v ·nT )w

= −
∑

T∈Th

∫

T

(△v)w +
∑

F∈Fh

∫

F

{∇hv}·nF [[w ]]

+
∑

F∈F i
h

∫

F

[[∇hv ]]·nF{w}

◮ This yields

ah(v ,w) = −
∑

T∈Th

∫

T

(△v)w +
∑

F∈F i
h

∫

F

[[∇hv ]]·nF{w}

−
∑

F∈Fh

∫

F

[[v ]]{∇hw}·nF +
∑

F∈Fh

η

hF

∫

F

[[v ]][[w ]]
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SIP III

◮ Discrete problem Seek uh ∈ Vh s.t.

ah(uh,wh) =

∫

Ω

fwh ∀wh ∈ Vh

◮ The discrete problem “weakly enforces”
◮ −△uh = f for all T ∈ Th

◮ [[∇huh]]·nF = 0 for all F ∈ F i
h

◮ [[uh]] = 0 for all F ∈ Fh

◮ The SIP bilinear form is consistent
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SIP IV

◮ Basic terminology

ah(v ,w) =

∫

Ω

∇hv ·∇wh −
∑

F∈Fh

∫

F

{∇hv}·nF [[w ]]

︸ ︷︷ ︸

consistency term

−
∑

F∈Fh

∫

F

[[v ]]{∇hw}·nF

︸ ︷︷ ︸

symmetry term

+
∑

F∈Fh

η

hF

∫

F

[[v ]][[w ]]

︸ ︷︷ ︸

penalty term
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SIP V

◮ Discrete stability norm: For all v ∈ H1(Th)

|||v |||2
def
= ‖∇hv‖

2
[L2(Ω)]d + |v |2J

with the jump seminorm

|v |2J =
∑

F∈Fh

1

hF

‖[[v ]]‖2L2(F )

◮ |||·||| is a norm on H1(Th) (direct verification)

◮ The following Poincaré inequality holds true [Brenner ’03]

∃σ2, ∀v ∈ H1(Th), ‖v‖L2(Ω) ≤ σ2|||v |||
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SIP VI

◮ Bound on consistency term For all (v ,w) ∈ V†h × V†h

∣
∣
∣
∣
∣

∑

F∈Fh

∫

F

{∇hv}·nF [[w ]]

∣
∣
∣
∣
∣
≤

(
∑

T∈Th

∑

F∈FT

hF‖∇v |T ·nF‖
2
L2(F )

)1/2

|w |J

◮ Discrete trace inequality ∀T ∈ Th, ∀F ∈ FT

h
1/2
F ‖vh‖L2(F ) ≤ Ctr‖vh‖L2(T ) ∀vh ∈ P

k
d(Th)

Ctr depends on d , k, and mesh-regularity

◮ Hence, for all (vh,w) ∈ Vh × V†h

∣
∣
∣
∣
∣

∑

F∈Fh

∫

F

{∇hvh}·nF [[w ]]

∣
∣
∣
∣
∣
≤ CtrN

1/2
∂ ‖∇hvh‖[L2(Ω)]d |w |J
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SIP VII

◮ Discrete coercivity: Assume η > C 2
trN∂ Then,

ah(vh, vh) = ‖∇hvh‖
2
[L2(Ω)]d − 2

∑

F∈Fh

∫

F

{∇hvh}·nF [[vh]] + η|vh|
2
J

≥ ‖∇hvh‖
2
[L2(Ω)]d − 2CtrN

1/2
∂ ‖∇hvh‖[L2(Ω)]d |vh|J + η|vh|

2
J

≥ Cstb|||vh|||
2

with Cstb =
η−C 2

trN∂

η+C 2
trN∂

min(1,C 2
trN∂)

◮ Corollary: The discrete problem is well-posed

Alexandre Ern Université Paris-Est, CERMICS

Discontinuous Galerkin methods



Introduction Advection-reaction The Laplacian PDEs with diffusion Incompressible NS

SIP VIII

◮ The minimal value for η is difficult to determine precisely because of
the presence of Ctr

◮ This can be circumvented by modifying the penalty strategy

◮ Discrete inf-sup stability (instead of coercivity) holds without
penalty

◮ in 1D, for k ≥ 2 [Burman, AE, Mozolevski, Stamm ’07]
◮ in 2D and 3D, for piecewise affine polynomials supplemented by

element bubbles [Burman & Stamm ’08]
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SIP IX

◮ Boundedness ∀(v ,wh) ∈ V†h × Vh, ah(v ,wh) . |||v |||∗|||wh||| with

|||v |||2∗
def
= |||v |||2 +

∑

T∈Th

hT‖∇v |T ·nT‖
2
L2(∂T )

◮ Error estimate |||u − uh||| . infyh∈Vh
|||u − yh|||∗

◮ Convergence rate |||u − uh||| . hk if u ∈ Hk+1(Th)
◮ optimal for the gradient
◮ optimal for the jumps and boundary values
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SIP X

Error analysis using only the |||·|||∗-norm

◮ The |||·|||- and |||·|||∗-norms are uniformly equivalent on Vh

◮ The SIP bilinear form is coercive and bounded using only |||·|||∗

◮ Error estimate |||u − uh|||∗ . infyh∈Vh
|||u − yh|||∗

◮ Convergence rate |||u − uh|||∗ . hk if u ∈ Hk+1(Th)
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Discontinuous Galerkin methods



Introduction Advection-reaction The Laplacian PDEs with diffusion Incompressible NS

SIP XI

L2-norm error estimate

◮ Elliptic regularity There is Cell s.t for all ψ ∈ L2(Ω), the unique
function ζ ∈ H1

0 (Ω) s.t. −△ζ = ψ satisfies ‖ζ‖H2(Ω) ≤ Cell‖ψ‖L2(Ω)

◮ Ω convex =⇒ elliptic regularity

◮ Assume elliptic regularity. Then,

‖u − uh‖L2(Ω) . h|||u − uh|||∗

so that ‖u − uh‖L2(Ω) . hk+1 if u ∈ Hk+1(Th)
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SIP XII
◮ Let ζ ∈ H1

0 (Ω) ∩ H2(Ω) be s.t. −△ζ = u − uh; hence,

‖u − uh‖
2
L2(Ω) =

∫

Ω

(−△ζ)(u − uh) = ah(ζ, u − uh)

◮ Exploiting the symmetry of ah

‖u − uh‖
2
L2(Ω) = ah(u − uh, ζ)

◮ Owing to consistency, boundedness, affine polynomial
approximation, and elliptic regularity

‖u − uh‖
2
L2(Ω) = ah(u − uh, ζ − π

1
hζ)

. |||u − uh|||∗|||ζ − π
1
hζ|||∗

. |||u − uh|||∗h‖ζ‖H2(Th)

. |||u − uh|||∗h‖u − uh‖L2(Ω)

where π1
h is the L2-orthogonal projection onto P1

d(Th) ⊂ Vh
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Liftings and discrete gradients I

◮ Let l ≥ 0

◮ For any F ∈ Fh, rlF : L2(F ) −→ [Pl
d(Th)]

d is s.t.

∫

Ω

rlF (ϕ)·τh =

∫

F

{τh}·nFϕ ∀τh ∈ [Pl
d(Th)]

d

◮ rlF is vector-valued, colinear to nF

◮ support of rlF reduces to the one or two mesh elements sharing F

◮ Liftings were introduced by Bassi, Rebay et al (’97) in the context of
incompressible flows

◮ They were analyzed by Brezzi et al (’00) for the Poisson problem
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Liftings and discrete gradients II

◮ Main stability result For all ϕ ∈ L2(F )

‖ rlF (ϕ)‖[L2(Ω)]d ≤ Ctrh
−1/2
F ‖ϕ‖L2(F )

◮ Proof: Use Cauchy–Schwarz and discrete trace inequality

‖ rlF (ϕ)‖2[L2(Ω)]d =

∫

Ω

rlF (ϕ)· rlF (ϕ) =

∫

F

{rlF (ϕ)}·nFϕ

≤

(
1

hF

∫

F

|ϕ|2
)1/2

×

(

hF

∫

F

|{rlF (ϕ)}|2
)1/2

≤ h
−1/2
F ‖ϕ‖L2(F ) × Ctr‖ r

l
F (ϕ)‖[L2(Ω)]d
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Liftings and discrete gradients III

Global lifting

◮ For all v ∈ H1(Th)

Rl
h([[v ]])

def
=
∑

F∈Fh

rlF ([[v ]]) ∈ [Pl
d(Th)]

d

◮ Main stability result

‖Rl
h([[v ]])‖[L2(Ω)]d ≤ CtrN

1/2
∂ |v |J
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Liftings and discrete gradients IV

◮ Proof

‖Rl
h([[v ]])‖2[L2(Ω)]d =

∑

T∈Th

∫

T

∣
∣
∣
∣
∣

∑

F∈FT

rlF ([[v ]])

∣
∣
∣
∣
∣

2

≤
∑

T∈Th

card(FT )
∑

F∈FT

∫

T

| rlF ([[vh]])|
2

≤ max
T∈Th

card(FT )
∑

T∈Th

∑

F∈FT

∫

T

| rlF ([[vh]])|
2

= N∂

∑

F∈Fh

‖ rlF ([[v ]])‖2[L2(Ω)]d

and recall ‖ rlF ([[v ]])‖[L2(Ω)]d ≤ Ctrh
−1/2
F ‖[[v ]]‖L2(F )
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Liftings and discrete gradients V

Discrete gradient

◮ Let l ≥ 0

◮ G l
h : H1(Th) −→ [L2(Ω)]d is s.t.

G l
h(v)

def
= ∇hv − Rl

h([[v ]])

◮ Main stability result: For all v ∈ H1(Th)

‖G l
h(v)‖[L2(Ω)]d ≤ (1 + C 2

trN∂)1/2|||v |||

◮ Discrete gradients enjoy important properties (discrete Sobolev
embedding, compactness): see 4th lecture and [Di Pietro & AE ’10]
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Liftings and discrete gradients VI

Reformulation of the SIP bilinear form

◮ Recall

ah(vh,wh) =

∫

Ω

∇hvh·∇hwh −
∑

F∈Fh

∫

F

{∇hvh}·nF [[wh]]

−
∑

F∈Fh

∫

F

[[vh]]{∇hwh}·nF +
∑

F∈Fh

η

hF

∫

F

[[vh]][[wh]]

◮ Observe that for l ∈ {k − 1, k}

∑

F∈Fh

∫

F

{∇hvh}·nF [[wh]] =

∫

Ω

∇hvh·R
l
h([[wh]])
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Liftings and discrete gradients VII

◮ Hence,

ah(vh,wh) =

∫

Ω

∇hvh·∇hwh −

∫

Ω

∇hvh·R
l
h([[wh]])−

∫

Ω

Rl
h([[vh]])·∇hwh

+
∑

F∈Fh

η

hF

∫

F

[[vh]][[wh]]

that is

ah(vh,wh) =

∫

Ω

G l
h(vh)·G

l
h(wh) + ŝh(vh,wh)

with

ŝh(vh,wh)
def
=
∑

F∈Fh

η

hF

∫

F

[[vh]][[wh]]−

∫

Ω

Rl
h([[vh]])·R

l
h([[wh]])
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Liftings and discrete gradients VIII

◮ Discrete coercivity: For all vh ∈ Vh

ah(vh, vh) ≥ ‖G
l
h(vh)‖

2
[L2(Ω)]d + (η − C 2

trN∂)|vh|
2
J

◮ The reformulated SIP bilinear form is equivalent to the original one
only at the discrete level

◮ at the continuous level, a difference appears because liftings are
discrete objects

◮ the reformulated bilinear form is only weakly consistent

◮ The importance of discrete gradients has been recognized recently in
the context of nonlinear problems

◮ nonlinear elasticity [Lew et al. ’04], nonlinear variational problems
[Buffa & Ortner ’09, Burman & AE ’08]
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Liftings and discrete gradients IX

Numerical fluxes

◮ Let T ∈ Th and let ξ ∈ Pk
d(T )

◮ For the exact solution (ǫT ,F = nT ·nF )

∫

T

∇u·∇ξ +
∑

F∈FT

ǫT ,F

∫

F

ΦF (u)ξ =

∫

T

f ξ

with the exact flux ΦF (u) = −∇u·nF

◮ For the discrete solution
∫

T

G l
h(uh)·∇ξ +

∑

F∈FT

ǫT ,F

∫

F

φF (uh)ξ =

∫

T

f ξ

with the numerical flux φF (uh) = −{∇huh}·nF + η
hF

[[uh]]
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Diffusive flux reconstruction I

◮ Recall that the exact diffusive flux is σ = −∇u

◮ ∇·σ = f
◮ σ ∈ H(div; Ω)

◮ We want to postprocess uh so as to build a discrete vector-valued
field σh s.t.

◮ σh ∈ H(div; Ω) ⇐⇒ the normal component of σh is continuous
across any interface

◮ σh is an accurate approximation of σ = −∇u
◮ ∇·σh is an accurate approximation of ∇·σ = f

◮ Postprocessing should have a negligible cost
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Diffusive flux reconstruction II

◮ Diffusive flux reconstruction has been recently introduced in the
context of a posteriori error estimates

◮ see [Kim ’07, AE, Nicaise & Vohraĺık ’07]

◮ It is also important in groundwater flow problems to reconstruct the
Darcy velocity

◮ For simplicity, we focus on matching simplicial meshes
◮ general meshes can be handled by postprocessing the diffusive flux in

a matching simplicial submesh and solving local Neumann problems
[Ern & Vohraĺık ’09]

Alexandre Ern Université Paris-Est, CERMICS
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Diffusive flux reconstruction III

◮ Direct diffusive flux reconstruction [Bastian & Rivière ’03]
◮ local reconstruction using neighboring values of −∇huh

◮ projection onto Brezzi–Douglas–Marini FE space
◮ L2-norm estimate, no estimate on the divergence

◮ Scheme-oriented diffusive flux reconstruction [Kim ’07, AE, Nicaise
& Vohraĺık ’07]

◮ local reconstruction using dG scheme explicitly
◮ projection onto Raviart–Thomas–Nédélec FE space
◮ H(div; Ω)-norm estimate
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Diffusive flux reconstruction IV

◮ Raviart–Thomas–Nédélec FE spaces (l ≥ 0)

RTNl
d(Th) =

{
τh ∈ H(div; Ω) | ∀T ∈ Th, τh|T ∈ [Pl

d(T )]d + xPl
d (T )

}

◮ Examples of dof’s for l ∈ {0, 1}

l = 0 l = 1

◮ More generally, dof’s are
◮ on each face, moments of normal components against q ∈ Pl

d−1(F )
◮ on each element, moments against r ∈ [Pl−1

d (T )]d
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Diffusive flux reconstruction V

◮ Construction of σh ∈ RTN
l
d(Th) (l ∈ {k − 1, k})

◮ Direct prescription of dof’s
◮ on each face F ∈ Fh,

Z

F

(σh·nF )q =

Z

F

φF (uh)q ∀q ∈ Pl
d−1(F )

◮ in each element T ∈ Th,

Z

T

σh·r = −

Z

T

G
k−1
h (uh)·r ∀r ∈ [Pl−1

d (T )]d
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Diffusive flux reconstruction VI

◮ ∇·σh is an optimal approximation of f

∫

T

(∇·σh)ξ =

∫

T

f ξ ∀T ∈ Th ∀ξ ∈ P
l
d(Th)

◮ Proof
∫

T

(∇·σh)ξ = −

∫

T

σh·∇ξ +

∫

∂T

(σh·nT )ξ

= −

∫

T

σh·∇ξ +
∑

F∈FT

ǫT ,F

∫

F

(σh·nF )ξ

=

∫

T

G k−1
h (uh)·∇ξ +

∑

F∈FT

ǫT ,F

∫

F

φF (uh)ξ =

∫

T

f ξ

Alexandre Ern Université Paris-Est, CERMICS
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Diffusive flux reconstruction VII

◮ L2-norm estimate

‖σh − σ‖[L2(Ω)]d . η|||u − uh|||+Rosc,Th

with the data oscillation term Rosc,Th
= h‖f − πhf ‖L2(Ω)

◮ This estimate is optimal if l = k − 1 and sub-optimal if l = k

◮ Mixed FE with RTNk
d(Th)/P

k
d(Th) yield an O(hk+1) L2-estimate on

the flux
◮ Mixed FE can often be implemented as a cell-centered method, but

with a wider stencil than dG

Alexandre Ern Université Paris-Est, CERMICS
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Variations on symmetry and penalty I

Variations on penalty

◮ Recall that for SIP

ah(vh,wh) =

∫

Ω

G l
h(vh)·G

l
h(wh) + ŝh(vh,wh)

with

ŝh(vh,wh) =
∑

F∈Fh

η

hF

∫

F

[[vh]][[wh]]−

∫

Ω

Rl
h([[vh]])·R

l
h([[wh]])
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Variations on symmetry and penalty II

◮ The idea of Bassi and Rebay (’97) is to stabilize with

ŝh(vh,wh) =
∑

F∈Fh

η

∫

Ω

rlF ([[vh]])· r
l
F ([[wh]])−

∫

Ω

Rl
h([[vh]])·R

l
h([[wh]])

◮ The key advantage is that discrete coercivity holds true for η > N∂ ,
thereby removing the dependency on Ctr
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Variations on symmetry and penalty III

◮ A further alternative is to stabilize with

ŝh(vh,wh) =
∑

F∈Fh

η

hF

∫

F

[[vh]][[wh]]

yielding

ah(vh,wh) =

∫

Ω

G l
h(vh)·G

l
h(wh) +

∑

F∈Fh

η

hF

∫

F

[[vh]][[wh]]

◮ The advantage is that discrete coercivity holds true for η > 0

◮ However, the term
∫

Ω
Rl

h([[vh]])·R
l
h([[wh]]) widens the stencil to

neighbors of neighbors
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Variations on symmetry and penalty IV

∫

Ω

∇hvh·∇hwh

−

∫

Ω

∇hvh·R
l
h([[wh]])−

∫

Ω

Rl
h([[vh]])·∇hwh

+
∑

F∈Fh

η

hF

∫

F

[[vh]][[wh]]

∫

Ω

Rl
h([[vh]])·R

l
h([[wh]])
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Variations on symmetry and penalty V

Variations on symmetry

◮ Let θ ∈ {−1, 0, 1} and set

ah(vh,wh) =

∫

Ω

∇hvh·∇hwh −
∑

F∈Fh

∫

F

{∇hvh}·nF [[wh]]

− θ
∑

F∈Fh

∫

F

[[vh]]{∇hwh}·nF +
∑

F∈Fh

η

hF

∫

F

[[vh]][[wh]]

◮ θ = 1 yields SIP

◮ θ = 0 yields Incomplete IP [Dawson, Sun & Wheeler ’04]
◮ one motivation can be to use the broken gradient instead of the

discrete gradient in the local formulation

Z

T

∇huh·∇ξ +
X

F∈FT

ǫT ,F

Z

F

φF (uh)ξ =

Z

T

f ξ
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Discontinuous Galerkin methods



Introduction Advection-reaction The Laplacian PDEs with diffusion Incompressible NS

Variations on symmetry and penalty VI

◮ θ = −1 yields Nonsymmetric IP
◮ introduced by Oden, Babuška & Baumann (’98) without penalty

(η = 0): numerical experiments
◮ analysis with penalty by Rivière, Girault & Wheeler (’99, ’01)
◮ discrete inf-sup stability without penalty in 2D for k ≥ 2 [Larson &

Niklasson ’04]

◮ Energy-error estimates for {S,I,N}IP are similar

◮ Optimal L2-error estimates are not available for {N,I}PG because
the duality argument requires symmetry

◮ optimal L2-error estimates can be recovered by using over-penalty
[Brenner & Owens ’07]
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Salient points of this lecture

◮ Derivation of SIP ensuring consistency

◮ Energy error analysis of SIP using the |||·|||-norm

◮ The concept of discrete gradient

◮ The possibility of cheap and accurate diffusive flux reconstruction
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PDEs with diffusion

◮ Darcy flows

◮ Diffusion-advection-reaction

◮ Two-phase porous media flows
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Darcy flows I

Model problem

◮ Let f ∈ L2(Ω); seek u : Ω→ R s.t. −∇·(κ∇u) = f in Ω and
u|∂Ω = 0

◮ Weak formulation: u ∈ V
def
= H1

0 (Ω) s.t.

a(u, v)
def
=

∫

Ω

κ∇u·∇v =

∫

Ω

fv ∀v ∈ V

◮ κ is scalar-valued, bounded, and uniformly positive in Ω
◮ the model problem is well-posed

◮ Specific numerical difficulty: κ is highly contrasted
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Darcy flows II

◮ We assume that κ is piecewise constant on a given polyhedral
partition PΩ = {Ωi}1≤i≤NΩ

of Ω

◮ σ = −κ∇u is the diffusive flux
◮ by its definition, σ ∈ H(div; Ω)
◮ the normal component of σ is continuous across any interface
◮ the normal component of ∇u is not if κ jumps

◮ Important application: groundwater flows
◮ u is the hydraulic head, σ the Darcy velocity
◮ for each geological layer Ωi , κ|Ωi

is its hydraulic conductivity
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Darcy flows III

Discretization

◮ Compatible mesh with the partition PΩ

◮ Discrete space Vh
def
= Pk

d(Th) with k ≥ 1

Alexandre Ern Université Paris-Est, CERMICS
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Darcy flows IV

◮ A rather natural way to extend SIP to heterogeneous diffusion is to
set [Houston, Schwab & Süli ’02]

ah(vh,wh) =

∫

Ω

κ∇hvh·∇hwh −
∑

F∈Fh

∫

F

{κ∇hvh}·nF [[wh]]

−
∑

F∈Fh

∫

F

[[vh]]{κ∇hwh}·nF +
∑

F∈Fh

η
γκ,F

hF

∫

F

[[vh]][[wh]]

◮ ah yields consistency and is symmetric

◮ To achieve discrete coercivity, the penalty coefficient must
depend on κ

◮ For the above choice, γκ,F = {κ} = 1
2
(κ1 + κ2), F = ∂T1 ∩ ∂T2

◮ For high contrasts, γκ,F is controlled by the highest value (the most
permeable layer)
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Darcy flows V

◮ We believe instead that for high contrasts, γκ,F should be controlled
by the lowest value (the least permeable layer)

◮ This is the approach encountered in Mixed FE and FV

◮ Moreover, in the presence of dominant advection, diffusion
heterogeneities can trigger internal layers and even solution
discontinuities for locally zero diffusion

◮ see [Gastaldi & Quarteroni ’89, Di Pietro, AE & Guermond ’08]
◮ penalizing the jump at such interfaces does not make good sense

◮ One simple choice is harmonic averaging

γκ,F
def
=

2κ1κ2

κ1 + κ2

but to achieve discrete coercivity requires modifying the consistency
and symmetry terms
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Darcy flows VI

Weighted averages

◮ To any interface F ∈ F i
h with F = ∂T1 ∩ ∂T2, we assign two

nonnegative real numbers ωT1,F and ωT2,F s.t.

ωT1,F + ωT2,F = 1

◮ Weighted average {v}ω,F
def
= ωT1,F v |T1

+ ωT2,F v |T2

T1

T2

F

◮ The choice ωT1,F = ωT2,F = 1
2 recovers usual arithmetic averages

◮ On the boundary with F = ∂T ∩ ∂Ω, {v}ω,F = v |T

Alexandre Ern Université Paris-Est, CERMICS
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Darcy flows VII

Symmetric Weighted IP (SWIP)

ah(vh,wh) =

∫

Ω

κ∇hvh·∇hwh −
∑

F∈Fh

∫

F

{κ∇hvh}ω·nF [[wh]]

−
∑

F∈Fh

∫

F

[[vh]]{κ∇hwh}ω·nF +
∑

F∈Fh

η
γκ,F

hF

∫

F

[[vh]][[wh]]

◮ Discrete problem Seek uh ∈ Vh s.t.

ah(uh,wh) =

∫

Ω

fwh ∀wh ∈ Vh
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Darcy flows VIII

◮ Diffusion-dependent weighted averages

ωT1,F
def
=

κ2

κ1 + κ2
ωT2,F

def
=

κ1

κ1 + κ2

◮ homogeneous diffusion yields back arithmetic averages
◮ dG methods with non-arithmetic averages were considered by

Stenberg (’98), Heinrich et al. (’02–’05), Hansbo & Hansbo (’02)
◮ diffusion-dependent weighted averages were introduced by Burman &

Zunino (’06)
◮ the SWIP method was introduced and analyzed by [AE, Stephansen

& Zunino ’09, Di Pietro, AE & Guermond ’08]
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Darcy flows IX

◮ The SWIP bilinear form yields consistency since

ah(v ,w) = −
∑

T∈Th

∫

T

∇·(κ∇v)w +
∑

F∈F i
h

∫

F

[[κ∇hv ]]·nF{w}ω

−
∑

F∈Fh

∫

F

[[v ]]{κ∇hw}ω·nF +
∑

F∈Fh

η
γκ,F

hF

∫

F

[[v ]][[w ]]

with {w}ω = ωT2,Fw |T1
+ ωT1,Fw |T2

◮ As a result, if the exact solution is smooth enough,

ah(u,wh) =

∫

Ω

fwh ∀wh ∈ Vh
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Darcy flows X

◮ Discrete stability norm

|||v |||2
def
= ‖κ1/2∇hv‖

2
[L2(Ω)]d + |v |2J,κ

with diffusion-dependent jump seminorm

|v |2J,κ
def
=
∑

F∈Fh

γκ,F

hF

‖[[v ]]‖2L2(F )

◮ Bound on consistency term ∀(v ,wh) ∈ V†h × V†h

˛

˛

˛

˛

˛

˛

X

F∈Fh

Z

F

{κ∇hv}ω·nF [[w ]]

˛

˛

˛

˛

˛

˛

≤

0

@

X

T∈Th

X

F∈FT

hF‖κ
1/2

∇v |T ·nF‖
2
L2(F )

1

A

1/2

|w |J,κ

since 2(ω2
1κ1 + ω2

2κ2) = γκ,F

Alexandre Ern Université Paris-Est, CERMICS
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Darcy flows XI

◮ Discrete coercivity: Assume η > C 2
trN∂ Then, for all vh ∈ Vh

Cstb|||vh|||
2 ≤ ah(vh, vh)

with Cstb independent of κ

◮ Boundedness For all (v ,wh) ∈ V†h × Vh

ah(v ,wh) ≤ Cbnd|||v |||∗|||wh|||

with Cbnd independent of κ and

|||v |||2∗
def
= |||v |||2 +

∑

T∈Th

hT‖κ
1/2∇v ·nT‖

2
L2(∂T )
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Darcy flows XII

◮ Error estimate |||u − uh||| ≤ C infyh∈Vh
|||u − yh|||∗ with C independent

of κ

◮ Convergence rate |||u − uh||| . ‖κ‖
1/2
L∞(Ω)h

k if u ∈ Hk+1(Th)

◮ optimal for the gradient, jumps, and boundary values

◮ An optimal O(hk+1)-L2-norm error estimate can be proven using
duality techniques

◮ A local formulation with numerical fluxes can be derived
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Darcy flows XIII
◮ Local lifting operator rlF ,κ : L2(F )→ [Pl

d(Th)]
d s.t. ∀ϕ ∈ L2(F )

∫

Ω

κ rlF ,κ(ϕ)·τh =

∫

F

{κτh}ω·nFϕ ∀τh ∈ [Pl
d(Th)]

d

◮ Discrete gradient G l
h,κ(v)

def
= ∇hv −

∑

F∈Fh
rlF ,κ([[v ]]) ∈ [Pl

d(Th)]
d

◮ Let T ∈ Th and let ξ ∈ Pk
d(T ); then, for l ∈ {k − 1, k}

∫

T

κG l
h,κ(uh)·∇ξ +

∑

F∈FT

ǫT ,F

∫

F

φF (uh)ξ =

∫

T

f ξ

with ǫT ,F = nT ·nF and numerical flux

φF (uh)
def
= −{κ∇huh}ω·nF + η

γκ,F

hF

[[uh]]
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Darcy flows XIV

Regularity of exact solution

◮ Diffusion heterogeneities can trigger solution singularities

◮ In 2D, the exact solution ∈W 2,p(PΩ), p > 1 [Nicaise & Sändig ’94]

◮ For all T ∈ Th, ∇u·n|∂T ∈ L1(∂T ) =⇒ consistency can be asserted
in the usual way

◮ Owing to Sobolev embedding, u ∈ H1+α(Th) with α = 2− 2
p
> 0

◮ An O(hα) |||·|||-norm error estimate can be proven
◮ see [Di Pietro & AE ’10]
◮ see also [Rivière & Wihler ’10] for the Poisson problem
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Darcy flows XV

Diffusion anisotropy

◮ In some applications (e.g., groundwater flow), κ is Rd,d -valued,
symmetric, bounded, and uniformly PD

◮ The SWIP method is then designed using the normal component of
the diffusion tensor at each interface
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Diffusion-advection-reaction I

Model problem

◮ Let f ∈ L2(Ω); seek u : Ω→ R s.t. ∇·(−κ∇u + βu) + µ̃u = f in Ω
and u|∂Ω = 0

◮ Weak formulation: u ∈ V
def
= H1

0 (Ω) s.t.

a(u, v)
def
=

∫

Ω

(κ∇u − uβ)·∇v +

∫

Ω

µ̃uv =

∫

Ω

fv ∀v ∈ V

◮ κ is scalar-valued, bounded, and uniformly positive in Ω
◮ β is Lipschitz, µ̃ ∈ L∞(Ω), µ̃ + 1

2
∇·β ≥ µ0 > 0 in Ω

◮ the model problem is well-posed: For all v ∈ V

a(v , v) ≥ ‖κ1/2∇v‖2
[L2(Ω)]d + µ0‖v‖

2
L2(Ω)
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Diffusion-advection-reaction II

◮ Φ(u)
def
= −κ∇u + uβ is the diffusive-advective flux

◮ by its construction, Φ(u) ∈ H(div; Ω)
◮ the normal component of Φ(u) is continuous across any interface

◮ Nonconservative form of advective term
∇·(−κ∇u) + β·∇u + µu = f where µ = µ̃+∇·β

◮ The fully conservative form is more natural from a physical
viewpoint
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Diffusion-advection-reaction III

Discretization

◮ κ is piecewise constant on a given polyhedral partition PΩ of Ω

◮ Meshes are compatible with this partition

◮ Discrete space Vh
def
= Pk

d(Th) with k ≥ 1

◮ Key idea: Combine SWIP with upwinding
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Diffusion-advection-reaction IV

ah(v ,w) =

∫

Ω

(κ∇hv − vβ)·∇hw +

∫

Ω

µ̃vw

−
∑

F∈Fh

∫

F

({κ∇hv}ω + {βv})·nF [[w ]]

−
∑

F∈Fh

∫

F

[[v ]]{κ∇hw}ω·nF +
∑

F∈Fh

∫

F

γκ,β,F [[v ]][[w ]]

◮ for F ∈ F i
h, γκ,β,F = η

γκ,F

hF
+ 1

2
|β·nF |

◮ for F ∈ Fb
h , γκ,β,F = η

γκ,F

hF
+ (β·n)⊖

◮ For dominant diffusion with local Péclet numbers
hF |β·nF |/γκ,F . 1, the amount of penalty introduced by SWIP is
sufficient and centered fluxes can be used for advection and the
boundary penalty term with (β·n)⊖ can be dropped

Alexandre Ern Université Paris-Est, CERMICS
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Diffusion-advection-reaction V

◮ Discrete problem Seek uh ∈ Vh s.t.

ah(uh,wh) =

∫

Ω

fwh ∀wh ∈ Vh

◮ The exact solution is such that [[u]] = 0 for all F ∈ Fh and
[[Φ(u)]]·nF = 0 for all F ∈ F i

h

◮ [[u]] = 0 =⇒ [[βu]]·nF = (β·nF )[[u]] = 0

◮ Hence, [[κ∇u]]·nF = 0 for all F ∈ F i
h
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Diffusion-advection-reaction VI

◮ The previous consistency proofs for SWIP and upwind can be
combined

a(u,wh) =

∫

Ω

∇·(−κ∇u)wh +

∫

Ω

∇·(βu)wh +

∫

Ω

µ̃uwh

+
∑

F∈F i
h

∫

F

[[κ∇u]]·nF{wh}ω −
∑

F∈F i
h

∫

F

(β·nF )[[u]]{wh}

=

∫

Ω

fwh
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Diffusion-advection-reaction VII

◮ Recall discrete coercivity norm for SWIP for η > C 2
trN∂

|||v |||2swip = ‖κ1/2∇hv‖
2
[L2(Ω)]d +

∑

F∈Fh

γκ,F

hF

‖[[v ]]‖2L2(F )

◮ Recall discrete coercivity norm for upwind

|||v |||2upw = ‖v‖2L2(Ω) +
∑

F∈Fb
h

∫

F

1
2 |β·n|v

2 +
∑

F∈F i
h

∫

F

1
2 |β·nF |[[v ]]2

◮ Letting |||·|||2
def
= |||·|||2swip + |||·|||2upw yields for all vh ∈ Vh

|||vh|||
2 . ah(vh, vh)

and therefore discrete coercivity and well-posedness
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Diffusion-advection-reaction VIII

◮ Boundedness on OSS for upwind combined with full boundedness for
SWIP yields boundedness on OSS for DAR

◮ Assuming u ∈ Hk+1(Th) typically yields the estimate

|||u − uh|||swip + |||u − uh|||upw . ‖κ‖
1/2
L∞(Ω)h

k + ‖β‖
1/2

[L∞(Ω)]d
hk+1/2

◮ in the dominant diffusion regime, |||u − uh|||swip converges as O(hk)
as for pure diffusion

◮ in the dominant advection regime, |||u − uh|||upw converges as
O(hk+1/2) as for pure advection-reaction

◮ An optimal error estimate on the advective derivative can be
established by proving discrete inf-sup stability with a stronger norm
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Diffusion-advection-reaction IX

Locally vanishing diffusion

◮ κ is scalar-valued and vanishes locally; more generally, κ is
tensor-valued and some of its eigenvalues vanish locally

◮ elliptic/hyperbolic interface

I0,Ω
def
= {x ∈ ∂Ωi ∩ ∂Ωj | n

t
I (κ|Ωi

)nI > nt
I (κ|Ωj

)nI = 0}

where nI is a normal to ∂Ωi ∩ ∂Ωj

◮ I0,Ω is decomposed into

I+
0,Ω

def
= {x ∈ I0,Ω | (β·nI )(x) > 0}

I−0,Ω
def
= {x ∈ I0,Ω | (β·nI )(x) < 0}

and for simplicity we assume that (β·nI )(x) 6= 0 in I0,Ω

Alexandre Ern Université Paris-Est, CERMICS
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Diffusion-advection-reaction X
◮ The interface conditions on I0,Ω are

[[−κ∇u + βu]]·nI = 0 on I0,Ω

[[u]] = 0 on I+
0,Ω

so that u can be discontinuous on I−0,Ω

◮ see [Gastaldi & Quarteroni ’89, Di Pietro, AE & Guermond ’08]

◮ Example with κ|Ω1
=
[

1 0
0 0.5

]

and κ|Ω2
=
[

0 0
0 1

]

Ω1

Ω2

I+
0,Ω

I−0,Ω

β

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

1
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Diffusion-advection-reaction XI
◮ Weighted averages are crucial to ensure consistency

◮ Let F i∗
h collect the interfaces in I−0,Ω

◮ For the SWIP part, since {wh}ω = wh|Ω1
,

a
swip
h (u,wh) = −

∫

Ω

∇·(κ∇u)wh +
∑

F∈F i∗
h

∫

F

[[κ∇hu]]·nFwh|Ω1

◮ For the upwind part,

a
upw
h (u,wh) =

∫

Ω

∇·(βu)wh +

∫

Ω

µ̃uwh −
∑

F∈F i∗
h

∫

F

(β·nF )[[u]]wh|Ω1

◮ Owing to conservation for the diffusive-advective flux,

ah(u,wh) = a
swip
h (u,wh) + a

upw
h (u,wh) =

∫

Ω

fwh
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Diffusion-advection-reaction XII

◮ Example: Unit square divided into 4 subdomains

◮ Strong x-diffusion in 2 quadrants and strong y -diffusion in the
others, anisotropy ratio 106

◮ Rotating advective field

SWIP+upw SIP+upw

0 1
0

1

−1e−06

6.66e−05

0.000134

0.000202

0.000269

0.000337

0.000405

0.000472

0.00054

0.000607

0.000675

0

1

0 1
0

1

−3.3e−05

3.68e−05

0.000107

0.000176

0.000246

0.000316

0.000386

0.000456

0.000525

0.000595

0.000665

0

1

◮ SIP+upw oscillates because it enforces zero jumps near
underresolved layers
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Two-phase porous media flows I

◮ We consider two-phase, immiscible, incompressible flows through
isothermal and indeformable porous media

◮ motivated by secondary oil recovery and oil trapping effects
◮ several dG methods available [Bastian ’99, Bastian & Rivière ’03,

Eslinger ’05, Klieber & Rivière ’06, Epshteyn & Rivière ’07]

◮ Heterogeneous media with distinct capillary pressure curves lead to
discontinuous saturations

◮ FV methods designed by [Enchéry, Eymard & Michel ’06, Cancès
’09, Cancès, Gallouët & Porretta ’09]

◮ dG method recently designed by [AE, Mozolevski & Schuh ’10]
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Two-phase porous media flows II

◮ Mass conservation for each phase

∂t(φSα) +∇·uα = qα α ∈ {n,w}

φ: (constant) porosity, Sα: phase saturation, uα: phase velocity, qα:
source/sink

◮ Sn + Sw = 1, S := Sn ∈ [Snr , 1− Swr ]

◮ Generalized Darcy’s law (no gravity)

uα = −Kλα(S)∇pα

K : absolute permeability, λα: phase mobility, pα: phase pressure

◮ Capillary pressure
π(S) = pn − pw
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Two-phase porous media flows III

◮ Fractional flow formulation
◮ Total mobility λ = λw + λn, fractional flow f = λn/λ
◮ Global pressure p (Chavant & Jaffré ’86)

◮ Total velocity u = uw + un s.t.

u = −λK∇p ∇·u = qw + qn

◮ Non-wetting phase mass conservation becomes

φ∂tS +∇·(uf (S))−∇·(ǫ(S)π′(S)∇S) = qn

with ǫ(S) := λw (S)f (S)K
◮ degeneracy ǫ(Snr ) = ǫ(1 − Swr ) = 0
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Two-phase porous media flows IV

◮ Sequential approach to march in time: For m = 0, 1, . . .

1. solve elliptic equation for global pressure

∇·(λ(Sm)K∇p
m+1) = q

m+1
w + q

m+1
n

2. reconstruct total velocity

u
m+1 = −λ(Sm)K∇p

m+1

3. advance in time saturation equation (semi-implicit Euler)

φ Sm+1−Sm

τm + ∇·(um+1
f (Sm+1)) −∇·(ǫ(Sm)π′(Sm)∇S

m+1) = q
m+1
n

◮ S0 given by IC

◮ BC’s can be of Dirichlet or Neumann type for both pressure and
saturation
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Two-phase porous media flows V

Interface conditions

◮ For simplicity, two subdomains Ωβ , β ∈ {1, 2}, with different rock
properties

◮ Up to rescaling, both Sβ ’s take values in [Snr , 1− Swr ]

◮ Example of capillary pressure curves
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◮ Critical value S∗ = π−1
1 π2(Snr )
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Two-phase porous media flows VI

◮ We assume that the wetting phase is present on both sides of
interface

◮ Jump [[a]] := a1 − a2 on interface Γ
def
= ∂Ω1 ∩ ∂Ω2

◮ Interface conditions on saturation
◮ flux continuity [[uf (S) − ǫ(S)π′(S)∇S ]]·nΓ = 0
◮ S2 = Snr if S1 ∈ [Snr , S

∗]

◮ Interface conditions on pressure
◮ flux continuity [[−λK∇p]]·nΓ = 0
◮ continuity of (some) phase pressures

[[pw ]] = 0 if S1 ∈ [Snr , S
∗]

[[pw ]] = [[pn]] = 0 if S1 ∈ [S∗, 1 − Swr )

so that [[π(S)]] = 0 if S1 ∈ [S∗, 1 − Swr )
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Two-phase porous media flows VII

◮ Reformulate interface condition on saturation as [[S ]] = J(S1) with

J(S) =

{

S − Snr if S1 ∈ [Snr ,S
∗]

S − π−1
2 (π1(S)) if S1 ∈ [S∗, 1− Swr )

◮ for S1 ∈ [Snr , S
∗], [[S ]] = J(S1) yields S2 = Snr

◮ for S1 ∈ [S∗, 1 − Swr ), [[S ]] = J(S1) yields π1(S1) = π2(S2)

◮ Reformulate interface condition on pressure as [[p]] = G (S) with
suitable function G depending on S1 and S2
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Two-phase porous media flows VIII
Step 1: SWIP for pressure equation

◮ Find pm+1
h ∈ Vh s.t. for all zh ∈ Vh (only Dirichlet BC’s)

∑

T∈Th

∫

T

−(∇·(λ(Sm
h )K∇pm+1

h ) + qm+1
w + qm+1

n )zh

+
∑

F∈F i
h

∫

F

[[λ(Sm
h )K∇pm+1

h ]]·nF{zh}ω

+
∑

F∈Fh

∫

F

[[pm+1
h ]]′

(

−nF ·{λ(Sm
h )K∇zh}ω + η

γF

hF

[[zh]]

)

= 0

where

[[pm+1
h ]]′ =







[[pm+1
h ]] if F ∈ F i

h \ Γ

[[pm+1
h ]]− G (Sm

h ) if F ∈ Γ

pm+1
h − pD if F ∈ Fb

h
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Two-phase porous media flows IX

◮ Reference diffusion κT±,F = ‖(λ(Sm
h )K )|T±‖L∞(F )

◮ Penalty coefficient γF based on harmonic average

◮ The pressure interface condition that is weakly enforced is

[[pm+1
h ]] = G (Sm

h )

Step 2: RTN reconstruction of total velocity

◮ Direct prescription of dof’s
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Two-phase porous media flows X

Step 3: Saturation equation

◮ Implicit Euler and semi-linearization of diffusive term

φSm+1−Sm

τm +∇·(um+1f (Sm+1))−∇·(ǫ(Sm)π′(Sm)∇Sm+1) = qm+1
n

◮ SWIP for diffusive term
◮ reference diffusion κT±,F = ‖(ǫ(Sm

h )π′(Sm
h ))|T±‖L∞(F )

◮ penalty coefficient based on harmonic average

◮ Upwind for advection by total velocity
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Two-phase porous media flows XI

Numerical illustration

◮ Pushing a blob of oil
◮ φ = 0.2, Snr = Swr = 0
◮ Brooks–Corey model for mobilities with parameter θ = 2
◮ Absolute permeabilities K1 = 1 and K2 = 0.1
◮ Capillary pressure curves with S∗ = 5−1/2 ≃ 0.45

π1(s) = 5s
2 π2(s) = 4s

2 + 1

◮ 1D setting with Ω1 = (0, 1) and Ω2 = (1, 2)
◮ Dirichlet BC’s on the pressure: p|x=0 = 1.8 and p|x=2 = 1.0
◮ Mixed BC’s on saturation: S |x=0 = 0 and ǫ(S)π′(S) dS

dx
|x=2 = 0

◮ Discretization with k = 1

◮ No limiters were used
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Two-phase porous media flows XII
◮ Saturation and pressures at times {0.008, 0.015, 0.25}

◮ global (solid), capillary (dashed), wetting-phase (dotted) pressures
◮ h−1 = 80/120/160, τ = 0.001/0.0005/0.00025
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Salient points of this lecture

◮ Weighted averages and harmonic penalties for heterogeneous
diffusion

◮ Combining SWIP and upwind for diffusion-advection-reaction, robust
even for locally semidefinite diffusion

◮ These ideas are also important in nonlinear problems with fronts and
interface conditions
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Incompressible NS

◮ Discrete functional analysis

◮ Poisson problem revisited

◮ Stokes equations: pressure-velocity coupling

◮ Incompressible NS
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Discrete functional analysis I

◮ For (steady) linear PDEs, the mathematical analysis of dG methods
is relatively well-understood

◮ For nonlinear PDEs, the situation is substantially different
◮ FE-based techniques require strong regularity assumptions on the

exact solution
◮ the analysis of FV schemes proceeds along a different path, avoiding

such assumptions [Eymard, Gallouët, Herbin et al ’00–08]

◮ New discrete functional analysis tools in dG spaces are needed
◮ discrete Sobolev embeddings
◮ discrete Rellich–Kondrachov compactness result

see [Buffa & Ortner ’09, Di Pietro & AE ’10]
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Discrete functional analysis II

◮ Recall discrete stability norm for SIP (and other variants)

‖v‖2dG

def
= |||v |||2 = ‖∇hv‖

2
[L2(Ω)]d +

∑

F∈Fh

1

hF

∫

F

|[[v ]]|2

︸ ︷︷ ︸

|v |2
J

◮ Non-Hilbertian setting (1 ≤ p < +∞)

‖v‖pdG,p
def
= ‖∇hv‖

p

[Lp(Ω)]d
+
∑

F∈Fh

1

h
p−1
F

∫

F

|[[v ]]|p

◮ Broken polynomial space Vh
def
= Pk

d(Th) with k ≥ 1
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Discrete functional analysis III

Discrete Sobolev embeddings

◮ For all q such that

(i) 1 ≤ q ≤ p∗ def
= pd

d−p
if 1 ≤ p < d

(ii) 1 ≤ q < +∞ if d ≤ p < +∞

∃σq,p, ∀vh ∈ Vh, ‖vh‖Lq(Ω) ≤ σp,q‖vh‖dG,p

◮ Particular case p = 2 and d ∈ {2, 3}: For all q such that

(i) 1 ≤ q ≤ 6 if d = 3

(ii) 1 ≤ q < +∞ if d = 2

∃σq, ∀vh ∈ Vh, ‖vh‖Lq(Ω) ≤ σq‖vh‖dG
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Discrete functional analysis IV

◮ Discrete Poincaré–Friedrichs inequality (q = 2, p = 2) [Brenner ’03]

◮ q = 4, p = 2 for NS [Karakashian & Jureidini ’98]

◮ Discrete Sobolev embeddings with p = 2 [Lasis & Süli ’03]

◮ Two key differences
◮ present technique is much simpler: no elliptic regularity or

nonconforming FE interpolation ⇒ general meshes can be used
◮ embeddings are proven in discrete spaces, not in broken Sobolev

spaces
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Discrete functional analysis V

Principle of proof

◮ Inspired from [Eymard, Gallouët & Herbin ’08]

◮ BV estimate (
∑d

i=1 sup{
∫

Rd u∂iϕ, ϕ ∈ C∞
0 (Rd), ‖ϕ‖L∞(Rd ) ≤ 1})

∀vh ∈ Vh, ‖vh‖BV . ‖vh‖dG,1 . ‖vh‖dG,p (p ≥ 1)

(vh extended by zero outside Ω)

◮ Classical result (1∗
def
= d

d−1 ): ‖v‖L1∗ (Rd ) ≤
1
2d
‖v‖BV

◮ For 1 < p < d , use ‖·‖L1∗ (Rd )-estimate for |vh|
α, Hölder’s inequality

and a trace inequality

◮ For p ≥ d , use Hölder’s inequality
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Discrete functional analysis VI

Compactness for discrete gradients

◮ Let l ≥ 0

◮ Recall that G l
h : H1(Th) −→ [L2(Ω)]d is s.t.

G l
h(v)

def
= ∇hv − Rl

h([[v ]])

where
Rl

h([[v ]]) =
∑

F∈Fh

rlF ([[v ]])

and for any F ∈ Fh, rlF : L2(F ) −→ [Pl
d(Th)]

d is s.t. for all
ϕ ∈ L2(F )

∫

Ω

rlF (ϕ)·τh =

∫

F

{τh}·nFϕ ∀τh ∈ [Pl
d(Th)]

d
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Discrete functional analysis VII

Main result

◮ Let (vh)h∈H be a sequence in (Vh)h∈H bounded in the ‖·‖dG-norm

◮ Then, there exists a subsequence of (vh)h∈H and a function
v ∈ H1

0 (Ω) s.t. as h→ 0

vh → v strongly in L2(Ω)

and for all l ≥ 0

G l
h(vh) ⇀ ∇v weakly in [L2(Ω)]d
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Discrete functional analysis VIII

Principle of proof

◮ Inspired from [Eymard, Gallouët & Herbin ’08]

◮ Functions extended by zero outside Ω

◮ Uniform BV estimate on space translates

‖vh(·+ ξ)− vh‖L1(Rd ) ≤ |ξ|ℓ1‖vh‖BV ≤ C |ξ|ℓ1

◮ Kolmogorov Compactness Criterion in L1(Rd)

◮ Sobolev embedding: compactness in Lq(Rd), q > 2

◮ There is v ∈ L2(Rd) s.t. vh → v strongly in L2(Rd)
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Discrete functional analysis IX

◮ Bound on ‖·‖dG-norm =⇒ bound on discrete gradient =⇒ there is
w ∈ [L2(Ω)]d s.t. G l

h(vh) ⇀ w in [L2(Ω)]d

◮ For all ϕ ∈ [C∞
0 (Rd)]d

∫

Rd

G l
h(vh)·ϕ =

∫

Rd

∇hvh·ϕ−

∫

Rd

Rl
h([[vh]])·π

l
hϕ

= −

∫

Rd

vh∇·ϕ+
∑

F∈Fh

∫

F

{ϕ− πl
hϕ}·nF [[vh]]

converges to −
∫

Rd v∇·ϕ =⇒ ∇v = w

◮ Thus, v ∈ H1(Rd) and since v ≡ 0 outside Ω =⇒ v ∈ H1
0 (Ω)
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Poisson problem revisited I

◮ Recall SIP bilinear form for Poisson problem in Vh = Pk
d(Th) (k ≥ 1)

ah(vh,wh) =

∫

Ω

G l
h(vh)·G

l
h(wh) + ŝh(vh,wh)

with l ∈ {k − 1, k} and

ŝh(vh,wh) =
∑

F∈Fh

η

hF

∫

F

[[vh]][[wh]]−

∫

Ω

Rl
h([[vh]])·R

l
h([[wh]])

◮ Discrete coercivity (η > C 2
trN∂): For all vh ∈ Vh,

ah(vh, vh) ≥ Cstb‖vh‖
2
dG

ah(vh, vh) ≥ ‖G
l
h(vh)‖

2
[L2(Ω)]d + (η − C 2

trN∂)|vh|
2
J
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Poisson problem revisited II

◮ We no longer assert strong consistency by plugging the exact
solution into ah

◮ Only discrete arguments are used for ah

◮ Asymptotic consistency For any sequence (vh)h∈H in (Vh)h∈H

bounded in the ‖·‖dG-norm and for any smooth function
ϕ ∈ C∞

0 (Ω)

lim
h→0

ah(vh, πhϕ) = a(v , ϕ) =

∫

Ω

∇v ·∇ϕ

where v ∈ H1
0 (Ω) is the limit of the sequence (vh)h∈H given by the

compactness theorem
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Poisson problem revisited III

Asymptotic consistency for SIP

ah(vh, πhϕ) =

∫

Ω

G l
h(vh)·G

l
h(πhϕ) + ŝh(vh, πhϕ) = T1 + T2

◮ T1 →
∫

Ω
∇v ·∇ϕ as h→ 0 since

◮ G l
h(vh) ⇀ ∇v weakly in [L2(Ω)]d

◮ G l
h(πhϕ) → ∇ϕ strongly in [L2(Ω)]d

◮ T2 → 0 since |T2| . |vh|J|πhϕ|J
◮ |vh|J is bounded and |πhϕ|J → 0
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Poisson problem revisited IV

Convergence to minimal regularity solutions

Let (uh)h∈H be the sequence of discrete solutions. Then, as h→ 0, for
the whole sequence

uh → u strongly in L2(Ω)

∇huh → ∇u strongly in [L2(Ω)]d

|uh|J → 0

where u ∈ H1
0 (Ω) is the exact solution
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Poisson problem revisited V

Step 1: A priori bound

Cstb‖uh‖
2
dG ≤ a(uh, uh) =

∫

Ω

fuh ≤ σ2‖f ‖L2(Ω)‖uh‖dG

=⇒ (uh)h∈H is bounded in the ‖·‖dG-norm

Step 2: Compactness

There exists v ∈ H1
0 (Ω) such that, as h→ 0, up to a subsequence,

uh → v strongly in L2(Ω) and G l
h(uh) ⇀ ∇v weakly in [L2(Ω)]d
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Poisson problem revisited VI

Step 3: Asymptotic consistency

For all ϕ ∈ C∞
0 (Ω)

∫

Ω

f ϕ←

∫

Ω

f πhϕ = ah(uh, πhϕ)→

∫

Ω

∇v ·∇ϕ

=⇒ by density, v solves the Poisson problem

Step 4: Additional properties

◮ Uniqueness of solution =⇒ the whole sequence (uh)h∈H converges

Alexandre Ern Université Paris-Est, CERMICS
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Poisson problem revisited VII

◮ Strong convergence of the discrete gradient
◮ owing to weak convergence

lim inf
h→0

ah(uh, uh) ≥ lim inf
h→0

‖G l
h(uh)‖

2
[L2(Ω)]d ≥ ‖∇u‖2

[L2(Ω)]d

◮ Owing to stability

‖G l
h(uh)‖

2
[L2(Ω)]d ≤ ah(uh, uh) =

Z

Ω

fuh

yielding

lim sup
h→0

‖G l
h(uh)‖

2
[L2(Ω)]d = lim sup

h→0

Z

Ω

fuh =

Z

Ω

fu = ‖∇u‖2
[L2(Ω)]d

◮ Convergence of |uh|J to zero using stability
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Stokes equations I

Model problem

◮ Let f ∈ [L2(Ω)]d ; seek velocity field u : Ω→ Rd and pressure field
p : Ω→ R s.t.

−△u +∇p = f in Ω

∇·u = 0 in Ω

with u|∂Ω = 0 and 〈p〉Ω = 0

◮ Mass and momentum conservation for a slow, incompressible flow
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Stokes equations II

Weak formulation

◮ Functional spaces

U
def
= [H1

0 (Ω)]d P
def
= L2

∗(Ω)
def
=
{
q ∈ L2(Ω) | 〈q〉Ω = 0

}

◮ Bilinear forms

a(u, v)
def
=

∫

Ω

∇u·∇v b(v , q)
def
= −

∫

Ω

q∇·v

◮ Find (u, p) ∈ U × P s.t.

a(u, v) + b(v , p) =

∫

Ω

f ·v ∀v ∈ U

−b(u, q) = 0 ∀q ∈ P
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Stokes equations III

◮ Well-posedness hinges on surjectivity of divergence operator
[Ladyzhenskaya, Nečas, Bogovskĭı, Solonnikov,...]

◮ There is βΩ s.t. for all q ∈ P, there is vq ∈ U with

q = ∇·vq βΩ‖vq‖[H1(Ω)]d ≤ ‖q‖L2(Ω)

◮ Equivalent inf-sup condition

∀q ∈ P βΩ‖q‖L2(Ω) ≤ sup
w∈U\{0}

b(w , q)

‖w‖[H1(Ω)]d
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Discontinuous Galerkin methods



Introduction Advection-reaction The Laplacian PDEs with diffusion Incompressible NS

Stokes equations IV

Discrete divergence

◮ Let l ≥ 0

◮ Define D l
h : [H1(Th)]

d → Pl
d(Th) s.t.

D l
h(v)

def
=

d∑

i=1

G l
h(vi )·ei

◮ Bilinear form for discrete divergence

bh(v , q)
def
= −

∫

Ω

qD l
h(v)
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Stokes equations V

◮ Link with discrete gradient

bh(vh, qh) = −

∫

Ω

qhD
l
h(vh)

= −

∫

Ω

qh∇h·vh +
∑

F∈Fh

∫

F

[[vh]]·nF{qh}

=

∫

Ω

vh·∇hqh −
∑

F∈F i
h

∫

F

{vh}·nF [[qh]] =

∫

Ω

vh·G
l
h(qh)

with slightly modified discrete gradient

G l
h(qh)

def
= ∇hqh −

∑

F∈F i
h

r l
F ([[qh]])
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Stokes equations VI

Equal-order discontinuous spaces for velocity and pressure

◮ For k ≥ 1,

Uh
def
= [Pk

d(Th)]
d Ph

def
= Pk

d(Th)/R

◮ Discrete inf-sup condition (LBB) ∀qh ∈ Ph

β‖qh‖L2(Ω) ≤ sup
wh∈Uh\{0}

bh(wh, qh)

|||wh|||vel
+ |qh|p

with |||wh|||
2
vel

def
=
∑d

i=1 ‖wh,i‖
2
dG and

|qh|
2
p

def
=
∑

F∈F i
h

hF‖[[q]]‖2L2(F )

[Cockburn, Kanschat, Schötzau, Schwab ’02, AE & Guermond ’08]
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Stokes equations VII
◮ Discrete problem combines SIP for velocity components, discrete

divergence operator, and pressure jump penalty

◮ Find (uh, ph) ∈ Uh × Ph s.t.

ah(uh, vh) + bh(vh, ph) =

∫

Ω

f ·vh ∀vh ∈ Uh

−bh(uh, qh) + jh(ph, qh) = 0 ∀qh ∈ Ph

with

ah(vh,wh) =

d∑

i=1

(∫

Ω

G l
h(vh,i )·G

l
h(wh,i ) + ŝh(vh,i ,wh,i )

)

jh(qh, rh) =
∑

F∈F i
h

hF

∫

F

[[qh]][[rh]]
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Stokes equations VIII
Convergence for smooth solutions

◮ Strong consistency can be asserted if (u, p) smooth enough

◮ Discrete inf-sup stability with norm

|||(v , q)|||2
def
= |||v |||2vel + ‖q‖2L2(Ω) + |q|2p

◮ Boundedness with suitable |||·|||∗-norm

◮ Convergence rate if (u, p) ∈ Hk+1(Th)× Hk(Th)

|||(u − uh, p − ph)||| . hk

◮ optimal on velocity gradient, jumps, and boundary values
◮ optimal on pressure and its jumps

◮ Optimal O(hk+1)-L2-norm velocity error estimate if Cattabriga’s
regularity holds true (e.g., if Ω is convex)
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Stokes equations IX

Convergence with minimal regularity

◮ Only assume (u, p) ∈ [H1
0 (Ω)]d × L2

∗(Ω)

◮ Let ((uh, ph))h∈H be the sequence of discrete solutions. Then, as
h→ 0, for the whole sequence,

uh → u in [L2(Ω)]d

∇huh → ∇u in [L2(Ω)]d,d

|uh|J → 0

ph → p in L2(Ω)

|ph|p → 0

where (u, p) ∈ [H1
0 (Ω)]d × L2

∗(Ω) is the exact solution
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Stokes equations X

Alternative formulations

◮ Non-stabilized formulations on affine quadrilateral or hexahedral
meshes [Toselli ’02]

◮ Non-stabilized formulations on triangular meshes with
Ph = Pk−1

d (Th) [Hansbo & Larson ’02, Girault, Rivière & Wheeler
’05]

◮ Using continuous pressures
◮ mass conservation is expressed less locally
◮ earlier related work [Becker, Burman, Hansbo & Larson ’01]
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Incompressible NS I

Model problem

◮ Let f ∈ [L2(Ω)]d ; seek velocity field u : Ω→ Rd and pressure field
p : Ω→ R s.t.

−ν△u + (u·∇)u +∇p = f in Ω

∇·u = 0 in Ω

with u|∂Ω = 0 and 〈p〉Ω = 0 and d ∈ {2, 3}

◮ Mass and momentum conservation for an incompressible flow
(ν: shear viscosity)

◮ The convective term can be written in the conservative form
∇·(u⊗u) since (u·∇)u = ∇·(u⊗u)− (∇·u)u and ∇·u = 0
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Incompressible NS II

Weak formulation

◮ Functional spaces U and P as for Stokes

◮ Bilinear forms a and b as for Stokes and trilinear form

t(w , u, v) =

∫

Ω

((w ·∇)u)·v

◮ Find (u, p) ∈ U × P s.t.

νa(u, v) + t(u, u, v) + b(v , p) =

∫

Ω

f ·v ∀v ∈ U

−b(u, q) = 0 ∀q ∈ P
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Incompressible NS III

◮ The key property of the trilinear form is that for divergence-free w

t(w , u, u) = −
1

2

∫

Ω

(∇·w)u2 = 0 ∀u ∈ U

so that the convective term does not affect the kinetic energy
balance

◮ Existence of a solution for incompressible NS can be proven by
passing to the limit from a conforming FE approximation

◮ Uniqueness holds true under a smallness condition on the data
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Incompressible NS IV
Literature overview

◮ One key issue is controlling the convective term
◮ piecewise divergence-free velocity fields [Karakashian & Jureidini ’98]
◮ nonconservative method based on Temam’s device [Girault, Rivière

& Wheeler ’05]

t
′(w , u, v) = t(w , u, v) +

1

2

Z

Ω

(∇·w)u·v

◮ conservative LDG method using BDM velocity projection [Cockburn,
Kanschat & Schötzau ’05]

◮ The analysis of such methods hinges on strong regularity
assumptions on the exact solutions and generally uses a smallness
assumption on the data

◮ We want to avoid such assumptions as in recent FV work [Eymard,
Herbin et al ’07-’10] =⇒ see [Di Pietro & AE ’10]
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Incompressible NS V

Discrete trilinear form

◮ Let k ≥ 1 and take as before Uh = [Pk
d(Th)]

d

◮ Elementwise integration by parts yields

∫

Ω

((wh·∇)vh)·vh = −
1

2

∫

Ω

(∇h·wh)(vh·vh)

+
1

2

∑

F∈Fh

∫

F

[[wh]]·nF{vh·vh}+
∑

F∈F i
h

∫

F

{wh}·nF [[vh]]·{vh}

Difficulties
◮ wh is not divergence-free
◮ wh and vh have jumps and do not vanish on boundary
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Incompressible NS VI

◮ For all (wh, uh, vh), we set

th(wh, uh, vh)
def
=

∫

Ω

((wh·∇h)uh)·vh −
∑

F∈F i
h

∫

F

{wh}·nF [[uh]]·{vh}

+
1

2

∫

Ω

(∇h·wh)(uh·vh)−
1

2

∑

F∈Fh

∫

F

[[wh]]·nF{uh·vh}

◮ Key stability property:

th(wh, vh, vh) = 0 ∀(wh, vh) ∈ Uh × Uh

◮ If u ∈ U is divergence-free and smooth, th(u, u, vh) = t(u, u, vh) for
all vh ∈ Uh

◮ yet, strong consistency will not be used here
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Incompressible NS VII

◮ Alternative expression for th

th(wh, uh, vh) =

∫

Ω

d∑

i=1

wh·G
2k
h (uh,i ) vh,i +

1

2

∫

Ω

D2k
h (wh)uh·vh

+
1

4

∑

F∈F i
h

∫

F

[[wh]]·nF [[uh]]·[[vh]]

◮ Boundedness for th: using the discrete Sobolev embedding for
L4(Ω), one proves for all (wh, uh, vh) ∈ Uh × Uh × Uh

th(wh, uh, vh) . |||wh|||vel|||uh|||vel|||vh|||vel
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Incompressible NS VIII

Discrete problem

◮ Seek (uh, pu) ∈ Uh × Ph s.t.

νah(uh, vh) + th(uh, uh, vh) + bh(vh, ph) =

∫

Ω

f ·vh ∀vh ∈ Uh

−bh(uh, qh) + ν−1jh(ph, qh) = 0 ∀qh ∈ Ph

◮ Existence of a discrete solution without any smallness assumption on
the data

◮ topological degree argument
◮ use discrete stability and boundedness of th
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Incompressible NS IX

Convergence with minimal regularity

◮ Let ((uh, ph))h∈H be a sequence of discrete solutions. Then, as
h→ 0, up to a subsequence,

uh → u in [L2(Ω)]d

∇huh → ∇u in [L2(Ω)]d,d

|uh|J → 0

ph → p in L2(Ω)

|ph|p → 0

where (u, p) ∈ [H1
0 (Ω)]d × L2

∗(Ω) is an exact solution

◮ Convergence of the whole sequence if uniqueness
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Incompressible NS X

◮ Asymptotic consistency for th For any sequence (vh)h∈H in (Uh)h∈H

bounded in the |||·|||vel-norm and for any smooth function
ϕ ∈ [C∞

0 (Ω)]d

lim
h→0

th(vh, vh, πhϕ) = t ′(v , v , ϕ) =

∫

Ω

((v ·∇)v)·ϕ+
1

2

∫

Ω

(∇·v)v ·ϕ

where v ∈ [H1
0 (Ω)]d is the limit of the sequence (vh)h∈H given by

the compactness theorem

◮ A slightly different form of asymptotic consistency is also needed to
prove the strong convergence of the pressure
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Incompressible NS XI

Numerical illustrations

◮ Kovasznay solution [K. ’48] laminar flow behind a 2D grid
◮ k = 1 for velocity and pressure, both discontinuous, 64 × 64 grid

x

y

-0.5 0 0.5 1 1.5
0

0.5

1

1.5
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Incompressible NS XII

◮ Lid driven cavity problem
◮ k = 2 for velocity and pressure, continuous pressure, 120 × 120 grid
◮ calculations from [Botti & Di Pietro ’10]
◮ ref. solution of [Erturk, Corke & Gökçöl ’05]

Re = 1000 Re = 10000 Re = 20000
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Salient points of this lecture

◮ Discrete functional analysis (Sobolev embedding, compactness)

◮ Asymptotic consistency and convergence with minimal regularity

◮ Discrete divergence and discrete inf-sup for pressure-velocity
coupling for Stokes

◮ Design conditions for discrete trilinear form in NS

◮ An existence result and a convergence result for NS with minimal
regularity and general data
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