Homogenization of a system of multi-species nonlinear diffusion-reaction equations in an $H^{1,p}$ setting

Hari Shankar Mahato

Center of Industrial Mathematics,
Department of Mathematics and Informatics
University of Bremen, Germany

Abstract. In this talk, we consider a system of highly nonlinear multi-species diffusion-reaction equations with homogeneous Neumann boundary condition. All reactions are reversible. For this system, the existence and uniqueness of the weak solution are proved at the micro scale on the interval $[0,T)$ for any $T > 0$. We obtain, global in time, L^∞-estimates of the solution with the help of a Lyapunov functional. For the existence of the solution, we use Schaefer’s fixed point theorem, maximal regularity and Lyapunov type arguments (cf. [3]). In the second part, we upscale the model from the micro to the macro scale by using two-scale convergence and periodic unfolding (cf. [1], [2]).

References