On improved Sobolev embedding theorems for vector-valued functions

Takashi Ichinose (Kanazawa University, Japan)
ichinose@staff.kanazawa-u.ac.jp

The improved Sobolev embedding theorem is the following inequality: For $1 \leq p < q < \infty$,

$$\|\psi\|_q \leq C \|\nabla \psi\|_{p/q} \|\psi\|_{B^{p/(p-q)}_{\infty,\infty}}^{1-(p/q)}$$

for every \mathbb{C}-valued function ψ on \mathbb{R}^n with a constant $C > 0$, where $B^{p/(p-q)}_{\infty,\infty}(\mathbb{R}^n)$ is the homogeneous Besov space of indices $(p/(p-q), \infty, \infty)$ with norm

$$\|\psi\|_{B^{p/(p-q)}_{\infty,\infty}} := \sup_{t > 0} t^{-p/2(p-q)} \|e^{t\Delta} \psi\|_{\infty}.$$

The aim of this talk is to give an extension of this embedding theorem for single-valued functions to the case of vector-valued functions which is involved with the three-dimensional massless Dirac operator together with the three- or two-dimensional Weyl–Dirac (or Pauli) operator, the Cauchy–Riemann operator and also the four-dimensional Euclidian Dirac operator. This is joint work with Yoshimi Saito (University of Alabama at Birmingham).