A model of a two particle quantum system with Hamiltonian

\[H = A \otimes I_T + I_A \otimes T \]

is considered. Operator \(T \) is assumed to be self-adjoint. A boundary triplet is constructed in the case that the self-adjoint operator \(T \) is bounded. Formulas for \(\gamma \)-field and the Weyl function \(M(\cdot) \) for \(H^* \) are obtained in terms of \(\gamma \)-field and the Weyl function for \(A \). A counterexample shows that if the operator \(T \) is unbounded, the surjectivity of the boundary operators may be lost. For the unbounded situation some extra-considerations are made to obtain a boundary triplet. A particular example useful in physics is observed and the boundary triplet for this case is indicated by using the introduced method.