The group contributes to the following mathematical research topics of WIAS:


Analysis of Partial Differential Equations and Evolutionary Equations

Partial differential equations form an adequate and powerful instrument to provide a mathematical model for nature. At the Weierstrass Institute this research has two essential focuses: (a) Regularity for the solutions of linear elliptic equations and (b) Existence, uniqueness and regularity for evolution equations. [>> more]

Free boundary problems for partial differential equations

Free boundary problems are investigated in connection with energy technology and coating of surfaces. [>> more]

Modeling, analysis and numerics of phase field models

A diffuse phase field model is a mathematical model for describing microstructural phenomena and for predicting morphological evolution on the mesoscale. It is applied to a wide variety of material processes such as solidification, coarsening in alloys, crack propagation and martensitic transformations. [>> more]

Variational methods

Many physical phenomena can be described by suitable functionals, whose critical points play the role of equilibrium solutions. Of particular interest are local and global minimizers: a soap bubble minimizes the surface area subject to a given volume and an elastic body minimizes the stored elastic energy subject to given boundary conditions. [>> more]