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Introduction

Among other imaging artifacts noise renders subsequent analysis or medical decisions for Diffusion Magnetic Resonance Imaging (dMRI) data more difficult. Furthermore, increasing the spatial resolution of the measure-
ment inherently decreases the signal-to-noise ratio (SNR). Attempts to achieve higher image resolution come at the expense of deteriorating image quality. Although at 7T the MR signal is much larger than at lower field
strengths, significant noise still emerges at the desired high resolutions. Noise reduction is therefore essential.

Data acquisition

The MR experiment was performed on a 7T whole
body MR scanner (MAGNETOM 7T, Siemens
Healthcare, Erlangen, Germany) equipped with
gradients allowing a peak gradient amplitude
of 70mT/m with a maximum slew rate of
200T/m/s (SC72, Siemens Healthcare, Erlan-
gen, Germany). For signal reception a single
channel transmit, 24-channel receive phased
array head coil (Nova Medical, Wilmington,
MA, USA) was used. An optimized monopolar
Stejskal-Tanner sequence (Morelli et al., 2010)
was used in conjunction with the ZOOPPA ap-
proach (Heidemann et al., 2012) providing an
isotropic resolution of 800 µm using the follow-
ing imaging protocol parameters: 91 slices with
10% overlap, FOV 143× 147mm2, TR 14.1s,
TE 65ms, BW 1132Hz/pixel, ZOOPPA acceler-
ation factor of 4.6. Diffusion weighted scans were
performed with 60 directions with a b-value of
1000 s/mm2 and 7 interspersed S0-images.
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Repeated acquisition

POAS
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Figure: A high measurement resolution causes a higher noise level. POAS is able to reduce noise in a
high resolution dMRI dataset without blurring. The original noisy data (left) can be processed using POAS
yielding the result in the upper right figure. This compares well with the diffusion tensor reconstruction using
4 repeated measurements (lower right).
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� Kloc and Kst are kernel functions.

� ∆κ (g1,g2) is a discrepancy in R3×S2.

� {κ(~b,k)} relates distances in R3 and S2.

� {h(~b,k)} sequence of bandwidths.

� s(k)g1g2 is a statistical penalty defined by
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with the Kullback-Leibler distance K be-
tween two non-central χ-distributions.

� λ is the adaptation parameter, chosen by a
propagation condition (data-independent).

Dependence on the maximal number of iteration steps k?

a) Original b) k? = 4 c) k? = 8 d) k? = 12

e) k? = 16 f) k? = 20 g) k? = 25 h) k? = 30
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Conclusions

Our position-orientation adaptive smoothing algorithm (POAS) for dMRI data has several advantages:

� POAS uses the special geometry of the measurement space R3×S2 (voxel space and diffusion-
gradient directions).

� POAS is designed to be adaptive to the fine anisotropic structures observed in dMRI by using a statis-
tical penalty. This ensures propagation within homogeneous compartments and separation between
distinct compartments avoiding blurring at structural borders.

� The improved quality of the data after smoothing can be used for further analysis or in clinical context
for a reduction of number of diffusion weighting gradients and hence acquisition time.

� The proposed algorithm does not rely on the tensor model or other higher order models for the
dMRI data. Therefore, after using the method for smoothing the diffusion weighted images any model
can be applied to the data.

� The method has an intrinsic stopping criterion, which means that most of the parameters of the
method have only minor influence on the results, while the bandwidth parameter k? is limited
only by the available computational power and the desired smoothness in homogeneous regions.
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