Statistical and numerical methods in modeling of financial derivatives and valuation of risk

J. Schoenmakers V. Spokoiny

Main problems and goals

Complex structured callable instruments

Callable interest rate products lead to high dimensional optimal stopping problems:
- Speed up by scenario selection methods: Bender, Kolodko, Schoenmakers, Quant. Fin. (2008)

Efficient sensitivities by Monte Carlo

Popular but naive Monte Carlo estimators may suffer from exploding variance. A new estimator resolves this problem:
\[
\frac{\partial I}{\partial x}(x) = \frac{1}{M} \sum_{m=1}^{M} \frac{\partial}{\partial x} p(x, g(x, m \xi)) u(g(x, m \xi)) \phi(x, g(x, m \xi))
\]
where \(g(x, \xi)\) is a proxy sampler with known density \(\phi\).

Realistic modeling of Libor rates

Libor model with jumps and stochastic volatility:
\[
\frac{dL_i(t)}{L_i(t)} = \Gamma_i^T dW^{(i+1)}(t) + \psi_i(t, u) \left(\mu - \nu^{(i+1)} \right) (dt, du)
\]
Belomestny, Schoenmakers, Quant. Fin. (to appear)

Future goal:
Multi-factor Jump-Libor modeling by infinite activity Lévy measures and Lévy copulas. Papapantoleon, Schoenmakers (in preparation)

Optimal control in finance

New regression methods and convergence analysis for the optimal control problem:
\[
Y_r = \sup_{a \in A, r \in T_r} E^n \left[\sum_{s=r}^{T-1} f_s(X_s, a_s) + g_r(X_T) \right]
\]

Industrial contracts

Future goals in financial optimization

Problems in illiquid markets, models with transaction costs, large investors etc.
- Optimal stopping and control for utility functionals (with E2)
- Dimension reduction, nonstationary time series analysis (with A3/F10)
- Dual methods for Lévy processes (with E9), multiple stopping, and energy options