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Abstract

We discuss a nonlinear parabolic set of equations for reactive two-phase flows with applications
in geosciences to rock dehydration processes. We prove existence of solutions for this model starting
from a fully discretized system and subsequently pass to the continuous limit. The assumptions here
made are based on real life data.
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1 Introduction

Rock hydration processes are within the most relevant phenomena for the earth water cycle. Hydration
processes may occur when water in contact with exhumed oceanic litosphere bounds chemically to mineral
phases, i.e., Olivine, to form new hydrated material, i.e., serpentinite. Subsequently in Earth water cycle
we encounter dehydration processes that occur when hydrated rocks are subducted and the steady increase
of temperature triggers chemical reactions through which water is again released and, due to the lower
density, spring back to the surface. There is evidence [vKHSA11] that this mechanism of water liberation
has to be very efficient to keep pace with the subduction rate and it is thought to happen on several
stages. The inital stages are the porosity formation caused by fluid liberation and the fluid flow through
the rock matrix with transport of chemical compounds that might further trigger dehydration reactions.
In this work we are concered with the analysis of a model describing those phenomena.

A first model for reaction induced porosity-formation applied to serpentinites is to be found in
[PJP+17]. This model features Darcy flow in a dehydrated (porous) medium and an expression for
the porosity which results from chemical reactions and the assumption of conservation of non-volitile
mass density

∂t (ρs(1− ϕ) + ρfϕ) = ∇ · (ρfK(ϕ)∇π) , (1a)

∂t (ρs(1−Xh)(1− ϕ)) = 0 , (1b)

where ρs, resp. ρf , represents the solid, resp. fluid, mass density, ϕ the porosity or volume fraction of the
fluid phase, π is the pressure and K(ϕ) denotes a Kozeny-Carman-type permeability. From (1b) one can
infer

ϕ = 1− ρ0s (1−X0
h)(1− ϕ0)

ρs(1−Xh)
, (1c)

with Xh being the weight percentage of fluid content in the solid phase while a0 will denote from now on
the initial condition for any quanity a. This reduces in fact the PDE system (1) to one single evolution
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equation (1a) for the total mass density ρtot = (ρs(1− ϕ) + ρfϕ). In recent years the model was extended
to include diffusive phenomena, see e.g., [BJV+20, HVJ22]. More specifically, the system of equations
reads:

∂t (ρs(1− ϕ) + ρfϕ) = ∇ · (ρfK(ϕ)∇π) , (2a)

∂t (ρscs(1− ϕ) + ρfcfϕ) = ∇ · (ρfcfK(ϕ)∇π + ρfcfϕDc∇cf) , (2b)

complemented with an analytical expression for the porosity ϕ which accounts for the concentration of
specific species as well, cf. (1c):

ϕ = 1− ρ0s (1− c0s −X0
h)(1− ϕ0)

ρs(1− cs −Xh)
, (2c)

where cs, resp. cf , denotes the content of a given species, i.e., Si, of the solid (s), resp. fluid (f), phase
and Dc in (2b) represents the diffusion coefficient. Observe that (2b) describes the time variation of
the total mass of a given species Z, since ρZ = ρscs(1 − ϕ) + ρfcfϕ. In this paper we will focus on
existence results for the systems (1) and (2). Although we will be discussing mainly model (2), the same
strategy applies to (1). Assumptions and main differences will be explored in Sec. 2. A derivation of
these equations goes beyond the scope of this work nonetheless we refer to [BJV+20] for the derivation
using standard conservation laws and flux definitions or to [ZHP+22] for a variational formulation and
reduction strategies based on the GENERIC formalism.
From the applications point of view, equations (1a) and (2a)-(2b) are solved numerically for the unknowns
π and (π, cs) respectively, whereas the remaning quantities cf , Xh, ρi, with i ∈ {s, f}, depend implicitely
on the unknowns and on the (given) temperature θ. Throughout this paper we will consider θ constant
and thus will not have a direct impact on our results. However we keep this dependency in the notation
to highlight that the thermodynamic equilibrium on which the functions cf , Xh, ρs, ρf are computed
changes accordingly.

To fix ideas, a typical dehydration reaction we will be studying is the following

(Mg,Fe)48Si34O85(OH)62 ⇌ 34(Mg,Fe)2SiO4 + 31H2O+ 10SiO2
aq ,

where antigorite (hydrous mineral) is transformed into olivine (non-hydrous mineral) and a fluid composed
by water and a small amount of silica. We note that many other dehydration reactions are possible,
however, a complete discussion of those goes beyond the scope of this paper. With this in mind, we
observe that equation (2b) describes the evolution of the total mass of Silicon (Si). Furthermore, this
sets restrictions to the range of values of temperature θ, pressure π and solid concentration cs, namely,
we have a temperature range of 400−500◦C,, a pressure within 0.8−2 GPa and the concentration within
17− 20 weight percentage of solid phase.
In order to better use tools from analysis we observe that the systems (1) and (2) can be rephrased in
parabolic form. We perform this reformulation in section 2 and discuss the assumptions on the systems
comparing with thermodynamical data. Alltogether, PDEs systems (1) and (2) can be rewritten as

∂tρ−∇ · (M(ρ)∇ρ) = 0 in (0,T)× Ω , (3a)

ρ = g on [0,T]× ΓD , (3b)

M∇ρ · ν = h on [0,T]× ΓN , (3c)

ρ(0) = ρ0 in Ω , (3d)

where ρ = ρtot for (1) and ρ = (ρtot, ρSi02)
⊤ for (2). The initial data is denoted by ρ0 and M(ρ) =

(Mij(ρ))ij with i, j ∈ {t, s} is a scalar, cf. (1), or a 2× 2 matrix for (2). Equations (3b) and (3c) are the
inhomogenous Dirichlet and Neumann boundary conditions acting on the boundary ΓD and ΓN := ∂Ω\ΓD,
respectively. With a proper extension of the Dirichlet datum onto the domain, i.e., g ∈ H1(Ω) it is
possible to reformulate the problem with homogeneous Dirichelet boundary conditions by introducing
ρg := ρ − g and solving for ρg. From now on we will not make the distinction between homogeneous
and inhomogenous Dirichlet boundary conditions anymore and will assume that this transformation of
the equations is always possible. Based on that, we define the space

V := H1
D(Ω) =

{
v ∈ H1(Ω) : v = 0 a.e. on ΓD

}
, (4)
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which we will be using for the parabolic form of (1), while for (2) we will use V := V × V . Throughout
this paper we denote the duality product between a space W and its dual W ∗ by ⟨·, ·⟩W ∗×W , or simply
⟨·, ·⟩W , and by omitting the subscript we refer to the duality product in V , resp. V . Similarly the norm
is denoted by ∥ · ∥V , resp. V . It is then possible to introduce a suitable weak formulation of the porous
media equation (1a):

Definition 1.1. Let T > 0 and Ω ⊂ Rd be a bounded Lipschitz domain. Let QT := (0,T) × Rd be the
time-space cylinder. Given a function ρtot : [0,T] → V we define the following weak formulation for every
test function v ∈ V :∫

QT

ρ̇tot(t) v +M(ρtot(t))∇ρtot(t) · ∇v dx dt−
∫ T

0

∫
ΓN

v|ΓN
hdHd−1 dt = 0 , (5)

where Hd−1 denotes the (d− 1)-dimensional Hausdorff measure.

Similarily for (2) we have

Definition 1.2. Let T > 0 and Ω ⊂ Rd be a bounded Lipschitz domain. Let QT := (0,T) × Rd be
the time-space cylinder. Given a function ρ = (ρtot, ρSi02) : [0,T] → V we define the following weak
formulation for every test function v ∈ V :∫

QT

ρ̇(t)v + M̂(ρ(t))∇ρ(t) · ∇v dxdt−
∫ T

0

∫
ΓN

v|ΓNhdH
d−1 dt = 0 . (6)

This paper is so structered: in sec. 2 we present a parabolic reformulation of systems (1) and (2),
validate and discuss properties and assumptions on the systems with thermodynamic dataset. In the
succeeding section 3 we provide a time- and space-discrete schemes of the parabolic equations and prove
the existence of discrete solutions. Finally, in sections 4 and 5 we perform limit passages from discrete
to continuous setting, henche proving existence of solutions.

2 Reformulation, notation and basic assumptions

In this section we explore the basic assumptions on models (1) and (2) providing physical data to support
them. We reformulate the two systems in terms of a new set of variables that clarifies the classification
of these into parabolic type equations. The reformulation will be then used in the following sections to
prove analytical results.

2.1 Parabolic form of system (1)

Although system (1) proved to be convenient for numerical implementations, we reformulate it to show its
parabolic nature and relative properties. We observe that time integration of (1b) leads to the expression
(1c). Moreover it is assumed that ρs, ρf , Xh are given functions of pressure π and temperature θ. We
will not consider variations of temperature here and therefore will assume that θ is constant over the
whole domain at any time. However, we highlight here the system dependency on θ since mineral phases
stability and hence ρs, ρf , Xh are susceptible to temperature changes. A constant temperature assumption
is often made in geology [?] since temperature equilibration and fluid flows usually happen on different
time scales. Based on that we have

Assumption 2.1. The functions ρs = ρ̃s(π, θ), ρf = ρ̃f(π, θ), Xh = X̃h(π, θ) are given functions of
pressure π and temperature θ.

Although being explicitely unknowns, values can be recovered from look-up tables [VP22]. An example
of these functions is given in figure 1. Additionally, from now on throughout this paper we will use a
tilde to distinguish between a function ã and its value a.
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Based on 2.1 together with (1c) we consider the porosity as a function of pressure and temperature

ϕ = 1− ρ0s (1−X0
h)(1− ϕ0)

ρs(1−Xh)
:= ϕ̃(π, θ) . (7)

Similarly the total mass density appearing in (1a) can be rewritten as ρ̃tot(π, θ) := ρ̃f(π, θ)ϕ̃(π, θ) +
ρ̃s(π, θ)(1− ϕ̃(π, θ)) and the Darcy coefficient K̃D(π, θ) := ρ̃f(π, θ)K(ϕ̃(π, θ)) so that equation (1a) reads

∂tρ̃tot = ∇ ·
(
K̃D(π, θ)∇π

)
. (8)

Now we assume that

Assumption 2.2. For every θ > 0 fixed, the function ρ̃tot(·, θ) is invertible in π, the inverse function
ρ̃−1
tot(·, θ) is continuously differentiable, and there are constants 0 < c⋆ < c⋆ such that

1

c⋆
< ∂ρρ̃

−1
tot(ρ, θ) =

1

∂πρ̃tot(ρ̃
−1
tot(ρ, θ), θ)

<
1

c⋆
. (9)

Thus, for every θ > 0 we find
π = π̃(ρtot, θ) := ρ̃−1

tot(ρtot, θ) . (10)

By assuming the temperature θ to be constant in space and using the chain rule for differentiation, from
(10) we calculate

∇π = ∇π̃(ρtot, θ) = ∂ρtot
π̃(π, θ)∇ρtot =

1

∂πρ̃tot(π̃(ρtot, θ))
∇ρtot .
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Figure 1: Pressure-temperature dependence of solid density, fluid density, solid-bound H2O content and
fluid composition wrt. SiO2 for a typical serpentinite bulk rock composition as also used in the model of
[HVJ22]. Their model uses these pre-computed values as lookup tabels to close the system of equations.

This gives the relation

K̃D(π, θ)∇π = K̂D(ρtot, θ)∇ρtot with K̂D(ρtot, θ) =
K̃D(π̃(ρtot, θ), θ)

∂πρtot(π̃(ρtot, θ), θ)
.

Hence, (1a) can be rewritten as a parabolic equation for the total mass density ρtot

∂tρtot = ∇ ·
(
K̂D(ρtot, θ)∇ρtot

)
. (11)

Furthermore, for K̂ we make the following assumptions

Assumption 2.3. For every θ > 0 fixed, the function K̂(ρtot, θ) is continuous and there are constants

0 < k̂⋆ < k̂⋆ such that k̂⋆ ≤ K̂(ρtot, θ) ≤ k̂⋆ for all ρtot ∈ R.

We now discuss the validity of the assumptions recently made with numerical examples implemented
using a thermodynamiclly consisten mineral dataset.

2.1.1 Perusal of assumptions (2.2) & (2.3) for thermodynamical rock data

In the following we validate the mathematical assumptions (2.2) and (2.3) with the thermodynamical
rock data used in [PJP+17]. Figure 2 shows the total mass density ρ = ρ̃(π) as a function of pressure π in
its geologically relevant range of 0.8-2 GPa. Fig. 2 confirms that ρ̃ is a continuous and strictly monotone
function of pressure π, hence bijective. Yet, it also turns out that the map suffers from a kink at π = 1.2
GPa, which hampers the assumption of continuous differentiability of ρ̃ and its inverse ρ̃−1, cf. (2.2).
Indeed, this kink coincides with a phase transformation between antigorite and olivine as shown is Fig. 1
and in Fig. 1. It therefore also appears in the porosity ϕ = ϕ̃(π, θ) and in the coefficient function K̃(π, θ)
at π = 1.2 GPa, see Fig. 3. As expected this translates into a discontinuity of the coefficient function
K̂(·, θ) at ρ ≈ 2600 kg/m3. We further point out that the porosity shown in Fig.3 is strictly positive and
bounded from below by the value ϕ̃(2GPa, 480◦C) = 0.035 > 0. In turn, we find the coefficient function
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Figure 2: on the left: Example of ρ̃ = ρ̃(π, θ) for a given composition and at fixed temperature of 480◦C.
One can see the continuity and strict monotonicity of ρ̃ which in return guarantee the existence of a
continuous inverse ρ̃−1. On the right: plot of the derivative ∂ρ̃/∂π for two possible discretizations. It
can bee seen that it is discontinuous around π = 1.2GPa and that is bounded from below and above
satisfying globally but one point assumption (2.2).

K̂(·, θ) to be uniformly bounded from above and from below by a value strictly larger than zero, so that
assumption (2.3) is satisfied.

As the violation of the continuity assumptions, cf. (2.3), for K̂(·, θ) and (2.2) are concerned, we point
out that the analytical results given in Thm. ??, 2. predict that the weak solution ρ(t, ·) for all t ∈ [0,T]
stays confined between values 0 < r∗ < r∗ a.e. in Ω, if the initial datum ρ0 is chosen with this property.
In other words, if the initial datum is chosen with values strictly below or strictly above the critical value
of ρ = 2600 kg/m3 (corresponding to the critical pressure of 1.2 GPa), then also the solution will not
exceed this value apart from a set of zero measure at any later time t ∈ (0,T]. Thus, under this additional
assumption on the initial datum, all the assumptions (2.2) and (2.3) are met and therefore existence of
a unique weak solution is guaranteed by Thm. ??, 1. However, this also means that in this setting the
phase transition, with ρ exceeding the critical value on sets of positive measure, cannot be described by
Thm. ?? using the original thermodynamical data set. Instead, in order to cover also this case, one would
have to mollify ρ̃(·, θ) and K̂(·, θ) in a small neighbourhood of the non-smoothness. From a geological
perspective, even though the interesting pressure range is between 0.8-2 GPa, it is very difficult for a
geological system to experience this complete range. Usually, pressure variations are very small and π
is confined to a neighborhood of a certain value. Therefore it is usually sufficient to study one of either
areas below or above 1.2 GPa. Additionally let us point out that the phase stability, hence the position
of the kink, varies with temperature and rock composition: If the system has a high iron content, one
would find this kink in the mass density for higher values of pressure, cf. [?]. As explained in Fig. 1
for the composition and temperature of this specific example, antigorite, the hydrated rock, is stable for
pressure values above 1.2 GPa and olivine, the dehydrated rock, is stable at pressure values below 1.2
GPa. In conclusion, since the interest lies in the investigation of the dehydration process, we can confine
the analysis to the regime below 1.2 GPa.

2.2 Parabolic form of system (2)

The main difference between these two system, as remarked previously, is the addition of diffusion phe-
nomena, in our case specifically connected to the silica SiO2 content, which requires the addition of a
new variable cs and although the application of a similar approach as the one used in Section 2.1 might
seem straightforward, the thermodynamical data behind the model (15) hide a series of challenges that
require a special treatment. We dedicate this section to their description.

As before, we assume that
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Figure 3: Example of ϕ = ϕ(π, θ), K̂(π, θ) and K̃(π, θ) for a given composition and at fixed temperature
of 480◦C. For these simulations we have set ratio between permeability of the medium and viscosity of
the fluid K̂/µ = 1. Thus, positivity and continuity of K̂ relies on ϕ, which never reaches zero.

Assumption 2.4. The functions ρs = ρ̃s(π, cs, θ), ρf = ρ̃f(π, cs, θ), Xh = X̃h(π, cs, θ) are given functions
of pressure π, concentration cs and temperature θ.

Again their analytical form is unknown, but their values can be determined from thermodynamical
data tables. Combining assumption 2.4 with (2c) the porosity ϕ can be understood as a function of the
variables (π, cs, θ) as follows

ϕ = 1− ρ0s (1− c0s −X0
h)(1− ϕ0)

ρs(1− cs −Xh)
=: ϕ̃(π, cs, θ) . (12)

Based on this we introduce the notation

ρ̃tot(π, cs, θ) = ρ̃s(π, cs, θ)(1− ϕ̃(π, cs, θ)) + ρ̃f(π, cs, θ)ϕ̃(π, cs, θ) , (13a)

ρ̃Si(π, cs, θ) = ρ̃s(π, cs, θ)(1− ϕ̃(π, cs, θ))c̃f(π, cs, θ) + ρ̃f(π, cs, θ)ϕ̃(π, cs, θ)cf , (13b)

K̃D(π, cs, θ) = ρ̃f(π, cs, θ)K(π, cs, θ) , (13c)

K(π, cs, θ) =
κ

µ
ϕ̃3(π, cs, θ) , (13d)

D̃c(π, cs, θ) = ρ̃f(π, cs, θ)ϕ̃(π, cs, θ)Dc , (13e)

where the coefficients κ, µ and Dc are the permeability, fluid viscosity and diffusion coefficient respectively
and are assumed to be positive constants. Equations (2a) and (2b) can then be rewritten as follows:

∂tρ̃tot(π, cs, θ) = div
(
K̃D(π, cs, θ)∇π

)
, (14a)

∂tρ̃Si(π, cs, θ) = div
(
c̃f(π, cs, θ)K̃D(π, cs, θ)∇π + D̃c(π, cs, θ)∇c̃f(π, cs, θ)

)
, (14b)

This is a PDE system of the form

∂tρ̃(q, θ)− div
(
M̃(q, θ)∇q

)
= 0 with (15a)

q :=

(
π
cs

)
ρ̃ :=

(
ρ̃tot
ρ̃Si

)
M̃ :=

(
K̃D 0

c̃fK̃D + D̃∂π c̃f D̃c∂cs c̃f

)
. (15b)

where we have used the chain rule ∇c̃f(π, cs, θ) = ∂π c̃f(π, cf , θ) + ∂cs c̃f(π, cf , θ). Now we set

ρ = ρ̃(q, θ) , (16)

and make the following assumptions on the map ρ̃ and its inverse

Assumption 2.5. For every θ > 0 fixed, the function ρ̃(·, θ) is continuously differentiable and invertible
in q and the inverse ρ̃−1(·, θ) is continuously differentiable.
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Figure 4: Plots of the total mass density ρ̃1 = ρ̃1(π, cs, θ). On the left a 2D plot showing the discretization
grid resulting from an interpolation of the thermodynamic dataset. The non-differentiability points are
marked with a red line in the right plot. This shows the division into three main areas ((0.8, 1)GPa ×
(0.17, 0.196), (0.8, 1)GPa× (0.196, 0.2) and the remaining part of the domain) delimited by two straight
lines and one curve with a contact point around (1GPa, 0.195). These three subdivisions and the values
for which ρ̃1 is continuous but not differentiable are more clearly seen in the 3D plot on the right.

We note that assumptions 2.5 amount to the following conditions

For all θ > 0 the Jacobian Dqρ̃(·, θ) =
(
∂πρ̃1(·, θ) ∂cs ρ̃1(·, θ)
∂πρ̃2(·, θ) ∂cs ρ̃2(·, θ)

)
is continuous with

detDqρ̃(q, θ) > 0 for all admissible q ∈ R2 , and also (17a)

Dρρ̃
−1(·, θ) = Dqρ̃(ρ̃

−1(·, θ), θ)−1 is a continuous function in ρ .

Then we have
q = ρ̃−1(ρ, θ) =: q̃(ρ, θ)

and the system (15) can be rewritten as a parabolic PDE system of the form

∂tρ−∇ ·
(
K̂D(ρ, θ)∇ρ

)
= 0 , (18)

where we used the relations

∇q = ∂ρρ̃(ρ, θ)∇ρ and K̂D(ρ, θ) := K̃(q̃(ρ, θ), θ)∂ρq̃(ρ, θ) .

Now we state the following assumptions on K̂D

Assumption 2.6. For every θ > 0 the matrix K̂D has the following properties:

• K̂D(·, θ) : R2 → R2×2 is continuous,

• K̂D(q, θ) : R2×2 → R2×2 is bounded and positively definite uniformly w.r.t. (q, θ), i.e., there are
constants 0 < K⋆ < K⋆ s.th. for all (q, θ) and all v ∈ R2 there holds:

K⋆|v|2 < v · K̂D(q, θ)v < K⋆|v|2 . (19)

2.2.1 Perusal of assumptions (17) & (2.6) for thermodynamical rock data

Firstly we recall that system (15) is written in terms of q = (π, cs)
⊤, i.e., in terms of the pressure π and

the concentration of silica in the solid cs. A close inspection of the thermodynamical rock data sets reveals
that the introduction of this additional complexity causes the resulting mass densities to have regions of
non-invertibility and non-differentiability, as it can be seen in Figures 4 and 5 for the mass densities ρ̃1
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Figure 5: Plots of the total mass density of silica ρ̃2 = ρ̃2(π, cs, θ). On the left a 2D plot showing the
discretization grid resulting from an interpolation of the thermodynamic dataset. The non-differentiability
points are marked with a red line in the right plot. This shows the division into three main areas (the
same of ρ̃1 shown in Figure 4). These three subdivisions and the values for which ρ̃2 is continuous but
not differentiable are more clearly seen in the 3D plot on the right.

and ρ̃2. This is in analogy to the kink in the thermodynamical data of model (1) shown in Fig. 3. More
precisely, we see in Fig. 4 that the total mass density ρ̃1 is strictly monotonously increasing with respect
to pressure and silica-content, but that kinks arise in the region of the antigorite-olivine phase transition
discussed in Fig. 1. Similarly, also Fig. 5 shows a monotone behavior of the total silica-mass density ρ̃2 in
pressure and silica-content, also with kinks arising at the antigorite-olivine phase transition. Obviously,
within this region assumptions (??) and (17) are not satisfied.
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Figure 6: The figure shows isolevels for the function c̃f(π, c̃s) at θ = 480◦C. One can see that in most
parts of the considered domain we have ∂cf/∂cs = 0 which translates to no diffusion occurring in the
system. However it is worth noticing that there is a small area in the bottom right corner where this
condition is not met. In addition, a discontinuity point where the lines are more dense can be seen around
cs ≈ 0.195. This discontinuity would, i.e., invalidates assumption (??)

Additionally we point out that in (15) the gradient of the silica concentration in the fluid c̃f drives
the diffusion process. Hence, it would be natural to chose c̃f as a variable. However, as Fig. 6 reveals,
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in wide areas of the data range c̃f is constant with respect to cs, so that the function is not invertible in
these areas. This is the reason why system (2) is written in terms of the variables π and cs. Indeed, such
plateau regions followed by kinks as in Fig. 6 are common in thermodynamical rock data sets. They are
also predicted in [Guy93] in the case of non-convex thermodynamical functions, which is again closely
related to phase stability.

As can be seen from (15), in regions where ∂c̃f/∂cs = 0, diffusion of silica is absent and the math-
ematical classification of the PDE system becomes unclear. Similar to Section 2.1.1 one may also try
here to confine the initial data to a data range that ensures the validity of assumptions (17) and (2.6).
Then the results of Theorem ?? would also guarantee that solutions are confined to that data range for
all times t ∈ (0, T ]. However, as can be seen from (15) the positive definiteness of K̂D, and hence the
classification of the PDE system, is not solely linked to the positive definiteness of the Jacobian Dqρ̃ but
also to the values of the material constants κ, µ, and Dc contributing to the non-symmetric coefficient
matrix K̃ in (15). These material constants are, in fact, the main contributors, together with ∂c̃f/∂cs and
∂c̃f/∂π, to the parabolicity of the system. In the literature, see e.g. [WW97], it is discussed that poten-
tial values for Dc and µ range from 10−8-10−10m2/s and 10−4Pa·s while for the permeability κ one finds
10−17-10−14m2, see e.g. [MI99]. An unprecise tuning of the system might lead to fail the assumption (2.6).
This is exemplary seen in Figure ??, where we have plotted the eigenvalues of symK̂ = 1/2(K̂ + K̂⊤).
In the considered range of pressure and concentration it turns out that its smallest eigenvalue is negative
whereas the largest eigenvalue is positive. In fact, the uniform positive definiteness of K̂, i.e., a lower
bound as in (??), is equivalent to symK̂ being positive definite.

As a further difficulty it turns out that the computation of the thermodynamical data set is highly
sensitive to the total composition and therefore to the function c̃f . This creates approximation errors in
the plateau region where ∂c̃f/∂cs = 0 that may cause backward diffusion in the system.

Different strategies can be deployed to circumvent this problem: the interpolation of the approximated
c̃f function could be constructed to ensure that ∂c̃f/∂cs = 0 > δ > 0. Alternatively, more sophisticated
and invasive solutions rely on extensions of the system that account for further geophysical phenomena
that could help mitigate this behavior. One possibility is to include more species and phases, which would
lead to a change in the landscape of c̃f , possibly avoiding a plateau of the previous type. In general, non-
convex regions in the energy landscape can produce ∂c̃f/∂cs = 0 of different signs, indicating that phase
separation is taking place. In such a case, higher-order derivatives as in the Cahn-Hilliard model might
help to ensure the mathematical well-posedness of the problem.

2.3 General parabolic system

Collecting the results from subsections 2.1 and 2.2 we see that both systems (1) and (2) can be represented
in the form

∂tρ− div
(
M(ρ)∇ρ

)
= 0 , (20a)

where ρ could be either ρtot from (11) with M = K̂D or ρ from (18) with M = M̂. Both evolutions are
assumed to take place on a bounded domain Ω ⊂ Rd with d = 2, 3 and with Lipschitz boundary. The
systems are then completed with an initial condition

ρ(0) = ρ0 , (20b)

and homogenous Dirichlet boundary conditions on the Dirichlet part ΓD of the boundary ∂Ω and inho-
mogenous Neumann condition on the remaining boundary ΓN := ∂Ω \ ΓD, i.e.,

ρ = 0 on (0,T)× ΓD , M∇ρ · ν = h on (0,T)× ΓN , (20c)

where ν denotes the outward unit normal to ∂Ω and the function h ∈ L1(0,T;H−1/2(ΓN)) is time and
space dependent. In the same spirit as in the introduction, we can combine the weak formulations (5)
and (21) to write a more general weak system for a suitable function space V that could be either V
from (4) or V × V :
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Definition 2.7. Let T > 0 and Ω ⊂ Rd be a bounded Lipschitz domain. Let QT := (0,T) × Rd be the
time-space cylinder. Given a function ρ : [0,T] → V we define the following weak formulation for every
test function v ∈ V :∫

QT

ρ̇(t)v +M(ρ(t))∇ρ(t) · ∇v dxdt−
∫ T

0

∫
ΓN

v|ΓN
hdHd−1 dt = 0 . (21)

In the following sections we will study the PDE system (20a). When specific details are needed we
will focus our attention on (15) but the reader should keep in mind that slightly readapted results hold
also for (11).

2.4 A-priori estimates

From the weak formualtion (21) one can readily obtain some a-priori estimates for the solutions. The
first estimates can be obtained by testing (21) with the solution ρ:

0 =

∫ T

0

1

2

d

dt
∥ρ(t)∥2L2(Ω)dt+

∫
QT

M(ρ)|∇ρ|2 dxdt−
∫ T

0

∫
ΓN

ρ|ΓNh dHdt (22)

≥ 1

2

(
∥ρ(T)∥2L2(Ω) − ∥ρ(0)∥2L2(Ω)

)
+ c∗

∫ T

0

∥∇ρ∥2L2(Ω) dt− ∥h∥H−1/2(ΓN)∥ρ∥H1/2(ΓN) , (23)

where we have used the assumption on the matrix M 2.3 and 2.6. From (22) we can infer

∥ρ∥L2(0,T;V ) ≤ C (24a)

∥ρ∥L∞(0,T;L2(Ω)) ≤ C (24b)

Further estimates can be obtained by regarding ∂tρ as an operator in the dual space V ∗ and exploiting
the boundedness of M:

∥∂tρ∥L2(0,T;H−1(Ω)) = sup
∥v∥L2(0,T;V )≤1

∫ T

0

⟨ρ̇,v⟩L2(Ω) dt

= sup
∥v∥L2(0,T;V )≤1

∫ T

0

⟨M(ρ)∇ρ,∇v⟩L2(Ω) − ⟨h,v⟩L2(∂Ω) dt

≤ sup
∥v∥L2(0,T;V )≤1

∫ T

0

∥M(ρ)∇ρ∥L2(Ω)∥∇v∥L2(Ω) + ∥h∥H−1/2(∂Ω)∥v∥H1/2(∂Ω) dt

≤ C∗∥∇ρ∥L2(0,T;L2(Ω)) ≤ C .

(24c)

3 Existence of fully discrete solutions

The strategy to find solutions for (20) is to consider a fully discrete scheme at first. We use a Galerkin
spatial discretisation approach:

Space discretisation: Let V n ⊂ V , n ∈ N, be finite-dimensional subspaces such that V n1
⊂ V n2

, if
n1 ≤ n2 and such that

⋃
n∈N V n ⊂ V densely. Let (ej)

n
j=1 be a basis for V n, then each element v ∈ V n

is represented by v =
∑n

j=1 vjej and we write v⃗ = (vj)
n
j=1 ∈ Rn for the vector of coefficients.

Time discretisation: Consider a partition Tτ = {0 = t0τ < t1τ . . . < tNτ
τ = T} of the time interval [0,T]

with step size τ = tkτ − tk−1
τ = T

Nτ
. For a sufficiently smooth function v : [0,T] → V we set vk

τ := v(tkτ )

for all k ∈ {1, . . . , n} and for tkτ ∈ Πτ and we introduce the discrete approximations of time derivatives:

Dτv
k
τ :=

vk
τ − vk−1

τ

τ
. (25)

11



Lastly, for the boundary we use an approximation:

hk
τ := h(tkτ ) (26)

and denote by hk
τn the restriction of hk

τ ∈ V ∗ to V n, where we naturally have

hk
τn → hk

τ strongly in V ∗ as n → ∞ for all k ∈ {1, . . . , Nτ} and τ > 0 fixed . (27)

Discrete approximation of (20): We keep the time step size τ > 0 fixed and for the initial data ρ0

from (20b) we set ρ0
τ = ρ0. For all n ∈ N let (ρ0

τn)n with ρ0
τn ∈ V n be approximations of the intial data

such that ρ0
τn → ρ0

τ in V as n → ∞. For each τ, n > 0 fixed, using the discrete initial data our aim is to
find for every time step tkτ ∈ Πτ solutions ρk

τn ∈ V n of the following discrete Galerkin scheme based on
the weak formulation (21):

∀vn ∈ V n

∫
Ω

Dτρ
k
τn vn dx+

∫
Ω

M(ρk
τn)∇ρk

τn · ∇vn dx =

∫
ΓN

hk
τnvn dH

d−1(x) . (28)

The time discretisation scheme here used is the well known implict Euler scheme. This choice is not only
made for analytical reasons but also to follow closely the discretisation schemes used in applications, see
i.e., [HVJ22, BJV+20]. We state now the two results of this section, the existence of solutions ρk

τ for the
Galerkin scheme (28) and their uniform boundedness with respect to index n ∈ N, c.f. Propositions 3.1
and 3.3

Proposition 3.1 (Existence of fully discrete solutions). Let for the system (5) the assumptions 2.1,2.2
and 2.3, or alternatively for (6) let 2.4, 2.5 and 2.6 be satisfied. Furthermore, assume h ∈ L2(0,T;H−1/2(ΓN)).
Keep τ > 0, k ∈ {1, . . . , Nτ} and n ∈ N be fixed. Then, there exists a solution ρk

τ of the Galerkin scheme
(28) corresponding to system (21).

Proof. The Galerkin scheme (28) can be rewritten as a system of non-linear equations for the coefficient
vector w⃗ ∈ Rn:
Test equation (28) with a basis element ej for V n, j = 1, . . . , n, recall ρk

τn =
∑n

i=1 ρ
k
τiei and multiply by

τ to get:

0 =

n∑
i=1

∫
Ω

(ρkτi − ρk−1
τi )ei ej + τM(ρk

τn)ρ
k
τi∇ei · ∇ej dx−

∫
ΓN

τhk
τieiej dH

d−1(x) (29)

where we wrote ρkτi instead of ρkτni
for sake of simplicity. Observe that (29) is a nonlinear system composed

by n equations
g(ρ⃗kτn) := Lρ⃗kτn + f(ρ⃗kτn) = 0 , (30)

with the first linear addend deriving from the discretized time derivative and the second nonlinear asso-
ciated to the gradient and to the boundary terms. We show now that it posesses solution for every fixed
τ, k, n. To do so, we exploit the following results:

Proposition 3.2 ([Zei86],Prop. 2.8, p.53). Consider a system of equations

g(z) = (gi(z))
n
i=1 = 0 where z ∈ Rn . (31)

Let B̄R(0) := {z ∈ Rn, ∥z∥ ≤ R} for fixed R > 0 and ∥ · ∥ a norm in Rn. Let gi : B̄R(0) → R be
continuous for i = 1, . . . , n. Further assume that

g(z) · z ≥ 0 for all z ∈ Rn with ∥z∥ = R . (32)

Then (31) has a solution z with ∥z∥ ≤ R .
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The continuity of g : Rn → Rn follows from the properties of M 2.3 and 2.6. It remains to check
condition (32). For that, we first estimate the linear terms via convexity argument

Lρ⃗kτn · ρ⃗kτn =
(
ρk
τn − ρk−1

τn

)
· ρk

τn ≥ (1− ε) |ρ⃗kτn|2 − ε|ρ⃗k−1
τn |2 , (33)

with ε arbitrary but such that
(
1− 1

4ε

)
> 0. For the nonlinear term we exploit the positive definitness

of M and Young’s argument to get

f(ρ⃗kτn) · ρ⃗kτn = τM(ρk
τn)|∇ρk

τn|2 − τhk
τnρ

k
τn ≥ τc∗|ρ⃗kτn|2 − τ2|hk

τn|2 −
1

4
|ρ⃗kτn|2 . (34)

Together these two estimates lead to

g(ρ⃗kτn) · ρ⃗kτn ≥
(
1− 1

4ε

)
|ρ⃗kτn|2 − ε|ρ⃗k−1

τn |2 + τc∗|ρ⃗kτn|2 − τ2|hk
τn|2 −

1

4
|ρ⃗kτn|2 , (35)

which is positive for some R ≥
√

4ε2

4ε(1+τc∗)−1−ετ2

(
|ρ⃗k−1

τn |2 + |hk
τn|2

)
.

Similarly to sec. 2.4 we now derive some bound for the fully discrete solutions.

Proposition 3.3 (Uniform a-priori bound for fully discrete solutions). Let the assumptions of Proposition
3.1 be fulfilled. Furthermore assume that the discrete initial data (ρ0

τn)n are uniformly bounded. Then,
the fully discrete solution ρk

τn of problem (28) satisfies the following uniform a-priori bound

∥ρk
τn∥V ≤ C̃ , (36)

with a constant C̃ = C̃(ρ0, τ, C
∗, c∗) depending on ρ0, τ, C

∗, c∗ but independent of n ∈ N.

Proof. We procede by induction and see that the assertion is already satisfied for the initial step k = 0
thanks to the assumptions on the initial data. For any step k ∈ N, suppose that ρk−1

τn is uniformely
bounded in V . We test then (28) by the solution ρk

τn and estimate

0 = ∥ρk
τn∥2L2(Ω) −

∫
Ω

ρk
τnρ

k−1
τn dx+ τ

∫
Ω

M(ρk
τn)|∇ρk

τn|2 dx−
∫
ΓN

hk
τnρ

k
τndH

d−1(x) (37)

≥ 1

4
∥ρk

τn∥2L2(Ω) −
∥ρk−1

τn ∥2L2(Ω)

2
+ τc∗∥∇ρk

τn∥2L2(Ω) − τ2∥hk
τn∥H−1/2(ΓN) , (38)

where we have used Young’s inequality, the boundedness of M and the regularity of h.

4 Limit passage from the space-discrete to space-continuous set-
ting

In this section we keep the time step size τ > 0 fixed and pass to the limit n → ∞ with the space
discretisation. We have the following result:

Proposition 4.1 (Existence of solution in the space-continuous setting). Let the assumptions of 3.1 and
3.3 be satisfied. Let ρk

τn be a solution of (28) for all τ > 0, n ∈ N. Then the following convergence results
hold true:

1. For each k ∈ {1, . . . , Nτ} there is a (non relabelled) subsequence (ρk
τn)n and a limit value ρk

τ such
that

ρk
τn ⇀ ρk

τ weakly in V , (39)

2. For each k ∈ {1, . . . , Nτ} the limit value ρk
τ is a solution to the time-discrete problem∫

Ω

Dτρ
k
τ v +M(ρk

τ )∇ρk
τ · ∇v dx−

∫
ΓN

hk
τv dHd−1(x) = 0 for all v ∈ V . (40)
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3. If we assume in addition that the discrete initial data satisfy

ρ0
τn → ρ0

τ in V , (41)

Then, in addition to (39) for each k ∈ {1, . . . , Nτ} the following improved convergence also holds
true:

ρk
τn → ρk

τ strongly in V . (42)

Proof. 1. This is a direct consequence of the uniform a-priori bound (36).

2. In order to pass to the limit n → ∞ in (28) we let v ∈ V be a test function of the space-continuous
limit problem (40) and (vn)n ⊂ V such that vn ∈ V n for all n ∈ N are test functions for the finite
dimensional problem (28) with the property vn → v strongly in V . We recall that a sequence
(vn)n with these property exists since, by construction,

⋃
n∈N V n is dense in V . Now for the limit

passage in (28) we have

1
τ

∫
Ω

(ρk
τn − ρk−1

τn )vn +M(ρk
τn)∇ρk

τn · ∇vn dx−
∫
ΓN

hk
τnvn dH

d−1(x) = 0 .

The first addend convergence is ensured by weak convergence of ρk
τn (39) and strong convergence

of the test functions vn in V . Strong convergence of the test functions together with the strong
convergence hk

τn → hk
τ in V ∗, implies convergence of the boundary term. For the second bulk term

we exploit the compact embedding of V into L2(Ω) to find a strongly convergent subsequence and
from that a further strongly a.e. pointwise converging subsequence (not relabelled),

ρk
τn(x) → ρk

τ (x) for a.e. x ∈ Ω .

Then by continuity of M there follows

M(ρk
τn)∇vn(x) → M(ρk

τ )∇v(x) for a.e. x ∈ Ω .

Exploiting the boundedness of M and ∇vn → ∇v in L2(Ω), we conclude by dominated convergence
theorem that

M(ρk
τn)∇vn → M(ρk

τ )∇v strongly in L2(Ω) ,

which, together with the weak convergence of ∇ρk
τn ⇀ ∇ρk

τ , implies convergence of the second
addend. Check this proof for new BC

3. By induction assume that at the previous time step we have ρk−1
τn → ρk−1

τ in V . From the weak
convergence ρk−1

τn ⇀ ρk−1
τ in V we can extract a (non-relabelled) subsequence ρk−1

τn → ρk−1
τ in

L2(Ω) then we test (28) with the solution ρk
τn and get∫

Ω

M(ρk
τn)|∇ρk

τn|2 dx =
1

τ

∫
Ω

−|ρk
τn|2 + ρk

τnρ
k−1
τn dx+

∫
ΓN

hk
τnρ

k
τn dH

d−1(x) .

Convergence of the right hand side is given by weak-strong argument, while for the left hand side
we apply [Dac07, Thm 3.4, pp. 74] and get∫

Ω

M(ρk
τn)|∇ρk

τn|2 dx ≤ lim inf
n→∞

∫
Ω

M(ρk
τn)|∇ρk

τn|2 dx

≤ lim sup
n→∞

∫
Ω

M(ρk
τn)|∇ρk

τn|2 dx

= lim
n→∞

1

τ

∫
Ω

−|ρk
τn|2 + ρk

τnρ
k−1
τn dx+

∫
ΓN

hk
τnρ

k
τn dH

d−1(x)

=
1

τ

∫
Ω

−|ρk
τ |2 + ρk

τρ
k−1
τ dx+

∫
ΓN

hk
τρ

k
τ dH

d−1(x)

=

∫
Ω

M(ρk
τ )|∇ρk

τ |2 dx .
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Then introduce the projection operator Pn : V → V n that maps space continuous into space
discrete functions and by Korn’s inequality and boundedness of M we can conclude

C2
k∥ρk

τn − ρk
τ∥2V ≤ ∥∇ρk

τn −∇ρk
τ∥2L2(Ω)

≤ 2∥∇ρk
τn −∇Pn(ρ

k
τ )∥2L2(Ω) + 2∥∇Pn(ρ

k
τ )−∇ρk

τ∥2L2(Ω)

≤ 2
c∗

∫
Ω

M(ρk
τn)|∇ρk

τn −∇Pn(ρ
k
τ )|2dx+ 2∥∇Pn(ρ

k
τ )−∇ρk

τ∥2L2(Ω)

= 2
c∗

∫
Ω

M(ρk
τn)|ρk

τn|2 dx− 4
c∗

∫
Ω

M(ρk
τn)∇ρk

τn · Pn(ρ
k
τ ) dx

+ 2
c∗

∫
Ω

M(ρk
τn)|∇Pn(ρ

k
τ )|2 dx+ 2∥∇Pn(ρ

k
τ )−∇ρk

τ∥2L2(Ω) → 0 .

For space-continuous time-discrete solutions (ρk
τ )

Nτ

k=1 of (40), it is possible to define piecewise constant
interpolants ρ̄τ ,ρτ

, and affine-linear approximation ρτ for t ∈ (tk−1
τ , tkτ ], k = 1, . . . , Nτ

ρ̄τ (t) := ρk
τ , ρ

τ
(t) := ρk−1

τ , ρτ (t) :=
t− tk−1

τ

τ
ρk
τ +

tkτ − t

τ
ρk−1
τ , (43)

and similarly for the external forces ĥ ∈ {hτ , h̄τ , hτ} and we set for any t ∈ (tk−1
τ , tkτ ]

t̄τ (t) := tkτ .

In this way we can write a time-continuous weak formulation of the time-discrete problem (40)∫ t̄τ (t)

0

∫
Ω

ρ̇τ (r)v(r) +M(ρτ (r))∇ρτ (r) · ∇v(r) dx−
∫
ΓN

hτ (r)v(r) dH
d−1(x) dr = 0 (44)

We can now find bounds for the interpolants defined above that will used later on for the limit passage
from time-discrete to time-continuous.

Proposition 4.2 (Uniform a-priori bounds for time-discrete solutions). Let the assumptions of 4.1 be
satisfied and in addition set ρ0

τ = ρ0. For the interpolants constructed by (43) with the time-discrete limit
value found in (39) the following a-priori estimates hold true with a constant C > 0 independent of τ :

∥ρ̄τ∥B(0,T;L2(Ω)) + ∥ρ
τ
∥B(0,T;L2(Ω)) + ∥ρτ∥B(0,T;L2(Ω)) ≤ C , (45a)

∥ρτ∥L2(0,T;V ) ≤ C , (45b)

∥ρ̇τ∥L2(0,T;V ∗) ≤ C , (45c)

Proof. The estimates (45a) and (45b) are obtained by testing (40) with the space-continuous solution ρk
τ

0 =

∫
Ω

(ρk
τ − ρk−1

τ )ρk
τ dx+ τ

∫
Ω

M(ρk
τ )|∇ρk

τ |2 dx− τ

∫
ΓN

hk
τρ

k
τ dH

d−1(x)

≥
∫
Ω

|ρk
τ |2 − ρk−1

τ ρk
τ dx+ τc∗

∫
Ω

|∇ρk
τ |2 dx− 8

9∥ρ
k
τ∥2L2(Ω) − τ2∥hk

τ∥2H−1/2(ΓN)

≥ 1
4∥ρ

k
τ∥2L2(Ω) − 1

2∥ρ
k−1
τ ∥2L2(Ω) + τc∗∥∇ρk

τ∥2L2(Ω) − τ2∥hk
τ∥2H−1/2(ΓN)

where we have used Young’s inequality and exploited the positive definitness of M. From this we infer
(45a). On the other hand, this inequality holds true for all k ∈ {1, . . . , Nτ} and thus by summing over
all indeces we get a telescopic sum which ultimetly results in

1
2∥ρ

0
τ∥2L2(Ω) + Ch ≥ 1

2∥ρ
Nτ
τ ∥2L2(Ω) + c∗

∫ T

0

∥∇ρτ∥2L2Ω(t) dt ,
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where Ch > 0 is constant related to h and depend on T. By the assumptions on the initial data we
conclude (45b). For (45c) we regard ρ̇τ as an operator acting in the dual space V ∗

∥ρ̇τ∥L2(0,T ;V ∗) = sup
∥v∥L2(0,T;V )≤1

∫ T

0

⟨ρ̇τ ,v⟩L2(Ω) dt

= sup
∥v∥L2(0,T;V )≤1

∫ T

0

⟨M(ρτ )∇ρτ ,∇v⟩L2(Ω) − ⟨h,v⟩H1/2(ΓN) dt

≤ sup
∥v∥L2(0,T;V )≤1

∫ T

0

∥M(ρτ )∇ρτ∥L2(Ω)∥∇v∥L2(Ω) − ∥h∥H−1/2(ΓN)∥v∥H1/2(ΓN) dt

≤ C∗∥∇ρτ∥L2(0,T;L2(Ω)) ≤ C .

5 Limit passage from the time-discrete to the time-continuous
setting

In this section we perform a limit passage τ → 0 (from time-discrete to time-continuous) for the inter-
polants ρ̄τ ,ρτ

and ρτ .

Theorem 5.1 (Existence of solutions). Let the assumptions of Propositions 4.1-4.2 be satisfied. Then,
the following statements hold true:

1. There exists a function ρ : [0,T] → V such that the following convergence statements are valid:

ρ̄τ ,ρτ
,ρτ

∗
⇀ ρ weakly-∗ in L∞(0,T;L2(Ω)) , (46a)

ρ̄τ ,ρτ ⇀ ρ weakly in L2(0,T;V ) , (46b)

ρ̄τ ,ρτ → ρ strongly in L2(0,T;L2(Ω)) , (46c)

ρ̇τ ⇀ u weakly in L2(0,T;V ∗) , (46d)

ρ̄τ (t),ρτ
(t),ρτ (t)

∗
⇀ ρ(t) weakly-∗ in V ∗ for all t ∈ [0,T] , (46e)

2. The limiting function ρ has the regularity

ρ ∈ H1(0,T;V ∗) ∩ L2(0,T;V ) ∩ L∞(0,T;L2(Ω)) ∩ C0([0,T];L2(Ω)) , (47)

and satisfies the weak formulation∫
QT

ρ̇(t)v(t) +M(ρ(t))∇ρ(t) · ∇v(t) dxdt−
∫ T

0

∫
ΓN

v(t)|ΓNM(ρ(t))∇ρ(t) · ν ddHd−1(x) dt = 0

(48)

for all v ∈ L2(0,T;V ) and ρ(0) = ρ0.

Proof. 1. From (45a),(45c) and compactness arguments we get (46a), (46d) and by duality argument

ρτ ⇀ ρ weakly in L1(0,T;L2(Ω)) . (49)

From (45b) we get that there exists a subsequence (not relabelled) such that:

ρτ ⇀ ρ weakly in L2(0,T;V ) , (50)
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where the limit coincides with the one in (49) because of the space inclusion. From (45c) and the

definition of discrete time derivative Dτρ
k
τ =

ρk
τ−ρk−1

τ

τ we have the estimate

∥ρτ∥BV (0,T;V ∗) ≤ C . (51)

We apply then [MR15, thm. B.5.10] and find a subsequence

ρτ (t)
∗
⇀ ρ̃(t) weakly-∗ in V ∗ , for every t ∈ [0,T] ,

with ρ̃ ∈ BV (0,T;V ∗). Then, [DJ12, thm. 1] with the compact embedding L2(Ω) ⊂⊂ V ∗ and
V ⊂⊂ L2(Ω), a version of Aubin-Lions compactness argument adapted to time-discretization and
piecewise constant sequences in time (ρτ )τ can be used to find for this subsequence

ρτ → ρ̂ strongly in Lp(0,T;V ∗) with p ∈ [1,∞) ,

ρτ → ρ̌ strongly in L2(0,T;L2(Ω)) ,

with ρ̌ ∈ C0([0,T];V ∗). Strong convergence implies the existence of a (not relabelled) subsequence
weakly convergent

ρτ (t) ⇀ ρ̌(t) weakly in L2(Ω) for a.e. t ∈ [0,T]

from which we get ρ = ρ̌ = ρ̃ = ρ̂ in L2(0,T;V ∗).

2. Let
v ∈ L2(0,T;V )

be a test function for the weak equation (21). We define

vk
τ :=

1

τ

∫ tkτ

tk−1
τ

v(r) dt

and set the interpolants as defined in (43). Based on this, there holds

v̄τ ,vτ → v strongly in L2(0,T;V ) . (53)

In the time-discrete equation (44) the velocity term converges then thanks to (46d) and with a
weak-strong convergence argument∫ t̄τ (t)

0

∫
Ω

ρ̇τ (r)v(r) dxdr →
∫ t

0

∫
Ω

u(r)v(r) dxdr .

Now if we assume v to be regular enough and use an integration by-part formula suited for Bochner
spaces [Rou13, Lemma 7.3, p.205]∫ t

0

∫
Ω

ρ̇(r)v(r) dxdr =

∫
Ω

(ρ(t)v(t)− ρ(0)v(0)) dx−
∫ t

0

∫
Ω

ρ(r)v̇(r) dxdr ,

we conclude ρ̇ = u in the sense of distribution. Additionally, the initial datum is attained, i.e.,
ρ(0) = ρ0 since by construction we set ρτ (0) = ρ(0) and by (46e) we have ρτ (0)

∗
⇀ ρ(0) in V ∗.

Convergence of the boundary term derives from (53) and strong convergence hτ → h in L2(0,T;V ).
For the remaning term, we recall the continuity of M, cf. 2.3,2.6, the strong convergence of test
functions (53) and (46c) imply

|M(ρτ (t))∇vτ (t)| → |M(ρ(t))∇v(t)| for a.e. t ∈ [0,T] .

Then, exploiting the boundedness ofM, we can apply the dominated convergence theorem to deduce

M(ρτ )∇vτ → M(ρ)∇v strongly in L2(0,T;L2(Ω)) .

This result together with the weak convergence (46b) allow us to conclude∫ t̄τ (t)

0

∫
Ω

M(ρτ (r))∇ρτ (r) · ∇vτ (r) dxdr →
∫ t

0

∫
Ω

M(ρ(r))∇ρ(r) · ∇v(r) dx dr .

3. Regularity of the solutions follows from the convergence statements (46).
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