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Abstract

In this paper we show the existence of a weak solution for a compressible single-phase Stokes
flow with mass transport accounting for the degeneracy and the singular behavior of a density-
dependent viscosity. The analysis is based on an implicit time-discrete scheme and a Galerkin-
approximation in space. Convergence of the discrete solutions is obtained thanks to a diffusive
regularization of p-Laplacian type in the transport equation that allows for refined compactness
arguments on subdomains.
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1 Introduction

Suspensions, i.e., flows of solid particles immersed in a viscous fluid appear in many aspects in nature and
their understanding is of great importance for many technological processes, e.g., in the food, pharma-
ceutical, printing and oil industries. For suspension flows two major regimes with substantially different
rheological properties can be observed. In the dilute regime the volume fractions of the solid particles
are very small and mutual interaction between particles is negligible. Instead, in the dense regime large
volume fractions lead to rheological behaviors like shear thinning and discontinuous shear thickening, see
[BJ14]. When a critical volume fraction of solid, rigid particles is reached, jamming occurs, which means
that the rheological behavior of the suspension turns into that of a solid.

The development of a continuum model for binary suspensions of solid and liquid phase applicable
across different concentration regimes with substantially different rheology is of great importance to
understand the applications but also very challenging from a mathematical point of view. In [PTA+19],
the authors construct a PDE model also suited for dense suspensions using a gradient flow structure
featuring a dissipative coupling between fluid and solid phase as well as different driving forces. This
approach leads to a general mathematical structure of variational type which is able to model the different
suspension regimes, from dilute to highly concentrated states up to jamming. This is done by taking into
account physically realistic but mathematically non-standard density-dependent constitutive relations,
which degenerate for dilute suspensions as the density of solid particles tends to zero and which get
singular when reaching a critical value that stands for jamming. Due to these degeneracy and singularity
properties in these two extremal situations, the mathematical analysis of the derived model in [PTA+19]
requires significant mathematical efforts and is very challenging. Concerning the mathematical analysis of
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compressible viscous fluid models with density-dependent viscosities, we mention here a series of papers
[BDL03, BD06, BD07, BMZ19], where the authors investigate with great effort compressible Navier-
Stokes fluid models with density-dependent viscosities, which also appear in shallow water and lubrication
models. The well-posedness of the models is shown by introducing a new mathematical entropy identity,
which is derived either by assuming a linear dependence of the viscosity with respect to the density
or by assuming a power-law structure of the viscosity µ(%) on the mass density %. However, the non-
standard form of the viscosity in [PTA+19] cannot be treated by the mathematical methods developed
in [BDL03, BD06, BD07, BMZ19, LT18a, LT18b], and references therein.

Our long-term goal is to investigate the full two-phase model for concentrated suspensions proposed in
[PTA+19]. As a first step towards this analysis, a single-phase model, which captures the above-described
degeneracy and the singularity properties, is investigated in this paper to understand the main difficulties
and to pave the road for forthcoming analysis of the full two-phase Stokes and Navier-Stokes system. Let
[0, T ] × Ω ⊂ Rd denote the space-time cylinder with space dimension d ∈ {2, 3} and final time T > 0
general but fixed. For the density % : Ω→ R and the velocity u : Ω→ Rd as unknowns, the bulk equations
of our model are given by

∂t%+ div(%u)− εdiv(|∇%|p−2∇%) = 0 in [0, T ]× Ω, (1.1a)

−div(µ(%)e(u)) +M(%)u+ κ|u|s−2u+ %∇D%E(%) = 0 in [0, T ]× Ω, (1.1b)

with the symmetric strain tensor e(u) := 1
2 (∇u+∇u>) and the energy

E(%) =

∫
Ω

(
x2%+

ε̃

2
|%|2
)

dx. (1.1c)

The bulk problem (1.1) is complemented by suitable boundary and initial conditions, which are specified
in Section 2.1. By D%E(%) we indicate in (1.1b) the variational derivative of E(%) with respect to %.
Moreover, the shear viscosity µ and the friction M are material parameters, which are modeled as
density-dependent functions. Equation (1.1a) is a continuity equation with a diffusive regularization of
p-Laplacian type. The Stokes equation (1.1b) contains a regularization in terms of an Ls-nonlinearity,
whose exponent s is closely connected to the exponent p appearing in p-Laplacian in the continuity
equation. Moreover, the first component in the energy functional is given by the gravitational force and
the second convex term of lower order is chosen as a further regularizing term. The prefactors ε, ε̃, κ > 0
of the regularizing terms may be arbitrarily small but positive. The density % can be understood as the
mass density of the system. Yet, setting % := %0φ with constant mass density %0 it can be seen in direct
relation with a phase indicator φ when extending the model (1.1) to suspensions in the future. In both
situations it will be important to obtain that a solution % of (1.1a) is non-negative and bounded from
above by a critical value %crit.
Structure of the paper. In Section 2, we state the precise assumptions and give the Definition of
a weak solution to system (1.1) with a corresponding, first existence result. Moreover the diffusive
regularization of p-Laplacian type in the transport equation allows for refined compactness arguments
on subdomains, discussed in Theorem 2.4. In Section 3 an implicit time-discrete scheme combined with
a Galerkin-approximation in space (3.2) is introduced and solved in Proposition 3. Moreover, a priori
estimates are investigated in Proposition 3.4 which lead to convergence results, given by Proposition 4.1
in the final Section 4. There, we also establish the non-negativity and boundedness of weak solutions %
of (1.1a).

2 Basic assumptions and main results

2.1 Notation and basic assumptions

Let Ω ⊂ Rd with d ∈ {2, 3} be a bounded Lipschitz domain with boundary Γ = ∂Ω and ~n the outer unit
normal on Γ. By Lm(B), we denote the m-dimensional Lebesgue measure of a set B ⊂ Rm, m ∈ N.
Furthermore, we denote by Lp(Ω), resp. W 1,p(Ω) for 1 ≤ p ≤ ∞ the Lebesgue-, resp. Sobolev-spaces
on Ω. For a time interval (0, T ), T > 0 and a Banach space X we denote by Lp(0, T ;X) the spaces of
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Bochner-integrable functions with values in X. Moreover, for a Banach space X we denote its dual by X∗

and the duality pairing by 〈·, ·〉X . For Lp-spaces, we denote by p′ the dual index defined by 1
p + 1

p′ = 1.
”Generic” positive constants are denoted by C. Moreover, for subsets of Rm defined by the values of a
function f : Rm → R, m ∈ N we shall use the following notation

[f � a] := {x ∈ Rm, f(x) � a} , (2.1)

where the symbol � is here used as a placeholder for one of the relation symbols, i.e., �∈ {<,>,=,≤,≥}.
Throughout this work, we adopt the following assumptions:

(A1) The shear viscosity is given by

µ : R→ [0,∞], µ(%) = |%|η(%), (2.2a)

where

η(%) =


∞ if % < 0,

ν̃
(%crit−%)α if 0 ≤ % < %crit,

∞ if % ≥ %crit,

for α ≥ 2 and ν̃ > %crit. (2.2b)

As we shall see in Theorem 2.7 and lateron in Section 4.3 the singularity of power α ≥ 2 prevents
solutions % of (2.5a) to exceed the value %crit.

(A2) The friction coefficient M(%) is defined by a continuous function M : R → R+
0 with the following

growth property: There exist constants M,M > 0 such that

M |%|2 ≤M(%) ≤M |%|2 for all % ∈ R. (2.2c)

(A3) The initial condition for the density fulfills

%0 ∈ L2(Ω). (2.2d)

(A4) The boundary conditions are given by

u = 0, and ε|∇%|p−2∇% · ~n = 0 on Γ. (2.2e)

(A5) Assumptions on the exponents p and s in (1.1):

{2, 3} 3 d < p < 6, and
1

2
+

1

s
+

1

p
= 1. (2.2f)

(A6) Assumptions on the regularization parameters ε, ε̃ and κ in (1.1):

0 < ε, ε̃ < 1, and κ > 0. (2.2g)

Remark 2.1. 1. In [PTA+19] the real constitutive material law for the solid phase is given by

η(%) = 1 +
5

2

%crit
%crit − %

+

(
µ1 +

µ2 − µ1

1 + I0(%crit − %)−2

)
%

(%crit − %)2
(2.3)

with the non-dimensional parameters, µ2 ≥ µ1 and I0. Our choice in (2.2b) captures the essential
behavior of (2.3) and is well tailored for the mathematical analysis in this paper.

2. By (2.2f), the dual indices p′ and s′ are given by 1
s′ = 1 − 1

s = 1
2 + 1

p and 1
p′ = 1 − 1

p = 1
2 + 1

s ,
respectively.
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2.2 Basic notion of solution

Here, we specify our notion of solution for the system (1.1).

Definition 2.2 (Basic notion of weak solution). Suppose that the general assumptions (A1)-(A6) are
fulfilled and let the final time T > 0 general but fixed. A weak solution of system (1.1) is a quadruplet
(%, u,Bµ, ζ) with the regularity

% ∈W 1,p′(0, T ;W 1,p(Ω)∗) ∩ Lp(0, T ;W 1,p(Ω)), u ∈ Ls(0, T ;Ls(Ω;Rd)), (2.4a)

Bµ ∈ Ls
′
(0, T ;W 1,2(Ω;Rd)∗), ζ ∈ Ls

′
(0, T ;Ls

′
(Ω;Rd)), (2.4b)

that satisfies

〈∂t%, ψ〉Lp(0,T ;W 1,p(Ω)) −
∫ T

0

∫
Ω

(%u− ε|∇%|p−2∇%) · ∇ψ dxdt = 0, (2.5a)

for all ψ ∈ Lp(0, T ;W 1,p(Ω)),

〈Bµ, v〉Ls(0,T ;W 1,2(Ω;Rd)) +

∫ T

0

∫
Ω

(M(%)u+ κζ + %∇D%E(%)) · v dxdt = 0, (2.5b)

for all v ∈ Ls(0, T ;W 1,2(Ω;Rd)).

We will show in Theorem 2.3 the existence of a weak solution in the sense of Definition 2.2. Moreover,
in Theorem 2.4, it will be possible to identify the limit elements Bµ and ζ in (2.5b) as the viscous
stress and the Ls-nonlinearity generated by the limit pair (%, u) on Lipschitz subdomains ΩLip

ν (t), where
ν < %(t) < %crit − ν for a.a. t ∈ (0, T ) and for all ν > 0, cf. (2.6a). A further refinement of the notion of
weak solution will be deduced in Theorem 2.7: Given that the initial datum %0 satisfies 0 ≤ %0 ≤ %crit

a.e. in Ω one finds that also the weak solution % satisfies 0 ≤ % ≤ %crit a.e. in Ω for all t ∈ [0, T ]. In this
situation the identification of the limit elements Bµ and ζ as the viscous stress and the Ls-nonlinearity
generated by (%, u) can be shown to be valid even a.e. in [0 < % < %crit].

2.3 Main results

In this section we present and discuss our main results.

Theorem 2.3. Suppose that the general assumptions (A1)-(A6) are fulfilled. Then (1.1) has a weak
solution in the sense of Definition 2.2.

The proof of Theorem 2.3 is carried out in Sections 3 and 4. In Section 3 a fully discrete (time-discrete
Galerkin) scheme together with a suitable regularization of the shear viscosity µ is devised and inves-
tigated. A priori estimates based on a discrete energy estimate are derived. In Section 4 the a priori
estimates are used to perform the limit from the discrete to the continuous problem.

In the following Theorem we will provide, on subdomains, an identification for the objects Bµ and ζ
appearing in (2.5b). To this end, we define subdomains

Ων(t) := {x ∈ Ω | ν < %(t) < %crit − ν} for any ν > 0 and for a.a. t ∈ (0, T ), (2.6a)

and consider any

Lipschitz-subdomain ΩLip
ν (t) ⊂ Ων(t) for a.a. t ∈ (0, T ). (2.6b)

We note that Ων(t) is an open set in Ω due to the compact embedding W 1,p(Ω) ⊂ C0(Ω) thanks to
p > d by assumption (2.2f). Moreover, on the Lipschitz-domains ΩLip

ν (t) (reflexive) Sobolev spaces such
as W 1,2(ΩLip

ν (t)) are well defined and embedding theorems are valid, cf. [AF03]. Now, we have
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Theorem 2.4. Let (%, u,Bµ, ζ) be a weak solution of system (1.1) obtained in Theorem 2.3. Then, for
every δ > 0, there exists a measurable set Iδ ⊂ (0, T ) such that L1((0, T )\Iδ) < δ and non-cylindrical
domains

Qδν :=
⋃
t∈Iδ

{t} × ΩLip
ν (t) ⊂ (0, T )× Ω with ΩLip

ν (t) as in (2.6), for all ν > 0, (2.7)

such that for all v ∈ Ls(0, T ;W 1,2(Ω;Rd)) with supp(v) ⊂ Qδν there holds∫ T

0

∫
Ω

µ(%(t))e(u) : e(v) dx dt+

∫ T

0

∫
Ω

(M(%)u+ κ|u|s−2u+ %∇D%E(%)) · v dxdt = 0 , (2.8)

i.e., it is

〈Bµ, v〉Ls(0,T ;W 1,2(Ω;Rd)) =

∫ T

0

∫
Ω

µ(%(t))e(u):e(v) dxdt and (2.9a)∫ T

0

∫
Ω

κ ζ · v dxdt =

∫ T

0

∫
Ω

κ|u|s−2u · v dxdt (2.9b)

for all v ∈ Ls(0, T ;W 1,2(Ω;Rd)) with supp(v) ⊂ Qδν , for any Qδν from (2.7), for all δ, ν > 0.

Consequently, relations (2.8) and (2.9) hold true even for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v(t)) ⊂ [0 < %(t) < %crit] for a.a. t ∈ (0, T ) . (2.10)

The proof of Theorem 2.4 is given in detail in Section 4.2; we adress here the main ideas: The identification
of Bµ and ζ in terms of the limit velocity u can be achieved on subsets of the space-time cylinder (0, T )×Ω
where the values of the limit density % and its approximants are strictly bounded away from zero and away
from the singularity %crit. In space this is ensured by retreating to the subdomains ΩLip

ν (t) from (2.6).
Again, thanks to the assumption p > d there holds W 1,p(Ω) ⊂ C0(Ω) compactly and the approximants
converge uniformly in space to the limit density %. In this way, it can be ensured for a.a. t ∈ (0, T )
that also the approximants are strictly bounded away from zero and away from %crit from a particular
index n(t) on. We point out that the regularity in time % ∈ W 1,p′(0, T ;W 1,p(Ω)∗) ∩ Lp(0, T ;W 1,p(Ω))
given in (2.4), and similarly also for the approximating solutions, is too low in order to ensure continuity
and uniform convergence in time. Instead, one can only make use of almost uniform convergence, which
will be deduced from strong Lp(0, T ;Lp(Ω))-convergence together with Egorov’s theorem in Section 4.
The almost uniform convergence in time induces the measurable sets Iδ ⊂ (0, T ) from (2.7) where the
sequences converge uniformly and this will allow it to find both the limit density and the approximants
strictly bounded away from zero and away from %crit on the non-cylindrical domains Qδν . In order to carry
out the identification argument we need compactness results in Banach spaces defined on non-cylindrical
sets. To this end, for Qδν from (2.7) we introduce the normed vector space

Ls(Qδν) :=

{
f : Qδν → R measurable, ‖f‖Ls(Qδν) :=

(∫
Iδ

‖f(t)‖s
Ls(ΩLip

ν (t))
dt

)1/s

<∞

}
. (2.11)

Lemma 2.5. Consider a non-cylindrical domain Qδν as in (2.7) and let s ∈ (1,∞). The normed vector
space Ls(Qδν) defined in (2.11) is a reflexive, separable Banach space.

Proof. Let Qδν be a non-cylindrical domain as in (2.7) and let s ∈ (1,∞).

1. We show that the normed vector space Ls(Qδν) is complete: Let (fn)n∈N ⊂ Ls(Qδν) be a Cauchy
sequence. We show that there exists an element f ∈ Ls(Qδν) such that fn → f in Ls(Qδν). To this end,
we define for a.a. t ∈ Iδ

f̂n(t) :=

{
fn(t) on ΩLip

ν (t),

0 on Ω \ ΩLip
ν (t).
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Indeed, we have for all n ∈ N that f̂n ∈ Ls(Iδ;Ls(Ω)) with ‖f̂n‖Ls(Iδ;Ls(Ω)) = ‖fn‖Ls(Qδν) and it follows

that (f̂n)n∈N is a Cauchy sequence in Ls(Iδ;L
s(Ω)). Due to the completeness of Ls(Iδ;L

s(Ω)), we

conclude that there exists an element f̂ ∈ Ls(Iδ;Ls(Ω)) such that

f̂n → f̂ in Ls(Iδ;L
s(Ω)). (2.12)

For a.a. t ∈ Iδ we set f(t) := f̂ |ΩLip
ν (t) and show for a.a. t ∈ Iδ that f̂(t)|Ω\ΩLip

ν (t) = 0. In view of

(2.12), it follows that there exists a subsequence (f̂nl)l∈N such that f̂nl(t, x) → f(t, x) pointwise for a.a.

(t, x) ∈ Iδ × Ω. Because of f̂nl(t, x) = 0 for a.a. (t, x) ∈ {t} × (Ω \ ΩLip
ν (t)) and for all l ∈ N, it follows

f̂(t, x) = 0 for a.a. (t, x) ∈ {t} × (Ω \ ΩLip
ν (t)). We finally obtain

‖fn − f‖Ls(Qδν) = ‖f̂n − f̂‖Ls(Iδ;Ls(Ω)) → 0,

which proves that Ls(Qδν) is a Banach space.

2. We show that Ls(Qδν) is reflexive and separable: To this end, we define

V := {f̂ ∈ Ls(Iδ;Ls(Ω)) | for a.a. t ∈ Iδ : f̂(t) ≡ 0 on Ω \ ΩLip
ν (t)},

which is a closed subspace of Ls(Iδ;L
s(Ω)), and thus, a reflexive and separable Banach space. Moreover,

we have Ls(Qδν) ≡ V and due to isomorphism of the norms, we obtain that Ls(Qδν) is reflexive and
separable, too. Further, we note that the dual space of V is given by V ∗ := Ls

′
(Iδ;L

s′(Ω))|V . Due to
Ls(Qδν) ≡ V , we also have V ∗ ≡ Ls(Qδν)∗ ≡ Ls′(Qδν).

Remark 2.6. Thanks to the properties of Ls(Qδν) verified in Lemma 2.5 and Eberlein-Šmuljan’s theorem,
each bounded sequence in Ls(Qδν) contains a subsequence that converges weakly to a limit in Ls(Qδν).

The above results for Banach spaces on the non-cylindrical domains Qδν will allow us to carry out the
identification argument in Section 4.2. We mention that our use of non-cylindrical domains is motivated
by the works [Sal85, Sal88], where Banach spaces on non-cylindrical domains are introduced at first using

very general sets Ω̂ :=
⋃
t∈(0,T ){t} × Ω(t). Yet, lateron, in the course of the analysis, higher regularity

assumptions, i.e., C3-regularity for the boundary of Ω̂, are required in [Sal85]. This is in line with the fact
that many works dealing with the analysis of PDEs related to fluid flow on moving domains [SS07, NRL16,
AET18, Saa07] postulate higher regularity assumptions for the flow map, which is used to map the current
domain Ω(t) to a fixed reference domain Ω0. Translating these assumptions to our situation shows that
higher temporal regularity would be needed for the density % and its approximating solutions and in some
cases also volume conservation for the set {x ∈ Rd, %(t, x) ∈ (0, %crit)} in order to apply the methods of the
works mentioned above. Instead here, we can only expect % ∈W 1,p′(0, T ;W 1,p(Ω)∗)∩Lp(0, T ;W 1,p(Ω)).
In difference to the above mentioned works, the non-cylindrical domains Qδν used in our context are
induced by the solution %, so that good regularity of the sets cannot be expected in general. As approved
by Remark 2.6, we shall solely use the Ls(Qδν)-spaces for a compactness argument in the a posteriori
identification of the limit elements.

With a suitable adaption of the non-cylindrical domains and via a contradiction argument, it is
possible to deduce the non-negativity of the density % and its boundedness in terms of the critical value
%crit. We point out that % = 0 is not excluded on subsets of (0, T )× Ω of positive measure.

Theorem 2.7 (Non-negativity & boundedeness of the limit density %, refinement of (2.8) & (2.9)). Let
the assumptions of Theorem 2.4 be valid and let (%, u,Bµ, ζ) be a weak solution obtained in Theorems 2.3
and 2.4. Further assume for the initial datum

%0 ∈ L2(Ω) such that 0 ≤ %0 ≤ %crit a.e. in Ω . (2.13)

Then the density % from (2.5a) also satisfies

0 ≤ %(t) ≤ %crit a.e. in Ω , for all t ∈ [0, T ]. (2.14)

Moreover, identification relations (2.8) and (2.9) hold true for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v(t)) ⊂ [0 < %(t)] for a.a. t ∈ (0, T ) . (2.15)
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3 Existence of discrete solutions

For final time T general but fixed, we define a partition of the time interval [0, T ]

0 = t0Nτ < . . . < tNτNτ = T with tkNτ − t
k−1
Nτ

=
T

Nτ
=: τ,

and a sequence of finite-dimensional subspaces Un, Xn such that, for all n ∈ N

Xn ⊂ Xn+1 and
⋃
n∈N

Xn dense in X := W 1,p(Ω) with span{ej ; j = 1, . . . , n} = Xn, (3.1a)

Un ⊂ Un+1 and
⋃
n∈N

Un dense in U := W 1,2(Ω;Rd) with span{ej ; j = 1, . . . , dn} = Un, (3.1b)

where ej ∈ X for j = 1, . . . , n, resp. ej ∈ U for j = 1, . . . , dn, are linearly independent.

Remark 3.1. This motivates us to define two different projectors: The projector PX
n : X → Xn such

that PX
n (X) = Xn and the projector PU

n : U→ Un such that PU
n (U) = Un. For PU

n we claim that it is
selfadjoint (note that U is a Hilbert space) and ‖PU

n ‖L(U,U) is bounded independently of n. Hence, such
a projector PU

n with the mentioned properties exists, cf. [Rou05, Remark 8.41, p. 238]. Above, we use
the notation L(U,U) := {A : U→ U linear and continuous}.

Now, we consider the fully discrete Galerkin scheme corresponding to (1.1) for k ∈ {1, . . . , Nτ} and n ∈ N

∫
Ω

%kτn − %k−1
τn

τ
ψ dx−

∫
Ω

(%kτnu
k
τn − ε|∇%kτn|p−2∇%kτn) · ∇ψ dx = 0, (3.2a)

for all ψ ∈ Xn,∫
Ω

µτ (%kτn)e(ukτn) : e(v) dx+

∫
Ω

(M(%kτn)ukτn + κ|ukτn|s−2ukτn + %kτn∇D%E(%kτn)) · v dx = 0, (3.2b)

for all v ∈ Un,

where the regularized viscosity µτ is defined by

µτ (%) = |%|ητ (%) + τβ for β > 0 and with ητ (%) =


ν̃

%αcrit
+ 1

τα |%| if % < 0,
ν̃

(%crit−%)α if 0 ≤ % < %crit − τ,
ν̃|%|

τα|%crit−τ | if % ≥ %crit − τ,
(3.3a)

for α ≥ 2 and ν̃ > %crit.

In contrast to µ from (2.2), µτ is continuous for every fixed τ and can be estimated from below, i.e.,

there is a constant cµ > 0 such that µτ (%) ≥ cµ|%|2 + τβ for all % ∈ R and for all τ > 0. (3.3b)

Moreover, we have

µτ (%)→ µ(%) as τ → 0, for all % ∈ R. (3.3c)

Proposition 3.2 (Existence of discrete solutions). Let the assumptions (A1)-(A6) be satisfied and T > 0
general but fixed. Also keep τ > 0 and n ∈ N fixed. Then the following statements hold true:

1. For all k ∈ {1, . . . , Nτ} there exists a solution (%kτn, u
k
τn) ∈ Xn ×Un for problem (3.2).
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2. For all K ∈ {1, . . . , Nτ} the discrete solutions (%kτn, u
k
τn)Nτk=1 satisfy the following discrete energy-

dissipation estimate:

E(%Kτn) +

K∑
k=1

τ

∫
Ω

µτ (%kτn)e(ukτn) : e(ukτn) dx+

K∑
k=1

τ

∫
Ω

M(%kτn)|ukτn|2 dx

+ κ

K∑
k=1

τ

∫
Ω

|ukτn|s dx+
εε̃

p

K∑
k=1

τ‖∇%kτn‖
p
Lp(Ω;Rd)

≤ E(%0
τn) +

εε̃1−p

p
Ld(Ω× (0, T )).

(3.4)

The proof of Proposition 3.2 will be carried out in Section 3.1 below.

Using the discrete solutions (%kτn, u
k
τn)Nτk=1 obtained in Prop. 3.2, Item 1., we define suitable approximating

solutions by interpolation in time. More precisely, we introduce the piecewise constant left-continuous
interpolants

%τn(t) := %kτn, uτn(t) := ukτn, for t ∈ (tk−1
Nτ

, tkNτ ], k = 1, . . . , Nτ , (3.5a)

as well as the piecewise linear interpolant

%τn(t) :=
t− tk−1

Nτ

τ
%kτn +

tkNτ − t
τ

%k−1
τn , for t ∈ (tk−1

Nτ
, tkNτ ], k = 1, . . . , Nτ . (3.5b)

Moreover, by (3.5b), the time derivative of the piecewise linear interpolant is given by

Dτ%τn(t) :=
%kτn − %k−1

τn

τ
, for t ∈ (tk−1

Nτ
, tkNτ ], k = 1, . . . , Nτ . (3.5c)

Additionally, we will also use the following notation for the time

tτ (t) := tkNτ for t ∈ (tk−1
Nτ

, tkNτ ], k = 1, . . . , Nτ . (3.5d)

Using (3.5), we will rewrite (3.2). For this, also note that
⋃
n∈N C

0([0, T ]; Xn) is dense in Lp(0, T ; X)
for any 1 ≤ p ≤ ∞, cf. [GGZ74, Lemma 1.12., p. 144]. Hence, for any ψ ∈ Lp(0, T ; X) there exists a
sequence (ψn)n such that ψn ∈ Lp(0, T ; Xn) for each n ∈ N and ψn → ψ in Lp(0, T ; X) as n→∞. For any
ψ ∈ C0([0, T ]; X) we use nodal projection and subsequent constant interpolation in time, i.e., we introduce
the operator Pτ : C0([0, T ]; X) → Lp(0, T ; X), Pτψ(t) := ψ(tkNτ ) = ψ(t) for all t ∈ (tk−1

Nτ
, tkNτ ], where we

used the notation (3.5a) for the piecewise constant, left-continuous interpolant. Based on this, we define
a projector for the space Lp(0, T ; X) to piecewise contant functions in time with values in the finite-
dimensional subspaces Xn by making use of the approximating sequences (ψn)n with ψn ∈ C0([0, T ],Xn)
for all n ∈ N. More precisely, we introduce

Pτn : Lp(0, T ; X)→ Lp(0, T ; Xn), where Pτn(ψ) := PX
n (Pτ (ψ)) := ψn , (3.6)

with the notation from (3.5a). In a similar manner we also define a projection for the space Ls(0, T ; U)
and we denote the corresponding projector by PU

n (Pτ (ψ)) : Ls(0, T ; U)→ Ls(0, T ; Un). Now, we have

〈Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)
−
∫ T

0

∫
Ω

%τnuτn · ∇Pτl(ψ) dx dt+ 〈Ap(%τn), Pτl(ψ)〉Lp(0,T ;Xl)
= 0, (3.7a)

for all n ≥ l, for all ψ ∈ Lp(0, T ; X),〈
Aµ(%τn, uτn), PU

n (Pτ (v))
〉
Ls(0,T ;Un)

+

∫ T

0

∫
Ω

M(%τn)uτn · PU
n (Pτ (v)) dxdt

+κ

∫ T

0

∫
Ω

|uτn|s−2uτn · PU
n (Pτ (v)) dxdt+

∫ T

0

∫
Ω

%τn∇D%E(%τn) · PU
n (Pτ (v)) dx dt = 0, (3.7b)

for all v ∈ Ls(0, T ; U),
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where we abbreviated

〈Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)
:=

∫ T

0

∫
Ω

Dτ%τnPτl(ψ) dxdt, (3.7c)

〈Ap(%τn), Pτl(ψ)〉Lp(0,T ;Xl)
:= ε

∫ T

0

∫
Ω

|∇%τn|p−2∇%τn · ∇Pτl(ψ) dx dt, (3.7d)

〈
Aµ(%τn, uτn), PU

n (Pτ (v))
〉
Ls(0,T ;Un)

:=

∫ T

0

∫
Ω

µτ (%τn)e(uτn) : e(PU
n (Pτ (v))) dxdt. (3.7e)

Remark 3.3. Using the projector Pτl (instead of Pτn) with l ≤ n in (3.7a), gives us more flexibility in
showing a priori estimates and convergence results. This is carried out by first sending n to infinity by
holding l fixed and in a second step letting l to ∞.

In a similar fashion also the discrete energy-dissipation estimate (3.4) can be rewritten in the notation
of the interpolants (3.5), i.e., for all t ∈ [0, T ] there holds

E(%τn(t)) +

∫ tτ (t)

0

∫
Ω

µτ (%τn(r))e(uτn(r)) : e(uτn(r)) dxdr +

∫ tτ (t)

0

∫
Ω

M(%τn(r))|uτn(r)|2 dx dr

+

∫ tτ (t)

0

∫
Ω

|uτn(r)|s dx dr +
εε̃

p

∫ tτ (t)

0

‖∇%τn(r)‖p
Lp(Ω;Rd)

dr

≤ E(%0
τn) +

εε̃1−p

p
Ld(Ω× (0, T )).

(3.8)

Based on this, we establish a priori estimates for discrete solutions given by Proposition 3.2.

Proposition 3.4 (A priori estimates). Let the assumptions of Proposition 3.2 be satisfied and consider
a sequence (%τn, uτn)τn of solutions for system (3.7). Then there exists a constant C > 0 such that the
following statements hold true uniformly with respect to n ∈ N and τ > 0

‖
√
µτ (%τn) e(uτn)‖L2(0,T ;L2(Ω;Rd×d)) ≤ C, (3.9a)

τβ‖e(uτn)‖2L2(0,T ;L2(Ω;Rd×d)) ≤ C, (3.9b)

cµ‖%τne(uτn)‖2L2(0,T ;L2(Ω;Rd×d)) ≤ C, (3.9c)

M‖%τnuτn‖2L2(0,T ;L2(Ω;Rd)) ≤ C, (3.9d)

‖uτn‖Ls(0,T ;Ls(Ω;Rd)) ≤ C, (3.9e)

‖%τn(t)‖L2(Ω) ≤ C for all t ∈ [0, T ], , (3.9f)

‖∇%τn‖Lp(0,T ;Lp(Ω;Rd)) ≤ C. (3.9g)

In addition, also the following estimates are valid uniformly with respect to n ∈ N and τ > 0

‖%τn‖Lp(0,T ;W 1,p(Ω)) ≤ C, (3.9h)

‖div(%τnuτn)‖L2(0,T ;L2(Ω)) ≤ C, (3.9i)

‖Dτ%τn‖(Lp(0,T ;Xl))∗ ≤ C for any l ∈ N, for all n ≥ l, (3.9j)

‖Ap(%τn)‖(Lp(0,T ;X))∗ ≤ C (3.9k)

‖Dτ%τn‖Lp′ (0,T ;W 2,2(Ω)∗) ≤ C, (3.9l)

‖Aµ(%τn, uτn)‖Ls′ (0,T ;W 1,2(Ω;Rd)∗) ≤ C, (3.9m)

‖|uτn|s−2uτn‖Ls′ (0,T ;Ls′ (Ω;Rd)) ≤ C. (3.9n)

3.1 Proof of Proposition 3.2

Throughout the proof, τ > 0 and n ∈ N are kept fixed.
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To Proposition 3.2, Item 1.: To show the existence of discrete solutions, we observe that the
Galerkin scheme (3.2) can be rewritten as a system of nonlinear equations for the coefficient vectors
−→% kτn = (%kτn,i)

n
i=1 ∈ Rn, −→u kτn = (ukτn,i)

dn
i=1 ∈ Rdn:

M
τ

(−→% kτn −−→% k−1
τn ) +−→u kτnB−→% kτn + εMp(%

k
τn)−→% kτn = 0, (3.10a)

Mµ(%kτn)−→u kτn + M%(%
k
τn)−→u kτn + κMs(u

k
τn)−→u kτn + X−→% kτn + B−→% kτn ⊗−→% kτn = 0, (3.10b)

and the matrices appearing in (3.10) are defined with the aid of the basis elements {ei, i = 1, . . . , n} and
{ei, i = 1, . . . , dn} from (3.1) as follows

M :=

(∫
Ω

eiej dx

)
i,j

∈ Rn×n, (3.10c)

B :=

(∫
Ω

eiej · ∇el dx
)
i,j,l

∈ Rdn×n×n, (3.10d)

Mp(%
k
τn) :=

(∫
Ω

∇ei · ∇ej |∇%kτn|p−2 dx

)
i,j

∈ Rn×n, (3.10e)

Mµ(%kτn) :=

(∫
Ω

µτ (%kτn)e(ei) : e(ej) dx

)
i,j

∈ Rdn×dn, (3.10f)

M%(%
k
τn) :=

(∫
Ω

M(%kτn)ei · ej dx

)
i,j

∈ Rdn×dn, (3.10g)

X :=

(∫
Ω

∇x2ei · ej dx

)
i,j

∈ Rdn×n, (3.10h)

Ms(u
k
τn) :=

(∫
Ω

|ukτn|s−2ei · ej dx

)
i,j

∈ Rdn×dn. (3.10i)

We show in the following that for every k ∈ {1, . . . , Nτ} the nonlinear system of equations given by (3.10)
has a solution (−→% kτn,−→u kτn) ∈ Rn × Rdn. For this, we make use of the following classical result:

Proposition 3.5 ([Zei86, Prop. 2.8, p. 53]). Consider the system of equations

~g(~z) = (gi(~z))
m
i=1 = ~0 for ~z ∈ Rm. (3.11)

Let BR(0) := {~z ∈ Rm, ‖~z‖ ≤ R} for fixed R > 0 and ‖ · ‖ a norm on Rm. Let gi : BR(0) → R be
continuous for i = 1, . . . ,m. Further assume that

~g(~z) · ~z ≥ 0 for all ~z with ‖~z‖ = R. (3.12)

Then (3.11) has a solution ~z with ‖~z‖ ≤ R.

In the following we verify that the nonlinear system (3.10) satisfies the assumptions of Proposition 3.5.

We first show the continuity of ~g given by (3.10). For this, let ~z := (−→% kτn,−→u kτn) ∈ Rm with m := n+dn
and consider a sequence (~z`)`∈N with ~z` := (−→% kτn`,

−→u kτn`) ∈ Rm and such that

~z` → ~z as `→∞ . (3.13a)

We aim to show that also

~g(~z`)→ ~g(~z) as `→∞ . (3.13b)

A close perusal of (3.10) reveals, that the maps (−→% kτn`,
−→u kτn`) 7→

M
τ (−→% kτn`−

−→% k−1
τn )+−→u kτn`B

−→% kτn` and
−→% kτn` 7→ X−→% kτn` +B−→% kτn`⊗

−→% kτn` can be rewritten as polynomials of the components of ~z`. Hence, these
terms constitute continuous functions. We now discuss the continuity properties of the remaining terms
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Mp(%
k
τn)−→% kτn, Mµ(%kτn)−→u kτn, M%(%

k
τn)−→u kτn, and Ms(u

k
τn)−→u kτn. For this, we first observe that convergence

(3.13a) implies that as `→∞

%kτn` =

n∑
i=1

%kτn,i,`ei → %kτn =

n∑
i=1

%kτn,iei in W 1,p(Ω) , (3.14a)

ukτn` =

nd∑
i=1

ukτn,i,`ei → ukτn =

nd∑
i=1

ukτn,iei in W 1,2(Ω;Rd) , (3.14b)

again with the basis elements {ei, i = 1, . . . , n} and {ei, i = 1, . . . , dn} from (3.1). Next, we note that
the p-Laplacian Ap : W 1,p(Ω)→ (W 1,p(Ω))∗, defined in (3.7d), is a Nemyckii operator, hence continuous.
In view of (3.14a), this yields that Mp(%

k
τn`)
−→% kτn,` →Mp(%

k
τn)−→% kτn. In a similar manner, we also see that

u 7→
∫

Ω
|u|s−2udx as a map from Ls(Ω) to Ls

′
(Ω) is a Nemyckii operator, and thus continuous. This

provides that Ms(u
k
τn`)
−→u kτn` →Ms(u

k
τn)−→u kτn. Finally, to conclude that Mµ(%kτn`)

−→u kτn` →Mµ(%kτn)−→u kτn
and that M%(%

k
τn`)
−→u kτn` → M%(%

k
τn`)
−→u kτn`, we observe that (3.14a) implies that the sequence (%kτn`)` is

uniformly bounded in Ω and hence the dominated convergence theorem provides the result. This verifies
(3.13b) and thus we conclude the continuity of the map ~g.
Now we deduce (3.12). Testing (3.10) by ~z = (−→% kτn,−→u kτn) we obtain

~g(~z) · ~z

=

∫
Ω

%kτn − %k−1
τn

τ
%kτn dx+ ε‖∇%kτn‖

p
Lp(Ω;Rd)

+

∫
Ω

µτ (%kτn)e(ukτn) : e(ukτn) dx+

∫
Ω

M(%kτn)|ukτn|2 dx

+ κ‖ukτn‖sLs(Ω;Rd) − |1− ε̃|
∫

Ω

%kτnu
k
τn · ∇%kτn dx+

∫
Ω

%kτnu
k
τn · ∇x2 dx

≥
‖%kτn‖2L2(Ω)

2τ
−
‖%k−1
τn ‖2L2(Ω)

2τ
+ ε‖∇%kτn‖

p
Lp(Ω;Rd)

+ τβ‖e(ukτn)‖2L2(Ω;Rd×d) + cµ‖%kτne(ukτn)‖2L2(Ω;Rd×d)

+M‖%kτnukτn‖2L2(Ω;Rd) + κ‖ukτn‖sLs(Ω;Rd) − |1− ε̃|
∫

Ω

|%kτnukτn||∇%kτn|dx−
∫

Ω

|%kτnukτn| |∇x2|︸ ︷︷ ︸
=1

dx

≥
‖%kτn‖

2
L2(Ω)

2τ −
‖%k−1
τn ‖

2
L2(Ω)

2τ + ε
(

1− 2
p

)
‖∇%kτn‖

p
Lp(Ω;Rd)

+ τβ‖e(ukτn)‖2L2(Ω;Rd×d) + cµ‖%kτne(ukτn)‖2L2(Ω;Rd×d)

+ M
2 ‖%

k
τnu

k
τn‖2L2(Ω;Rd) + κ‖ukτn‖sLs(Ω;Rd) +

(
p−2
p

)(
|1−ε̃|2
M

)p/(p−2)

ε−2/(p−2)Ld(Ω) + 1
MLd(Ω) .

(3.15)

Above, in the first inequality we have exploited the convexity of the L2-norm together with (3.3b) and
(2.2c). Moreover, to arrive at the second estimate, by virtue of (2.2f), (2.2g), Hölder’s and Young’s
inequality, we have

|1− ε̃|
∫

Ω

|%kτnukτn||∇%kτn|dx ≤
M
4 ‖%

k
τnu

k
τn‖2L2(Ω) + 2ε

p ‖∇%
k
τn‖

p
Lp(Ω;Rd)

+
(
p−2
p

)(
|1−ε̃|2
M

)p/(p−2)

ε−2/(p−2)Ld(Ω),

and

∫
Ω

|%kτnukτn| |∇x2|︸ ︷︷ ︸
=1

dx ≤M4 ‖%
k
τnu

k
τn‖2L2(Ω) + 1

MLd(Ω).

Using that span{ej ; j = 1, . . . , n} = Xn and span{ej ; j = 1, . . . , dn} = Un, we further estimate the norms
in (3.15) via Young’s inequality as follows

‖∇%kτn‖
p
Lp(Ω;Rd)

≥ min
i=1,...,n

‖∇ei‖pLp(Ω;Rd)
‖−→% kτn‖

p
lp ≥ n

1−p min
i=1,...,n

‖∇ei‖pLp(Ω;Rd)
‖−→% kτn‖

p
l1 ,

− ‖%k−1
τn ‖2L2(Ω) ≥ − max

i=1,...,n
‖ei‖2L2(Ω;Rd)‖

−→% k−1
τn ‖

p
l2 ≥ −

1

n
max

i=1,...,n
‖ei‖2L2(Ω;Rd)‖

−→% k−1
τn ‖2l1 ,

‖ukτn‖sLs(Ω;Rd) ≥ min
i=1,...,dn

‖ei‖sLs(Ω;Rd)‖
−→u kτn‖sls ≥ (dn)1−s min

i=1,...,dn
‖ei‖sLs(Ω;Rd)‖

−→u kτn‖sl1 ,
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and finally obtain

~g(~z) · ~z

≥ min

{
ε
(

1− 1
p

)
n1−p min

i=1,...,n
‖∇ei‖pLp(Ω;Rd)

, κ(dn)1−s min
i=1,...,dn

‖ei‖sLs(Ω;Rd)

}(
‖−→% kτn‖

p
l1 + ‖−→u kτn‖sl1

)
− 1

2τn
max

i=1,...,n
‖ei‖2L2(Ω;Rd)‖

−→% k−1
τn ‖2l1 .

For this we see that condition (3.12) is satisfied when choosing

R :=

1
2τn max

i=1,...,n
‖ei‖2L2(Ω;Rd)‖

−→% k−1
τn ‖2l1

min

(
ε(1− 1

p )n1−p min
i=1,...,n

‖∇ei‖pLp(Ω;Rd)
, κ(dn)1−s min

i=1,...,dn
‖ei‖sLs(Ω;Rd)

) .

To Proposition 3.2, Item 2.: Testing (3.2a) by D%E(%kτn) and (3.2b) by ukτn, respectively, gives

0 =

∫
Ω

µτ (%kτn)e(ukτn) : e(ukτn) dx+

∫
Ω

M(%kτn)|ukτn|2 dx+ κ

∫
Ω

|ukτn|s dx

+

∫
Ω

%kτn − %k−1
τn

τ
D%E(%kτn) dx+ ε

∫
Ω

|∇%kτn|p−2∇%kτn · ∇(x2 + ε̃%kτn) dx

≥
∫

Ω

µτ (%kτn)e(ukτn) : e(ukτn) dx+

∫
Ω

M(%kτn)|ukτn|2 dx+ κ

∫
Ω

|ukτn|s dx+
1

τ
(E(%kτn)− E(%k−1

τn ))

+
εε̃

p
‖∇%kτn‖

p
Lp(Ω;Rd)

− εε̃1−p

p
Ld(Ω),

(3.16)

where we exploited the convexity of E(%kτn), and Hölder’s and Young’s inequalities in the form

ε

∫
Ω

(
|∇%kτn|p−2∇%kτn · ∇(x2 + ε̃%kτn)

)
dx ≥ εε̃

p

∫
Ω

|∇%kτn|p dx− εε̃1−p

p
Ld(Ω).

Now we multiply (3.16) by τ und sum up from k = 0 to K to find (3.4). �

3.2 Proof of Proposition 3.4

To a priori estimates (3.9a)–(3.9g): The estimates (3.9a), (3.9d)–(3.9g) are immediate consequences of
the discrete energy-dissipation inequality (3.8) for the interpolated solutions of system (3.7). Furthermore,
we also deduce estimates (3.9b) and (3.9c) from (3.8) by exploiting the growth property (3.3b) of µτ , i.e.,

Nτ∑
k=1

τ

∫
Ω

µτ (%kτn)e(ukτn) : e(ukτn) dx ≥ τβ
Nτ∑
k=1

τ‖e(ukτn)‖2L2(Ω;Rd×d) + cµ

Nτ∑
k=1

τ‖%kτne(ukτn)‖2L2(Ω;Rd×d) .

To a priori estimates (3.9h)–(3.9n): Estimate (3.9h) follows from (3.9f) and (3.9g) together with
a generalized Poincaré inequality, see [Rou05, Theorem 1.32, p. 21]. Thanks to (3.9c), (3.9e), (3.9g),
Hölder’s and Young’s inequalities, and the relations (2.2f) for the exponents p and s, we obtain (3.9i):

‖div(%τnuτn)‖2L2(0,T ;L2(Ω)) ≤ ‖e(%τnuτn)‖2L2(0,T ;L2(Ω;Rd))

≤ 2‖%kτne(ukτn)‖2L2(0,T ;L2(Ω;Rd×d)) + 2

∥∥∥∥ukτn ⊗∇%kτn +∇%kτn ⊗ ukτn
2

∥∥∥∥2

L2(0,T ;L2(Ω;Rd×d))

≤ 2‖%kτne(ukτn)‖2L2(0,T ;L2(Ω;Rd×d)) +
2

p
‖∇%kτn‖

p
Lp(0,T ;Lp(Ω;Rd))

+
2

s
‖ukτn‖sLs(0,T ;Ls(Ω;Rd)) ≤ C,
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where the bounds on the above three terms are provided by the immediate estimates (3.9c), (3.9g) and
(3.9e). To find (3.9j) we argue by comparison in the discrete transport equation (3.7a), which reads

〈Dτ%τn, Pl(ψ)〉Lp(0,T ;Xl)
=

∫ T

0

∫
Ω

%τnuτn · ∇Pl(ψ) dxdt− 〈Ap(%τn), Pl(ψ)〉Lp(0,T ;Xl)

=: 〈RH−Ap(%τn), Pl(ψ)〉Lp(0,T ;Xl)
,

(3.17)

for any test function ψ ∈ Lp(0, T ; X) projected to Xl by Pl. Now, to find that ‖Dτ%τn‖(Lp(0,T ;Xl))∗

is bounded, we show that each of the terms on the right-hand side of (3.17) is uniformly bounded. In
particular, we have for all n ≥ l:

‖Dτ%τn‖(Lp(0,T ;Xl))∗ = sup
Pl(ψ)∈Lp(0,T ;Xl)

∣∣∣〈Dτ%τn, Pl(ψ)〉Lp(0,T ;Xl)

∣∣∣
‖Pl(ψ)‖Lp(0,T ;Xl)

, (3.18)

and by (3.17) ∣∣∣〈Dτ%τn, Pl(ψ)〉Lp(0,T ;Xl)

∣∣∣ =
∣∣∣〈(RH−Ap(%τn)), Pl(ψ)〉Lp(0,T ;Xl)

∣∣∣ .
Now, the terms on the right-hand side are estimated via Hölder’s inequality as follows∣∣∣〈RH, Pl(ψ)〉Lp(0,T ;Xl)

∣∣∣ =

∣∣∣∣∣
∫ T

0

∫
Ω

%τnuτn · ∇Pl(ψ) dxdt

∣∣∣∣∣ (3.19)

≤ ‖%τnuτn‖L2(0,T ;L2(Ω))‖∇Pl(ψ)‖L2(0,T ;L2(Ω;Rd))

≤ C‖Pl(ψ)‖Lp(0,T ;Xl),∣∣∣〈Ap(%τn), Pl(ψ)〉Lp(0,T ;Xl)

∣∣∣ =

∣∣∣∣∣ε
∫ T

0

∫
Ω

|∇%τn|p−2∇%τn · ∇Pl(ψ) dx dt

∣∣∣∣∣ (3.20)

≤ ε‖∇%τn‖
p−1
Lp(0,T ;Lp(Ω;Rd))

‖∇Pl(ψ)‖Lp(0,T ;Lp(Ω;Rd))

≤ C‖Pl(ψ)‖Lp(0,T ;Xl) .

For the last inequality of (3.19) and (3.20) we used (3.9d) and (3.9g), respectively. This finally yields
(3.9j). Estimate (3.9k) then follows by repeating the calculations of (3.20) for 〈Ap(%τn), ψ〉Lp(0,T ;X),
realizing that this expression is well-defined for any ψ ∈ Lp(0, T ; X) thanks to a priori estimate (3.9g).
In preparation of showing (3.9l), we define a sequence of finite-dimensional subspaces Yn such that, for
all n ∈ N

Yn ⊂ Yn+1 and
⋃
n∈N

Yn dense in Y := W 2,2(Ω).

By [Rou05, Remark 8.41, p. 238], we define a selfadjoint projector

PY
n : Y → Y such that PY

n (Y) = Yn and ‖PY
n ‖L(Y,Y) is bounded independently of n. (3.21)

In view of [GGZ74, Lemma 1.12., p. 144], there also holds that
⋃
n∈N C

0([0, T ]; Yn) is dense in Lp(0, T ; Y)
for any 1 ≤ p ≤ ∞. We will show that the operator norm given here below is uniformly bounded, again
by testing (3.17), now with functions ψ ∈ Lp(0, T ; Y).

‖Dτ%τn‖(Lp(0,T ;Y))∗ = sup
ψ∈Lp(0,T ;Y)

∣∣∣〈Dτ%τn, ψ〉Lp(0,T ;Y)

∣∣∣
‖ψ‖Lp(0,T ;Y)

.

Since PY
n is idempotent and selfadjoint PY

n
∗

= PY
n , it is∣∣∣〈Dτ%τn, ψ〉Lp(0,T ;Y)

∣∣∣ =
∣∣∣〈PY

n Dτ%τn, ψ
〉
Lp(0,T ;Y)

∣∣∣
=

∣∣∣∣〈PY
n

∗
Dτ%τn, ψ

〉
Lp(0,T ;Y)

∣∣∣∣ =
∣∣∣〈Dτ%τn, P

Y
n (ψ)

〉
Lp(0,T ;Yn)

∣∣∣ .
13



To find (3.9l), we now repeat the lines of (3.19) and (3.20) for the uniform estimates of the right-hand
side of (3.17), also using that

‖∇PY
n (ψ)‖Lp(0,T ;Lp(Ω;Rd)) ≤ ‖PY

n (ψ)‖Lp(0,T ;Y) ≤ ‖PY
n ‖L(Y,Y)‖ψ‖Lp(0,T ;Y),

where ‖PY
n ‖L(Y,Y) ≤ C by (3.21). This together with the isomorphism (Lp(0, T ; Y))∗ ∼= Lp

′
(0, T ; Y∗)

proves estimate (3.9l).
To deduce (3.9m) we also argue by comparison based on (3.7b). In particular, we have

‖Aµ(%τn, uτn)‖(Ls(0,T ;U))∗ = sup
v∈Ls(0,T ;U)

∣∣∣〈Aµ(%τn, uτn), v〉Ls(0,T ;U)

∣∣∣
‖v‖Ls(0,T ;U)

.

Now we exploit (3.7b) and also make use of the selfadjoint, idempotent projector PU
n : U → Un, cf.

Remark 3.1. More precisely, since Aµ(%τn(t), ·) : U → U∗ is a linear operator for a.a. t ∈ (0, T ), cf.
(3.7e), we have∣∣∣〈Aµ(%τn, uτn), v〉Ls(0,T ;U)

∣∣∣ =
∣∣∣〈Aµ(%τn, P

U
n uτn), v

〉
Ls(0,T ;U)

∣∣∣
=

∣∣∣∣〈PU
n

∗
Aµ(%τn, uτn), v

〉
Ls(0,T ;U)

∣∣∣∣ =
∣∣∣〈Aµ(%τn, uτn), PU

n v
〉
Ls(0,T ;Un)

∣∣∣ ,
thanks to the fact that PU

n is idempotent and selfadjoint, with PU
n
∗

denoting the adjoint operator. Based
on this, we further estimate∣∣∣〈Aµ(%τn, uτn), v〉Ls(0,T ;U)

∣∣∣ =
∣∣∣〈Aµ(%τn, uτn), PU

n (v)
〉
Ls(0,T ;Un)

∣∣∣
=

∣∣∣∣∣
∫ T

0

∫
Ω

µτ (%τn)e(uτn) : e(PU
n (v)) dx dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

∫
Ω

M(%τn)uτn · PU
n (v) dx dt

∣∣∣∣∣︸ ︷︷ ︸
RHS1

+

∣∣∣∣∣
∫ T

0

∫
Ω

%τn∇D%E(%τn) · PU
n (v) dx dt

∣∣∣∣∣︸ ︷︷ ︸
RHS2

+

∣∣∣∣∣κ
∫ T

0

∫
Ω

|uτn|s−2uτn · PU
n (v) dxdt

∣∣∣∣∣︸ ︷︷ ︸
RHS3

.

(3.22)

We show that each of the three terms on the right-hand side of (3.22) is bounded. For the first term it is

RHS1 ≤M‖%τnuτn‖L2(0,T ;L2(Ω;Rd))‖PU
n (v)‖L2(0,T ;L2(Ω;Rd))

≤M‖%τnuτn‖L2(0,T ;L2(Ω;Rd))‖PU
n ‖L(U,U)‖v‖Ls(0,T ;U)

≤M‖%τnuτn‖L2(0,T ;L2(Ω;Rd))C̃‖v‖Ls(0,T ;U),

by virtue of the growth property (2.2c) of M(%τn), the immediate bound (3.9e) for %τnuτn and bound-
edness assumption for PU

n given by Remark 3.1.
Thanks to the relations (2.2f) for the exponents p, s we find for the second term

RHS2 ≤ ‖%τn‖L2(0,T ;L2(Ω;Rd))

[
ε̃‖∇%τn‖Lp(0,T ;Lp(Ω;Rd)) + Ld(Q)1/p

]
‖PU

n (v)‖Ls(0,T ;Ls(Ω;Rd))

≤ ‖%τn‖L2(0,T ;L2(Ω;Rd))

[
ε̃‖∇%τn‖Lp(0,T ;Lp(Ω;Rd)) + Ld(Q)1/p

]
‖PU

n ‖L(U,U)‖v‖Ls(0,T ;U)

≤ C̃‖v‖Ls(0,T ;U) .

14



Here, we abbreviated Q := (0, T )× Ω and we also made use of the immediate bounds (3.9f), (3.9g) and
boundedness assumption for PU

n given by Remark 3.1. For the third term we have

RHS3 ≤ κ
(
s−1
s ‖uτn‖

s
Ls(0,T ;Ls(Ω;Rd)) + 1

s

)
‖PU

n ‖L(U,U)‖v‖Ls(0,T ;U) ≤ κC̃‖v‖Ls(0,T ;U),

where we used Hölder’s inequality with the exponent s together with (3.9e) and (3.21). Finally, (3.22)
together with the isomorphism (Ls(0, T ; U))∗ ∼= Ls

′
(0, T ; U∗) provides (3.9n). �

4 Limit passage from discrete to continuous

In this Section we give the proof of our main results, the existence Theorem 2.3 and the identification
Theorems 2.4 and 2.7.

4.1 Proof of Theorem 2.3: Existence of solutions in the sense of Def. 2.2

Based on the a priori bounds deduced in Proposition 3.4, we are now in the position to extract a
subsequence of solutions of the discrete problems that converges to a limit (%, u) in suitable topologies.

Proposition 4.1 (Convergence of the discrete approximants to a solution of (1.1)). Let the assumptions
of Theorem 2.3 be fulfilled. Then the following statements hold true:

1. There exists a (not relabeled) subsequence of discrete solutions (%τn, uτn)τn and a limit quadruplet
(%, u, ζ, Bµ) as well as limit objects (ξl, Bp, b) such that as τ → 0 and n → ∞, the following
convergence results are valid

uτn ⇀ u in Ls(0, T ;Ls(Ω;Rd)), (4.1a)

|uτn|s−2uτn ⇀ ζ in Ls
′
(0, T ;Ls

′
(Ω;Rd)), (4.1b)

%τn ⇀ % in Lp(0, T ;W 1,p(Ω)), (4.1c)

Dτ%τn ⇀ ξl in (Lp(0, T ; Xl))
∗, (4.1d)

Ap(%τn) ⇀ Bp in (Lp(0, T ; X))∗, (4.1e)

div(%τnuτn) ⇀ b in L2(0, T ;L2(Ω)), (4.1f)

%τn(t) ⇀ %(t) in L2(Ω), for all t ∈ [0, T ], (4.1g)

Aµ(%τn, uτn) ⇀ Bµ in Ls
′
(0, T ;W 1,2(Ω;Rd)∗). (4.1h)

In addition to (4.1a)–(4.1h), as τ → 0 and n→∞ also the following convergence results hold true:

%τn → % in Lp(0, T ;Lp(Ω)), (4.1i)

%τn → % in Lp(0, T ;W 1,p(Ω)). (4.1j)

2. The limit quadruplet (%, u, ζ, Bµ) extracted by convergences (4.1) is a weak solution of system (1.1)
in the sense of Definition 2.2.

The proof of convergence result (4.1i) will rely on the following (discrete) Aubin-Lions type result:

Proposition 4.2 ([DJ12, Thm. 1]). Assume T > 0, N ∈ N, τ = T/N , and set tk = kτ, k = 0, . . . , N . Let
X,B and Y be Banach spaces such that the embedding X ↪→ B is compact and the embedding B ↪→ Y
is continuous. Furthermore, let either 1 ≤ p < ∞, r = 1 or p = ∞, r > 1, and let (uτ ) be a sequence of
functions, which are constant on each subinterval (tk−1, tk), satisfying

τ−1‖uτ − uτ (· − τ)‖Lr(τ,T ;Y ) + ‖uτ‖Lr(0,T ;X) ≤ C0 for all τ > 0, (4.2)

where C0 > 0 is a constant which is independent of τ . If p < ∞, then (uτ ) is relatively compact in
Lp(0, T ;B). If p = ∞, there exists a subsequence of (uτ ) which converges in each space Lq(0, T ;B),
1 ≤ q <∞, to a limit which belongs to C0([0, T ];B).
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Proof of Prop. 4.1: The convergence results (4.1a)–(4.1h) are direct consequences of the a priori
estimates (3.9) derived in Proposition 3.4.

To verify convergence statement (4.1i) we observe that (3.9h) and (3.9l) imply the bound

‖Dτ%τn‖Lp′ (0,T ;W 2,2(Ω)∗) + ‖%τn‖Lp(0,T ;W 1,p(Ω)) ≤ C0, for all τ > 0. (4.3)

Now, we apply Proposition 4.2 with X = W 1,p(Ω), B = Lp(Ω) and Y = W 2,2(Ω)∗. Indeed, W 1,p(Ω)
embeds compactly into Lp(Ω) and Lp(Ω) embeds continuously into W 2,2(Ω)∗. Moreover, by (2.2f) and
Remark 2.1, Item 2., we have p, p′ > 1 = r and therefore, estimate (4.3) fits with assumption (4.2).
Hence, Proposition 4.2 provides (4.1i).

In order to verify Prop. 4.1, Item 2, we will pass to the limit n → ∞, τ → 0 in system (3.7) for the
interpolated solutions (%τn, uτn)τn. We carry out this procedure separately in Sections 4.1.1 and 4.1.2. To
deduce the limit transport equation (2.5a) requires to identify that 〈Bp, ψ〉Lp(0,T ;X) = 〈Ap(%), ψ〉Lp(0,T ;X)

for all ψ ∈ Lp(0, T ; X) for the p-Laplacian term defined in (3.7d) and the limit Bp obtained by convergence
(4.1e). This identification is also carried out in Section 4.1.1 based on tools from convex analysis and
monotone operator theory. As a result of the identification procedure, we will also conclude the strong
Lp(0, T ;W 1,p(Ω))-convergence (4.1j) for the densities. �

Remark 4.3. (Preparations for the identification argument in Theorems 2.4 & 2.7)
1. Using Proposition 4.2 with X = W 1,p(Ω), B = C(Ω) and Y = W 2,2(Ω)∗, where W 1,p(Ω) embeds

compactly into C(Ω) for p > d, and following the above line of arguments, also yields

%τn → % in Lp(0, T ;C(Ω)). (4.4)

2. The above strong convergence (4.4) together with Egorov’s theorem provides the existence of a further
(not relabelled) subsequence that converges almost uniformly in (0, T ). More precisely, for every
δ > 0, there exists a measurable subset Icδ of (0, T ) such that L1(Icδ ) < δ, and such that

‖%τn(t)− %(t)‖C(Ω) → 0 uniformly for all t ∈ Iδ := (0, T ) \ Icδ ,

which also yields

%τn → % uniformly in Iδ × Ω. (4.5)

The above uniform convergence on Iδ × Ω will be exploited subsequently in Section 4.2 for the
identification of Bµ and ζ as functions of the limit pair (%, u) on the non-cylindrical domains Qδν ,
cf. Thm. 2.4 and in Section 4.3 for proving the non-negativity and boundedness of the limit density
%, cf. Prop. 2.7.

4.1.1 Limit passage in the continuity equation and convergence result (4.1j)

In the following, we carry out the limit passage in the discrete transport equation (3.7a) by discussing
each of the three apprearing terms separately. We start with the time derivative 〈Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)

and subsequently address the two remaining terms defined in (3.7c) and (3.7d).
The limit passage in the time derivative is carried out in two steps. For this, we follow the strategy

of [Rou05, Proof of Thm. 8.27, p. 225ff]: Firstly, from convergence statement (4.1d), we obtain

〈ξl, Pl(ψ)〉Lp(0,T ;Xl)
= lim

τ→0
n→∞

〈Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)
for each l ∈ N fixed. (4.6a)

Secondly, we let l→∞. For this, we note that ξl+1 can be regarded as an extension of ξl from Lp(0, T ; Xl)
to Lp(0, T ; Xl+1). By (4.1d), there holds ‖ξl‖(Lp(0,T ;Xl))∗ ≤ C independently of l ∈ N. Hence, by
density of

⋃
l∈N L

p(0, T ; Xl) in Lp(0, T ; X) and since Hahn-Banach’s theorem guarantees the existence
and uniqueness of a continuous extension, we conclude the existence of a functional %̇ ∈ (Lp(0, T ; X))∗

such that also ‖%̇‖(Lp(0,T ;X))∗ ≤ C. In addition, it is %̇|Lp(0,T ;Xl) = ξl = ∂t%|Lp(0,T ;Xl) for each l ∈ N.
Hence, we obtain for any ψ ∈ Lp(0, T ; X) as l→∞

〈∂t%, ψ〉Lp(0,T ;X) = lim
l→∞

〈ξl, Pl(ψ)〉Lp(0,T ;Xl)
= lim
l→∞

(
lim
τ→0
n→∞

〈Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)

)
. (4.6b)
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This result also allows us to conclude the regularity stated for % in (2.4), i.e., in particular

∂t% ∈ (Lp(0, T ; X))∗ ∼= Lp
′
(0, T ; X∗) . (4.6c)

For the limit passage in the remaining terms we can simultaneously send τ → 0, n→∞, and l→∞.
We proceed with the drift term given by (3.7c). Due to (4.1i), in particular %τn → % in L2(0, T ;L2(Ω))

as τ → 0, n→∞, and by Pτl(ψ)→ ψ in Lp(0, T ; X) as τ → 0, l→∞, we obtain

‖%∇ψ − %τn∇Pτl(ψ)‖Ls′ (0,T ;Ls′ (Ω;Rd))

≤ ‖(%τn − %)∇Pτl(ψ)‖Ls′ (0,T ;Ls′ (Ω;Rd)) + ‖%∇(Pτl(ψ)− ψ)‖Ls′ (0,T ;Ls′ (Ω;Rd))

≤ ‖(%τn − %)‖L2(0,T ;L2(Ω))︸ ︷︷ ︸
→0

‖∇Pτl(ψ)‖Lp(0,T ;Lp(Ω;Rd)) + ‖%‖L2(0,T ;L2(Ω)) ‖∇(Pτl(ψ)− ψ)‖Lp(0,T ;Lp(Ω;Rd))︸ ︷︷ ︸
→0

,

where we applied Hölder’s inequality and exploited the relations (2.2f) and Remark 2.1, Item 2., for the
exponents p, s. Hence, we have as τ → 0 and n, l→∞

%τn∇Pτl(ψ)→ %∇ψ in Ls
′
(0, T ;Ls

′
(Ω;Rd)) . (4.7)

Together with the weak Ls(0, T ;Ls(Ω))-convergence (4.1a) for the velocities we conclude∫ T

0

∫
Ω

%u∇ψ dxdt = lim
τ→0
n,l→∞

∫ T

0

∫
Ω

%τnuτn∇Pτl(ψ) dxdt , (4.8)

which gives the desired convergence result for the drift term. In addition, we here also deduce an
alternative limit expression, which is obtained by performing integration by parts on the drift term and
by exploiting convergence relation (4.1f); this expression will be useful for the identification of the term
Bp lateron:

lim
τ→0
n,l→∞

∫ T

0

∫
Ω

%τnuτn∇Pτl(ψ) dxdt = lim
τ→0
n,l→∞

∫ T

0

∫
Ω

−div(%τnuτn)Pτl(ψ) dxdt =

∫ T

0

∫
Ω

b ψ dxdt . (4.9)

Moreover, from convergence statement (4.1e) we directly read

〈Bp, ψ〉Lp(0,T ;X) = lim
τ→0
n,l→∞

〈Ap(%τn), Pτl(ψ)〉Lp(0,T ;Xl)
. (4.10)

Putting together (4.6b), (4.8), and (4.10) yields

〈∂t%, ψ〉Lp(0,T ;X) −
∫ T

0

∫
Ω

%u∇ψ dxdt+ 〈Bp, ψ〉Lp(0,T ;X) = 0 for all ψ ∈ Lp(0, T ; X). (4.11)

Similarly, when putting together (4.6b), (4.9), and (4.10), we obtain

〈∂t%, ψ〉Lp(0,T ;X) +

∫ T

0

∫
Ω

bψ dx dt+ 〈Bp, ψ〉Lp(0,T ;X) = 0 for all ψ ∈ Lp(0, T ; X). (4.12)

Hence, it remains to identify in (4.10), resp. (4.11), that

〈Bp, ψ〉Lp(0,T ;X)

!
= 〈Ap(%), ψ〉Lp(0,T ;X) :=

∫ T

0

∫
Ω

ε |∇%|p−2∇% · ∇ψ dxdt (4.13)

for the limit density % ∈ Lp(0, T ; X). For this, we will carry out a Minty-type argument from convex
analysis and monotone operator theory and in the course of this argument we will make use of the limit
continuity equation in the form (4.12). In preparation, we introduce the proper, lower semicontinuous,
and convex functional

F : Lp(0, T ; X)→ [0,∞), F(%̃) :=

∫ T

0

∫
Ω

ε

p
|∇%̃|p dxdt , (4.14)
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and observe that F is Gâteaux-differentiable with the Gâteaux-derivative DF : Lp(0, T ; X)→ Lp
′
(0, T ; X∗),

〈DF(%̃), ψ〉Lp(0,T ;X) = 〈Ap(%̃), ψ〉Lp(0,T ;X) =

∫ T

0

∫
Ω

ε|∇%|p−2∇% · ∇ψ dxdt . (4.15)

Hence, for each %̃ ∈ Lp(0, T ; X) the convex subdifferential ∂F(%̃) of the functional F in %̃ is single-valued
and coincides with the Gâteaux-derivative, i.e., it is ∂F(%̃) = {Ap(%̃)} for all %̃ ∈ Lp(0, T ; X). By
definition of the convex subdifferential, cf. e.g. [ABM06], any subgradient ξ ∈ ∂F(%̃) is characterized by
the inequality 〈ξ, ψ − %̃〉Lp(0,T ;X) ≤ F(ψ)− F(%̃) for all ψ ∈ Lp(0, T ; X). In view of these reasonings the
identification (4.13) can be achieved by verifying that

〈Bp, ψ − %〉Lp(0,T ;X)

!
≤ F(ψ)− F(%) for all ψ ∈ Lp(0, T ; X) . (4.16)

To this end, in correspondence to (4.14), we also introduce for the approximating problem (3.7a) the
proper, lower semicontinuous, and convex functionals Fn : Lp(0, T ; X)→ [0,∞],

Fn(%̃) :=

{ ∫ T
0

∫
Ω
ε
p |∇%̃|

p dxdt if %̃ ∈ Lp(0, T ; Xn).

∞ else.
(4.17)

Since Lp(0, T ; Xn) is a closed subspace of Lp(0, T ; X), the convex subdifferential of Fn is given by

∂Fn(%̃) :=

{
{DFn(%̃)} = {Ap(%̃)}, if %̃ ∈ Lp(0, T ; Xn),

∅ otherwise.
(4.18)

Hence, for all τ > 0, all n ≥ l ∈ N, and for all ψ ∈ Lp(0, T ; X) there holds

〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn) = 〈D%Fn(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn)

≤ Fn(Pτl(ψ))− Fn(%τn).
(4.19)

We will exploit relation (4.19) in order to deduce (4.16). More precisely, we shall verify the following
chain of inequalities

F(ψ)− F(%)
(4.20-1)

≥ lim sup
l→∞
l≤n

(
lim sup
τ→0
n→∞

Fn(Pτl(ψ))
)
− lim inf

τ→0
n→∞

Fn(%τn)

≥ lim sup
l→∞
l≤n

lim sup
τ→0
n→∞

(Fn(Pτl(ψ))− Fn(%τn))


(4.19)

≥ lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn)

)
(4.20-2)

≥ 〈Bp, ψ − %〉Lp(0,T ;X) .

(4.20)

In the following we will verify that above in (4.20) the first inequality marked as (4.20-1) and the fourth
inequality marked as (4.20-2) indeed hold true, while the second inequality and the third inequality
directly follow from the properties of the limit superior and the limit inferior applied to relation (4.19).
Alltogether, the chain of inequalities (4.20) will thus prove (4.16), so that (4.13) can be concluded.

To inequality (4.20-1): Since
⋃
n∈N L

p(0, T ; Xn) is dense in Lp(0, T ; X) we may deduce that the
sequence of functionals (Fn)n Mosco-converges to F, i.e., that (4.21) below holds true, cf. [Mos67, ABM06].
For this, consider a sequence (ψn)n ⊂ Lp(0, T ; X) such that ψn ⇀ ψ in Lp(0, T ; X); we show that

lim inf
n→∞

Fn(ψn) ≥ F(ψ) . (4.21a)

First assume that ψn 6∈ Lp(0, T ; Xn) for all n ∈ N. Then, clearly ∞ = Fn(ψn) > F(ψ) so that (4.21a)
holds true. Assume now that there is a (not relabelled) subsequence with ψn ∈ Lp(0, T ; Xn). Along this
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subsequence, it is Fn(ψn) = F(ψn) and now we may exploit the weak sequential lower semicontinuity of
F to find (4.21a).

Consider now any function ψ ∈ Lp(0, T ; X). In order to conclude Mosco-convergence, we verify that

there exists a recovery sequence (ψ̂n)n ⊂ Lp(0, T ; X) such that

ψ̂n → ψ in Lp(0, T ; X) and lim sup
n→∞

Fn(ψ̂n) ≤ F(ψ) . (4.21b)

Indeed, by the density of
⋃
n∈N L

p(0, T ; Xn) in Lp(0, T ; X) it is ensured that for each element ψ ∈
Lp(0, T ; X) there exists a sequence (ψ̂n)n such that ψ̂n ∈ Xn and ψ̂n → ψ in Lp(0, T ; X). The first

property ensures that Fn(ψ̂n) = F(ψ̂n) < ∞ for all n ∈ N and the strong Lp(0, T ; X)-convergence then

in particular provides that Fn(ψ̂n) = F(ψ̂n) → F(ψ) as n → ∞, which proves (4.21b). In fact, the
construction (3.6) of the projectors Pτl is based on the density of

⋃
n∈N C

0([0, T ]; Xn) in Lp(0, T ; X) and
hence the sequence (Pτlψ)τl has the property (4.21b). This ensures that Fn(Pτlψ) → F(ψ) as τ → 0,
and l ≤ n → ∞. Moreover, we see that (4.21a) provides that − lim infτ→0,n→∞ Fn(%τn) ≤ −F(%). This
finishes the proof of inequality (4.20-1).

To inequality (4.20-2): In order to verify inequality (4.20-2) we exploit the transport equation (3.7a)
for the approximants %τn in order to rewrite the term 〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn) in (4.20), i.e., by
(3.7a) we have

〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn) = −
∫ T

0

∫
Ω

(Dτ%τn + div(%τnuτn))(Pτl(ψ)− %τn) dxdt, (4.22)

where we have used integration by parts for the drift term. Now we perform the limit procedure used in
(4.20) with the terms on the right-hand side of (4.22). In particular, it is

lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn)

)

= lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−(Dτ%τn + div(%τnuτn))(Pτl(ψ)− %τn) dx dt

)

≥ lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−Dτ%τn(Pτl(ψ)− %τn) dx dt

)

+ lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−div(%τnuτn)(Pτl(ψ)− %τn) dxdt

)
(4.23)

and we now discuss the limit passage separately for each of the two terms on the right-hand side of (4.23).
We start with the first term on the right-hand side of (4.23) that involves the discrete time derivative.

To pass to the limit in the first contribution therein, we repeat the arguments along with (4.6) to find

lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−Dτ%τnPτl(ψ) dx dt

)
= lim inf

l→∞

∫ T

0

∫
Ω

−ξlPl(ψ) dxdt = 〈−∂t%, ψ〉Lp(0,T ;X) .

(4.24)
To handle the second contribution we use integration in time and subsequently exploit the weak sequential
lower semicontinuity of the L2-norm together with convergence result (4.1g). In this way, we deduce

lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−Dτ%τn(−%τn) dxdt = lim inf
τ→0
n→∞

Nτ∑
k=1

∫
Ω

%kτn − %k−1
τn

τ
%kτn dx

≥ lim inf
τ→0
n→∞

(1

2
‖%τn(T )‖2L2(Ω) −

1

2
‖%τn(0)‖2L2(Ω)

)
≥ 1

2
‖%(T )‖2L2(Ω) −

1

2
‖%(0)‖2L2(Ω) = −

∫ T

0

∫
Ω

−∂t% %dx dt .

(4.25)
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Here, the last equality in (4.25) follows by integration in time, which is feasible thanks to regularity
property (4.6c). Putting together (4.24) and (4.25) allows us to deduce that

lim
l→∞

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−Dτ%τn(Pτl(ψ)− %τn) dxdt

)

≥ lim
l→∞

(
lim
τ→0
n→∞

〈−Dτ%τn, Pτl(ψ)〉Lp(0,T ;Xl)

)
− lim inf

τ→0
n→∞

∫ T

0

∫
Ω

−∂t%τn%τn dxdt

≥ 〈−∂t%, ψ − %〉Lp(0,T ;X) .

(4.26)

Now we turn to the second term on the right-hand side of (4.23), i.e., the drift term. Thanks to
Pτlψ → ψ strongly in Lp(0, T ; X) and %τn → % in Lp(0, T ;Lp(Ω)) by (4.1i) together with div(%τnuτn) ⇀ b
in L2(0, T ;L2(Ω)) by (4.1f), we immediately conclude by weak-strong convergence arguments that

lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

∫ T

0

∫
Ω

−div(%τnuτn)(Pτl(ψ)− %τn) dxdt

)

= lim
l→∞
l≤n

(
lim
τ→0
n→∞

∫ T

0

∫
Ω

−div(%τnuτn)Pτl(ψ) dxdt

)
+ lim
l→∞
l≤n

(
lim
τ→0
n→∞

∫ T

0

∫
Ω

div(%τnuτn)%τn dxdt

)

=

∫ T

0

∫
Ω

−b(ψ − %) dxdt.

(4.27)

Now we collect the results of (4.23), (4.26), and (4.27), and exploit the limit continuity equation (4.12)
to find for all ψ ∈ Lp(0, T ; X)

lim inf
l→∞
l≤n

(
lim inf
τ→0
n→∞

〈Ap(%τn), Pτl(ψ)− %τn〉Lp(0,T ;Xn)

)

≥ 〈−∂t%, ψ − %〉Lp(0,T ;X) −
∫ T

0

∫
Ω

b(ψ − %) dxdt = 〈Bp, ψ − %〉Lp(0,T ;X) .

(4.28)

This finishes the proof of inequality (4.20-2).
We now recall that the deduced inequalities (4.20-1) and (4.20-2) prove the validity of the chain of

inequalities (4.20), which in turn establishes the identification (4.13), i.e., that

〈Bp, ψ〉Lp(0,T ;X) = 〈Ap(%), ψ〉Lp(0,T ;X) =

∫ T

0

∫
Ω

ε|∇%|p−2∇% · ∇ψ dxdt

for all ψ ∈ Lp(0, T ; X) in the continuity equation (4.11), resp. in (4.12) of the limit.
Proof of the strong Lp(0, T ;W 1,p(Ω))-convergence (4.1j): Result (4.1i) already provides the

strong Lp(0, T ;Lp(Ω))-convergence of the densities (%τn)τn. To conclude (4.1j) it remains to prove the
strong Lp(0, T ;Lp(Ω;Rd))-convergence of the gradients (∇%τn)τn. This can be concluded from the fol-
lowing chain of inequalities∫ T

0

∫
Ω

ε|∇%|p dx dt ≤ lim inf
τ→0
n→∞

∫ T

0

∫
Ω

ε|∇%τn|p dx dt ≤ lim sup
τ→0
n→∞

∫ T

0

∫
Ω

ε|∇%τn|p dx dt ≤
∫ T

0

∫
Ω

ε|∇%|p dx dt .

(4.29)
We note that the first inequality in (4.29) follows from the weak sequential lower semicontinuity of the
functional F : Lp(0, T ; X) from (4.14) and the weak convergence (4.1c), while the second inequality is a
property of the limit inferior and the limit superior. The third inequality in (4.29) will be verified now
by once more exploiting the transport equations of the approximating solutions (3.7a) and of the limit
(4.12), and by making use of the already above deduced convergence relations for the time-derivative
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(4.25) and for the drift term (4.27). In this way, we deduce the following chain of inequalities

lim inf
τ→0
n→∞

∫ T

0

∫
Ω

ε|∇%τn|p dxdt ≤ lim sup
τ→0
n→∞

〈Ap(%τn), %τn〉Lp(0,T ;X)

(3.7a)
= lim sup

τ→0
n→∞

∫ T

0

∫
Ω

−
(
Dτ%τn + div(%τnuτn)%τn

)
dx dt

≤ − lim inf
τ→0
n→∞

∫ T

0

∫
Ω

Dτ%τn%τn dx dt− lim inf
τ→0
n→∞

∫ T

0

∫
Ω

div(%τnuτn)%τn dxdt

(4.25),(4.27)

≤ −
∫ T

0

∫
Ω

∂t% %dxdt−
∫ T

0

∫
Ω

b %dxdt

(4.12)
= 〈Ap(%), %〉Lp(0,T ;X) =

∫ T

0

∫
Ω

ε|∇%|p dxdt .

(4.30)

Putting together (4.29) and (4.30) yields the strong convergence result (4.1j). �

4.1.2 Limit passage in the momentum balance

In the following we carry out the limit passage in the weak momentum balance (3.7b). For this, we discuss
each of the terms individually. For the viscous stress defined in (3.7e), in view of its weak convergence
(4.1h) in Ls

′
(0, T ; U∗) and the strong convergence PU

n (Pτ (v))→ v in Ls(0, T ; U), we obtain

〈Bµ, v〉Ls(0,T ;U) = lim
τ→0
n→∞

〈
Aµ(%τn, uτn), PU

n (Pτ (v))
〉
Ls(0,T ;Un)

. (4.31)

For the non-quadratic viscosity, in view of the weak Ls
′
(0, T ;Ls

′
(Ω;Rd))-convergence from (4.1b) together

with the strong convergence PU
n (Pτ (v))→ v in Ls(0, T ;Ls(Ω;Rd)), we deduce that

κ

∫ T

0

∫
Ω

ζ · v dxdt = κ lim
τ→0
n→∞

∫ T

0

∫
Ω

|uτn|s−2uτn · PU
n (Pτ (v)) dxdt. (4.32)

Next, we investigate the convergence of the pressure term, i.e., we aim to show that

lim
τ→0
n→∞

∫ T

0

∫
Ω

%τn∇D%E(%τn) · PU
n (Pτ (v)) dxdt

!
=

∫ T

0

∫
Ω

%∇D%E(%) · v dxdt . (4.33)

Recall that ∇D%E(%τn) = (∇x2 + ε̃∇%τn) ⇀ (∇x2 + ε̃∇%) = ∇D%E(%) in Lp(0, T ;Lp(Ω;Rd)) by (4.1c).
Hence, (4.33) will follow from the strong convergence

%τnP
U
n (Pτ (v))

!→ %v in Lp
′
(0, T ;Lp

′
(Ω,Rd)) . (4.34)

To verify (4.34), in view of assumption (2.2f) on p, s, we apply Hölder’s inequality with the exponents
q := 2

p′ = s+2
s for %τn and q′ = s+2

2 for PU
n (Pτ (v)) to find

‖%τnPU
n (Pτ (v))− %v‖Lp′ (0,T ;Lp′ (Ω,Rd))

≤ ‖(%τn − %)PU
n (Pτ (v))‖Lp′ (0,T ;Lp′ (Ω,Rd)) + ‖%(PU

n (Pτ (v))− v)‖Lp′ (0,T ;Lp′ (Ω,Rd))

≤ ‖(%τn − %)‖L2(0,T ;L2(Ω))‖PU
n (Pτ (v))‖Ls(0,T ;Ls(Ω,Rd)) + ‖%‖L2(0,T ;L2(Ω))‖(PU

n (Pτ (v))− v)‖Ls(0,T ;Ls(Ω,Rd))

≤ ‖(%τn − %)‖L2(0,T ;L2(Ω))︸ ︷︷ ︸
→0

‖PU
n (Pτ (v))‖Ls(0,T ;U) + ‖%‖L2(0,T ;L2(Ω)) ‖(PU

n (Pτ (v))− v)‖Ls(0,T ;U)︸ ︷︷ ︸
→0

,

where the convergence of the above terms follows from PU
n (Pτ (v))→ v in Ls(0, T ; U) and from the strong

Lp(0, T ;Lp(Ω))-convergence (4.1i). Thus, both (4.34) and (4.33) are verified.
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It remains to discuss the convergence of the term stemming from the quadratic, lower order viscosity,
i.e., we show now that also

lim
τ→0
n→∞

∫ T

0

∫
Ω

M(%τn)uτn · PU
n (Pτ (v)) dxdt

!
=

∫ T

0

∫
Ω

M(%)u · v dx dt . (4.35)

By (4.1a) we have uτn ⇀ u in Ls(0, T ;Ls(Ω;Rd)). Thus (4.35) will follow from the strong convergence

M(%τn)PU
n (Pτ (v))

!→M(%)v in Ls
′
(0, T ;Ls

′
(Ω,Rd)) . (4.36)

To deduce (4.36) we shall apply Lebesgue’s dominated convergence theorem. For this, we observe that,
along a subsequence,

M(%τn)PU
n (Pτ (v))→M(%)v pointwise a.e. in (0, T )× Ω, (4.37)

by strong convergence in Lebesgue-spaces. Since this limit is obtained for any convergent subsequence,
we conclude that (4.37) holds true even along the whole sequence. Moreover, by the growth properties
(2.2c) of M(·) we see that

|M(%τn)PU
n (Pτ (v))| ≤M %2

τn|PU
n (Pτ (v))| a.e. in (0, T )× Ω, for all τ > 0, n ∈ N,

and we need to show that the obtained sequence of majorants (M %2
τn|PU

n (Pτ (v))|)τn satisfies

%2
τnP

U
n (Pτ (v))

!→ %2v in Ls
′
(0, T ;Ls

′
(Ω,Rd)) . (4.38)

To deduce (4.38), we now establish suitable estimates by applying Hölder’s inequality separately in space
and time, again taking into account assumption (2.2f) on the exponents p, s. More precisely, consider
%̂ ∈ L∞(0, T ;L2(Ω)), %̃ ∈ Lp(0, T ;W 1,p(Ω)), and v ∈ Ls(0, T ; U). Then also %̃ ∈ Lp(0, T ;L∞(Ω)) and
v ∈ L2(0, T ;Lp(Ω)), the latter because of (2.2f). In this way we find

‖%̂%̃v‖s
′

Ls′ (0,T ;Ls′ (Ω,Rd))
=

∫ T

0

∫
Ω

|%̂%̃v|s
′
dxdt

≤
∫ T

0

(
‖%̃(t)‖s

′

L∞(Ω)

∫
Ω

|%̂(t)|s
′
|v|s

′
dx
)

dt

(1)

≤
∫ T

0

(
‖%̃(t)‖s

′

L∞(Ω)

(∫
Ω

|%̂(t)|2 dx
)s′/2(∫

Ω

|v(t)|p dx
)2/(p+2))

dt

=

∫ T

0

(
‖%̃(t)‖s

′

L∞(Ω)‖%̂(t)‖s
′

L2(Ω)‖v(t)‖s
′

Lp(Ω)

)
dt

(2)

≤ ‖%̃‖s
′

Lp(0,T ;L∞(Ω))‖%̂‖
s′

L∞(0,T ;L2(Ω))‖v‖
s′

L2(0,T ;Lp(Ω)) .

(4.39)

Above, we applied Hölder’s inequality with the exponents q1 := 2
s′ and q′1 = 2

2−s′ = p+2
2 to find estimate

(1), and estimate (2) followed by Hölder’s inequality with the exponents q2 := p
s′ and q′2 = p

p−s′ = p+2
p .

Using estimate (4.39) we further deduce

‖%2
τnP

U
n (Pτ (v))− %2v‖Ls′ (0,T ;Ls′ (Ω,Rd))

≤ ‖(%2
τn − %2)PU

n (Pτ (v))‖Ls′ (0,T ;Ls′ (Ω,Rd)) + ‖%2(PU
n (Pτ (v))− v)‖Ls′ (0,T ;Ls′ (Ω,Rd))

= ‖(%τn − %)(%τn + %)PU
n (Pτ (v))‖Ls′ (0,T ;Ls′ (Ω,Rd)) + ‖%%(PU

n (Pτ (v))− v)‖Ls′ (0,T ;Ls′ (Ω,Rd))

≤ ‖%τn − %‖Lp(0,T ;L∞(Ω))︸ ︷︷ ︸
→0

‖%τn + %‖L∞(0,T ;L2(Ω))︸ ︷︷ ︸
≤C

‖PU
n (Pτ (v))‖L2(0,T ;Lp(Ω))︸ ︷︷ ︸

≤C

+ ‖%‖Lp(0,T ;L∞(Ω))‖%‖L∞(0,T ;L2(Ω)) ‖PU
n (Pτ (v))− v‖L2(0,T ;Lp(Ω))︸ ︷︷ ︸

→0

.

(4.40)
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In (4.40), convergence of the first factor follows from the strong Lp(0, T ;W 1,p(Ω))-convergence (4.1j)
when taking into account the compact embedding W 1,p(Ω) ⊂ C0(Ω) thanks to p > d. The boundedness
‖%τn+%‖L∞(0,T ;L2(Ω)) ≤ C is due to the a priori bound (3.9f) which holds for all t ∈ [0, T ]. Moreover, the
convergence ‖PU

n (Pτ (v))− v‖L2(0,T ;Lp(Ω)) → 0 follows from the strong convergence of the interpolants in
Ls(0, T ; U) using that Ls(0, T ; U) ⊂ L2(0, T ;Lp(Ω)) by the relations (2.2f) for p, s. This proves (4.38)
and hence Lebesgue’s dominated convergence theorem yields (4.36), which allows us to conclude (4.35).

Putting together (4.31), (4.32), (4.33), and (4.35) ultimately results in the weak momentum balance
of the limit system

〈Bµ, v〉Ls(0,T ;U) +

∫ T

0

∫
Ω

M(%)u · v dxdt+ κ

∫ T

0

∫
Ω

ζ · v dxdt+

∫ T

0

∫
Ω

%∇D%E(%) · v dx dt = 0

for all v ∈ Ls(0, T ; U).

(4.41)

The identification of 〈Bµ, v〉Ls(0,T ;U) in terms of the viscous stress of the limit pair (%, u) and of ζ as

the Ls
′
-nonlinearity evaluated in the limit u is the topic of Theorem 2.4 whose proof is carried out

subsequently in Section 4.2. �

4.2 Proof of Theorem 2.4: Identification of Bµ and ζ

In preparation of the proof of Theorem 2.4, we first state the following lemma, which results from the
isomorphism L2((0, T )× Ω) ∼= L2(0, T ;L2(Ω)).

Lemma 4.4. Let m ∈ N and (un)n∈N ⊂ L2(0, T ;L2(Ω,Rm)), u ∈ L2(0, T ;L2(Ω,Rm)) such that un ⇀ u
in L2(0, T ;L2(Ω,Rm)). Then for almost all t ∈ (0, T ) there holds un(t) ⇀ u(t) in L2(Ω,Rm).

Proof. We consider any test function φ = φtφx ∈ L2(0, T ;L2(Ω,Rm)) such that φt ∈ L2(0, T ) and
φx ∈ L2(Ω,Rm), and show that

lim
n→∞

∣∣∣∣∣
∫ T

0

∫
Ω

(un − u)φdx dt

∣∣∣∣∣ = 0 =⇒ for a.e. t ∈ (0, T ) : lim
n→∞

∣∣∣∣∫
Ω

(un(t)− u(t))φx dx

∣∣∣∣ = 0 .

We proceed by contradiction. Assume, there is a measurable set B ⊂ (0, T ) with L1(B) > 0 such that

for a.a. t ∈ B, for all φx ∈ L2(Ω,Rm) : lim
n→∞

∫
Ω

(un(t)− u(t))φx dx 6= 0 .

Then there exists some φx ∈ L2(Ω,Rm) and a measurable set B+ ⊂ B with L1(B+) > 0, such that

for a.a. t ∈ B+ : lim
n→∞

∫
Ω

(un(t)− u(t))φx dx > 0.

Let χB+
be the characteristic function of the setB+. Then we use φ = φtφx := χB+

φx ∈ L2(0, T ;L2(Ω,Rm))
as a test function. By Fatou’s lemma, we obtain a contradiction:

0 <

∫ T

0

lim inf
n→∞

(
χB+

∫
Ω

(un(t)− u(t))φx dx

)
dt ≤ lim inf

n→∞

∫ T

0

∫
Ω

(un(t)− u(t))χB+
φx dxdt

= lim
n→∞

∫ T

0

∫
Ω

(un(t)− u(t))φdxdt = 0.

This proves the statement of Lemma 4.4.

We now turn to the proof of Theorem 2.4, i.e., to the identification of the terms Bµ and ζ appearing
in the weak momentum balance of the limit system (2.5b), resp. (4.41) above. The identification can be
carried out by restricting the set of test functions for (2.5b) to those v ∈ Ls(0, T ;W 1,2(Ω;Rd)) supported
in non-cylindrical domains Qδν , i.e., to the functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) with supp(v) ⊂ Qδν . (4.42)
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For the readers’ convenience we here recall the definition of the non-cylindrical domainsQδν first introduced
in (2.7): With the aid of Remark 4.3, based on Aubin-Lions’ theorem and Egorov’s theorem we have

∀ δ > 0 ∃ Icδ ⊂ (0, T ) with L1(Icδ ) < δ : %τn → % uniformly in Iδ × Ω, where Iδ := (0, T )\Icδ . (4.43a)

For every δ > 0 we then define

Qδν :=
⋃
t∈Iδ

{t} × ΩLip
ν (t) ⊂ (0, T )× Ω , with (4.43b)

ΩLip
ν (t) any Lipschitz-domain such that ΩLip

ν (t) ⊂ Ων(t) and (4.43c)

Ων(t) := {x ∈ Ω, ν < %(t) < %crit − ν} for any ν > 0 . (4.43d)

Thanks to the uniform convergence of the sequence (%τn)τn on the non-cylindrical domains Qδν , it is
possible to find a uniform bound from below for the viscosity (µ(%τn))τn for all (t, x) ∈ Qδν and thus, to
deduce the following result, which will be used to ultimately verify the statements of Theorem 2.4:

Lemma 4.5. Let the assumptions of Theorem 2.4 be valid. For every δ > 0, for every ν > 0 consider
the non-cylindrical domain Qδν as in (4.43). Then, for every test function v ∈ Ls(0, T ;W 1,2(Ω;Rd)) with
supp(v) ⊂ Qδν there holds:∫ T

0

∫
Ω

e(uτn) : e(v) dxdt →
∫ T

0

∫
Ω

e(u) : e(v) dxdt , (4.44a)∫ T

0

∫
Ω

µτ (%τn)e(uτn) : e(v) dxdt →
∫ T

0

∫
Ω

µ(%)e(u) : e(v) dxdt , (4.44b)∫ T

0

∫
Ω

κ|uτn|s−2uτn · v dxdt →
∫ T

0

∫
Ω

κ|u|s−2u · v dxdt (4.44c)

as τ → and n→∞.

Proof. Consider the sequence (%τn, uτn)τn of approximating solutions converging to the limit pair (%, u)
in the topologies (4.1). To simplify the arguments, but without loss of generality, for the index τ > 0 we
fix here a subsequence

τ = τ(n)→ 0 as n→∞ such that approximation property (4.1) is valid. (4.45)

Since our arguments will be true for any such subsequence (τ(n))n with property (4.45), they will hold
true along the original, full sequence. We write (%τn, uτn)τn also for this subsequence of approximating
solutions, i.e., without indicating this explicitely, we have in mind that τ = τ(n) as in (4.45).

From now on, for any δ > 0 and ν > 0 general but fixed, consider the non-cylindrical domain Qδν
defined in (4.43).

Proof of (4.44a): Thanks to the uniform convergence (4.43a) on Qδν , we have

∃n(ν/2) ∈ N ∀n ≥ n(ν/2) ∀(t, x) ∈ Qδν :
ν

2
< %τn(t, x) < %crit −

ν

2
. (4.46)

In view of the uniform a priori bounds (3.9c) and (3.9d) this yields

∀n ≥ n(ν/2) : Mν
2 ‖uτn‖

2
L2(Qδν ;Rd) +

cµν
2 ‖e(uτn)‖2L2(Qδν ;Rd×d) ≤ C .

Thus, since the spaces L2(Qδν ;Rd) and L2(Qδν ;Rd×d) are reflexive, separable Banach spaces by Lemma 2.5,
according to Remark 2.6 there exists a (not relabelled) subsequence and a limit pair (ũ, E) ∈ L2(Qδν ;Rd)×
L2(Qδν ;Rd×d) such that

uτn ⇀ ũ in L2(Qδν ;Rd), (4.47a)

e(uτn) ⇀ E in L2(Qδν ;Rd×d). (4.47b)
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By convergence result (4.1a) we already know that uτn ⇀ u in Ls(0, T ;Ls(Ω)) and hence we conclude
that ũ = u. Verifying that

E = e(u) in L2(Qδν ;Rd×d) (4.48)

will then provide the assertion (4.44a). To deduce (4.48) we now set

fn(t, x) :=

{
uτn(t, x) for (t, x) ∈ Qδν ,

0 otherwise,
f(t, x) :=

{
u(t, x) for (t, x) ∈ Qδν ,

0 otherwise,
and (4.49a)

en(t, x) :=

{
e(uτn(t, x)) for (t, x) ∈ Qδν ,

0 otherwise,
e(t, x) :=

{
E(t, x) for (t, x) ∈ Qδν ,

0 otherwise.
(4.49b)

Then, by (4.47) there holds

fn ⇀ f in L2(0, T ;L2(Ω;Rd)) and en ⇀ e in L2(0, T ;L2(Ω;Rd×d)) , (4.50)

and Lemma 4.4 further implies that

for a.a. t ∈ (0, T ) : fn(t) ⇀ f(t) in L2(Ω;Rd) and en(t) ⇀ e(t) in L2(Ω;Rd×d) . (4.51)

In view of (4.49) and the definition of Qδν from (4.43), this is equivalent to

for a.a. t ∈ Iδ : uτn(t) ⇀ u(t) in L2(ΩLip
ν (t);Rd) and e(uτn(t)) ⇀ E(t) in L2(ΩLip

ν (t);Rd×d) . (4.52)

Using (4.52) and the fact that weak convergence implies boundedness, we find

for a.a. t ∈ Iδ ∃ C̃(t) > 0 : ‖uτn(t)‖W 1,2(ΩLip
ν (t);Rd) ≤ C̃(t) . (4.53)

Hence, for a.a. t ∈ Iδ, there exist a further t-dependent subsequence and a limit û(t) ∈W 1,2(ΩLip
ν (t);Rd)

such that

uτn(t) ⇀ û(t) in W 1,2(ΩLip
ν (t);Rd). (4.54)

In view of (4.52), due to the uniqueness of the weak limit we thus conclude that

for a.a. t ∈ Iδ : û(t) = u(t) in L2(Ω;Rd) and e(û(t)) = e(u(t)) = E(t) in L2(Ω;Rd×d) . (4.55)

This proves (4.48) and thus finishes the proof of assertion (4.44a).
Proof of (4.44b): By virtue of the uniform bound (4.46) for (%τn)n on Qδν there are constants

ν, ν > 0, such that

∀n ≥ n(ν/2) ∀(t, x) ∈ Qδν : ν < µτ (%ντn(t, x)) < ν . (4.56)

Moreover, by the continuity of µτ , cf. (3.3a), the convergence property (3.3c) of (µτ (%))τ , and by the
uniform convergence (4.43a) of (%τn)n on Qδν , we have

µ(%(t, x)) = lim
n→∞

µτ (%τn(t, x)) for all (t, x) ∈ Qδν . (4.57)

Consider now any test function v ∈ Ls(0, T ;W 1,2(Ω;Rd)) ⊂ L2(0, T ;W 1,2(Ω;Rd)) with the property
(4.42), i.e., such that supp(v) ⊂ Qδν . Then, in view of (4.57) and (4.56), Lebesgue’s dominated convergence
theorem implies

µτ (%τn)e(v)→ µ(%)e(v) in L2(Qδν ;Rd×d) .

Now, exploiting convergence (4.47b) and identification (4.55), we obtain in particular∫
Iδ

∫
ΩLip
ν (t)

µ(%)e(u) : e(v) dx dt = lim
n→∞

∫ T

0

∫
ΩLip
ν (t)

µτ (%τn)e(uτn) : e(v) dxdt.
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for all v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v) ⊂ Qδν . This concludes the proof of assertion (4.44b).
Proof of (4.44c): By Rellich-Kondrachov’s embedding theorem, the space W 1,2(ΩLip

ν (t);Rd) is
compactly imbedded in Ls(ΩLip

ν (t);Rd) for the exponent s as in (2.2f). In view of convergence (4.52) and
identification (4.55) this provides

for a.a. t ∈ Iδ : uτn(t)→ u(t) in Ls(ΩLip
ν (t);Rd) . (4.58)

For every n ∈ N, we introduce the functions

fn : Iδ → [0,∞), fn(t) :=
∥∥|uτn(t)|s−2uτn(t)− |u(t)|s−2u(t)

∥∥
Ls′ (ΩLip

ν (t);Rd)
(4.59)

and for the sequence (fn)n we are now going to show that

fn(t)→ 0 for a.a. t ∈ Iδ , (4.60a)

fn ⇀ 0 in Ls
′
(Iδ) . (4.60b)

To (4.60a): Making use of the estimate, cf. [Kne04, (A.7)],

for each s > 2 fixed ∃ c > 0 ∀A,B ∈ Rd :
∣∣|A|s−2A− |B|s−2B

∣∣ ≤ c(|A|+ |B|)s−2|A−B| , (4.61)

we infer by (4.58) for a.a. t ∈ Iδ that

fn(t)s
′

=
∥∥|uτn(t)|s−2uτn(t)− |u(t)|s−2u(t)

∥∥s′
Ls′ (ΩLip

ν (t);Rd)

≤ cs
′∥∥(|uτn(t)|+ |u(t)|)s−2|uτn(t)− u(t)|

∥∥s′
Ls′ (ΩLip

ν (t);Rd)

≤
∥∥|uτn(t)|+ |u(t)|

∥∥s′(s−2)

Ls(ΩLip
ν (t);Rd)

‖uτn(t)− u(t)‖s
′

Ls(ΩLip
ν (t);Rd)

→ 0

(4.62)

as n→∞. This proves (4.60a).
To (4.60b): By [Els18, Satz 5.9] or [AFP06, Thm. 1.35, p. 17], for s′ ∈ (1,∞), the weak Ls

′
-

convergence of a sequence can be concluded from its convergence pointwise a.e. together with the uniform
boundedness of the Ls

′
-norms. In view of (4.60a) it thus remains to show

∃C > 0 ∀n ∈ N : ‖fn‖Ls′ (Iδ) ≤ C . (4.63)

Indeed, setting gn(t) := ‖|uτn(t)|s−2uτn(t)‖Ls′ (ΩLip
ν (t);Rd) and using the uniform bound (3.9n), we obtain

‖gτn‖Ls′ (Iδ) ≤ C. (4.64)

Moreover, gτn ≥ 0 for a.a. t ∈ Iδ. Thanks to (4.60a), we further have

gτn(t)→ g(t) := ‖|u(t)|s−2u(t)‖Ls′ (ΩLip
ν (t);Rd) for a.a. t ∈ Iδ . (4.65)

Hence, in view of (4.64), Fatou’s lemma implies

‖g‖Ls′ (Iδ) ≤ lim inf
n→∞

‖gτn‖Ls′ (Iδ) ≤ C . (4.66)

This yields (4.63), and hence the assertion (4.60b) follows.
It remains to conclude assertion (4.44c) with the aid of weak convergence (4.60b). Indeed, by (4.60b)

we infer for every v ∈ Ls(0, T ;W 1,2(Ω;Rd)) with supp(v) ⊂ Qδν that∣∣∣ ∫
Iδ

∫
ΩLip
ν (t)

(
|uτn(t)|s−2uτn(t)− |u(t)|s−2u(t)

)
· v dxdt

∣∣∣ ≤ ∫
Iδ

fn(t)‖v(t)‖Ls(ΩLip
ν (t);Rd) dt→ 0 (4.67)

as n→∞, since ‖v(·)‖Ls(ΩLip
ν (t);Rd) ∈ L

s(Iδ). This gives assertion (4.44c). Thus, the proof of Lemma 4.5

is complete.
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Based on Lemma 4.5 we now obtain the identification of the limit objects Bµ and ζ in the following

Corollary 4.6 (Identification of Bµ and ζ). Let the assumptions of Theorem 2.4 and Lemma 4.5 be
satisfied. Then, for all δ > 0, for all ν > 0, all non-cylindrical domains Qδν , and for every test function
v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v) ⊂ Qδν there holds:∫ T

0

∫
Ω

µτ (%τn)e(uτn) : e(PU
n (Pτ (v))) dxdt→

∫ T

0

∫
Ω

µ(%)e(u) : e(v) dx dt , (4.68a)∫ T

0

∫
Ω

κ|uτn|s−2uτn · PU
n (Pτ (v)) dxdt→

∫ T

0

∫
Ω

κ|u|s−2u · v dxdt . (4.68b)

Hence, for all v ∈ Ls(0, T ;W 1,2(Ω),Rd) such that supp(v) ⊂ Qδν it is

〈Bµ, v〉Ls(0,T ;W 1,2(Ω):Rd) =

∫ T

0

∫
Ω

µ(%)e(u) : e(v) dxdt , (4.69a)∫ T

0

∫
Ω

κζ · v dxdt =

∫ T

0

∫
Ω

κ|u|s−2u · v dx dt (4.69b)

for the elements Bµ ∈ Ls
′
(0, T ;W 1,2(Ω,Rd)∗) and ζ ∈ Ls′(0, T ;Ls

′
(Ω,Rd)) appearing in the limit mo-

mentum balance (2.5b).

Proof. We shall verify convergences (4.68), then statement (4.69) follows by comparison by the uniqueness
of weak limits.

To (4.68a): With the aid of convergence result (4.44b), the uniform bound (3.9a), and the strong
convergence PU

n (Pτ (v))→ v in Ls(0, T ;W 1,2(Ω,Rd)) we obtain∣∣∣ ∫ T

0

∫
Ω

(
µτ (%τn)e(uτn) : e(PU

n (Pτ (v)))− µ(%)e(u) : e(v)
)

dxdt
∣∣∣

≤
∣∣∣ ∫ T

0

∫
Ω

(
µτ (%τn)e(uτn)− µ(%)e(u)

)
: e(v) dxdt

∣∣∣+
∣∣∣ ∫ T

0

∫
Ω

µτ (%τn)e(uτn) :
(
e(PU

n (Pτ (v)))− e(v)
)

dxdt
∣∣∣

≤
∣∣∣ ∫ T

0

∫
Ω

(
µτ (%τn)e(uτn)− µ(%)e(u)

)
: e(v) dxdt

∣∣∣︸ ︷︷ ︸
→0

+
∥∥√µτ (%τn)e(uτn)

∥∥
L2(0,T ;L2(Ω,Rd))︸ ︷︷ ︸

≤C

∥∥e(PU
n (Pτ (v)))− e(v)

∥∥
L2(0,T ;L2(Ω,Rd×d))︸ ︷︷ ︸

→0

,

which gives (4.68a).
To (4.68b): Using convergence result (4.44c), the uniform bound (3.9n), and the strong convergence

PU
n (Pτ (v))→ v in Ls(0, T ;W 1,2(Ω,Rd)) we find∣∣∣ ∫ T

0

∫
Ω

(
|uτn|s−2uτn · PU

n (Pτ (v))− |u|s−2u · v
)

dxdt
∣∣∣

≤
∣∣∣ ∫ T

0

∫
Ω

(
|uτn|s−2uτn − |u|s−2u

)
· v dx dt

∣∣∣+
∣∣∣ ∫ T

0

∫
Ω

|uτn|s−2uτn ·
(
PU
n (Pτ (v))− v

)
dx dt

∣∣∣
≤
∣∣∣ ∫ T

0

∫
Ω

(
|uτn|s−2uτn − |u|s−2u

)
· v dx dt

∣∣∣︸ ︷︷ ︸
→0

+
∥∥|uτn|s−2uτn

∥∥
Ls′ (0,T ;Ls′ (Ω,Rd))︸ ︷︷ ︸
≤C

∥∥PU
n (Pτ (v))− v

∥∥
Ls(0,T ;Ls(Ω,Rd))︸ ︷︷ ︸

→0

.

This proves (4.68b).

27



We now verify the last statement of Theorem 2.4, i.e., that the identification relations (2.8) and
(2.9) holds true even for all test functions with property (2.10), cf. (4.74). This argument is based on a
more general statement, which will be applied lateron also in a different context. Therefore, we give the
argument in the following remark:

Remark 4.7 (Generalization of the identification result to test functions satisfying (2.10)). 1. The re-
striction of Ων(t) to Lipschitz subdomains ΩLip

ν (t) ⊂ Ων(t) in the construction (4.43) of the non-
cylindrical domains Qδν is needed for the proof of (4.44c) in order to ensure that Rellich-Kondrachov’s
embedding thorem is available to handle the Ls-nonlinearity. Yet, [Vor10, Theorem 1] states that
any open set D in Rd is a union of an ascending sequence of bounded domains Dm with analytic
boundary and such that Dm ⊂ D. In this way, for any ν > 0 it is possible to approximate Ων(t)
from the inside by unions of sets Dm with analytic boundary, which are clearly contained in the
class of sets with Lipschitz boundary. Using a partition of unity of constructed from approximating,
smooth sets Dm we obtain that (4.69) holds true even for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v) ⊂
⋃
t∈Iδ

{t} × Ων(t) for all δ, ν > 0 . (4.70)

Due to this, we ultimately conclude that (4.69) holds true even for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v) ⊂
⋃
t∈Iδ

{t} × [0 < %(t) < %crit] for all δ > 0 , (4.71)

where we used the notation (2.1).
2. Let us now consider a sequence

(δj)j∈N such that δj > 0 for all j ∈ N and δj → 0 as j →∞ . (4.72)

It is possible to apply Egorov’s theorem such that the sets Icδj ⊂ (0, T ) with L1(Icδj ) < δj form a
nested descending sequence, i.e., such that Icδj+1

⊂ Icδj . More precisely, by Egorov’s theorem, for

each δj > 0 one finds a set Icδj ⊂ (0, T ) such that L1(Icδj ) < δj and such that ‖%τn − %‖C(Ω) → 0
uniformly on Iδj . Subsequently, for δj+1 > 0 one finds by Egorov’s theorem a set Icδj+1

⊂ Icδj such

that L1(Icδj+1
) < δj+1 and such that ‖%τn− %‖C(Ω) → 0 uniformly on Iδj+1

. In this way one obtains

Iδj ⊂ Iδj+1
for all j ∈ N and L1((0, T )\Iδj )→ 0 as j →∞ . (4.73)

In view of (4.71) and (4.73) we now conclude that (4.69) holds true even for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v(t)) ⊂ [0 < %(t) < %crit] for a.a. t ∈ (0, T ) . (4.74)

Based on the ideas of Remark 4.7 we also deduce a uniform L2-bound for
√
µ(%)e(u) on the set

[0 < % < %crit] ⊂ (0, T )× Ω and we obtain that e(u) ∈ L2([0 < %]):

Lemma 4.8. Let the assumptions of Theorem 2.4 hold true. Then there exists a constant C > 0, such
that for all δ, ν > 0 and for every non-cylindrical domain Qδν it is

‖
√
µ(%)e(u)‖L2(Qδν ;Rd×d) ≤ C . (4.75)

Consequently, the pair (%, u) also satisfies

‖
√
µ(%)e(u)‖L2([0<%<%crit];Rd×d) ≤ C . (4.76)

Moreover, there holds
e(u) ∈ L2([ν < %]) for all ν > 0 . (4.77)

This extends the identification result (4.69), resp. (2.9), to hold true even for all test functions

v ∈ Ls(0, T ;W 1,2(Ω;Rd)) such that supp(v(t)) ⊂ [0 < %(t)] for a.a. t ∈ (0, T ) . (4.78)
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Proof. To (4.75): Consider any fixed non-cylindrical domain Qδν as in (4.43). To show (4.75) we repeat
the arguments of (4.46)–(4.55) to find with the aid of the uniform convergence (4.43a) on Qδν

∃n(ν/2) ∈ N ∀n ≥ n(ν/2) ∀(t, x) ∈ Qδν :
ν

2
< %τn(t, x) < %crit −

ν

2
, (4.79)

and to find that e(uτn) ⇀ e(u) in L2(Qδν ;Rd×d). Then also

en :=

{
e(uτn) on Qδν ,

0 otherwise
⇀ e :=

{
e(u) on Qδν ,

0 otherwise
weakly in L2(0, T ;L2(Ω;Rd×d)) . (4.80)

In addition, we set

%̂n :=

{
%τn on Qδν ,
0 otherwise.

(4.81)

Then we also have

%̂n → %̂ :=

{
% on Qδν ,
0 otherwise

uniformly in [0, T ]× Ω and strongly in Lp(0, T ;Lp(Ω)) , (4.82)

and %̂, %̂n ∈ [ν2 , %crit− ν
2 ]. We further observe that the restricted viscosities µ|[ ν2 ,%crit− ν2 ] and µτ |[ ν2 ,%crit− ν2 ],

τ = τ(n), are uniformly bounded from above and from below, and continuous, cf. (2.2b) & (3.3a).
Moreover, we find an index nν ≥ n(ν/2) such that for every n ≥ nν it is τ = τ(n) < ν

2 . Thus, in view of
the definitions (2.2b) & (3.3a), it is µτ (%̂n) = µ(%̂n) for all n ≥ nν . Now [Dac12, Thm. 3.4, p. 74] ensures

that the functional (%̃, ẽ) 7→
∫ T

0

∫
Ω
µ[ ν2 ,%crit− ν2 ](%̃)ẽ : ẽdx dt is lower semicontinuous with respect to strong

Lp(0, T ;Lp(Ω))-convergence and weak L2(0, T ;L2(Ω;Rd×d))-convergence. Based on the uniform bound
(3.9a) we now conclude by lower semicontinuity that

C ≥ lim inf
n→∞

‖√µτ (%τn)e(uτn)‖L2(Qδν ;Rd×d) = lim inf
n→∞

‖√µ(%̂n)en‖L2(0,T ;L2(Ω;Rd×d))

≥ ‖√µ(%̂)e‖L2(0,T ;L2(Ω;Rd×d)) = ‖√µ(%)e(u)‖L2(Qδν ;Rd×d) .
(4.83)

To (4.76): To conclude (4.76) we first apply the argument of Remark (4.7), Item 1, to see that
above bound (4.83) also holds true for any noncylindrical domain

⋃
t∈Iδ{t} × Ων(t) for all δ, ν > 0.

Here we also exploit the additivity of the integral to patch together any Lipschitz-sets ΩLip1
ν (t) and

ΩLip2
ν (t) in order to approximate Ων(t) from inside for any ν > 0. Thanks to (4.83) this gives C ≥
‖√µ(%)e(u)‖L2(∪t∈Iδ{t}×Ων(t);Rd×d) for all ν, δ > 0, and thus C ≥ ‖√µ(%)e(u)‖L2(∪t∈Iδ{t}×[0<%(t)<%crit];Rd×d).

Subsequently, we apply the argument of Remark (4.7), Item 2, to observe that the bound remains true
for a sequence δj → 0 as in (4.72) & (4.73). This yields (4.76).

To (4.77): For every ν > 0 we set Ω̃ν(t) := {x ∈ Ω, %(t) > ν} and consider any Lipschitz-subdomain
Ω̃Lip
ν (t). For each δ > 0 we have the sets Iδ ⊂ (0, T ), where the uniform convergence (4.43a) holds true.

Based on this, we further set Q̃δν := ∪t∈Iδ{t} × Ω̃ν(t). By repeating the arguments of (4.46)–(4.55) we
find an index ñ(ν/2) ∈ N such that for all n ≥ ñ(ν/2) and for all (t, x) ∈ Q̃δν we have %τn(t, x) > ν/2.
This provides a weakly convergent subsequence e(un) ⇀ e(u) in L2(Q̃δν ;Rd×d). Using the notation of
(4.80), now with Q̃δν , we thus also have en ⇀ e in L2(0, T ;L2(Ω;Rd×d)). Hence, like in (4.83), the weak
lower semicontinuity of the L2(0, T ;L2(Ω;Rd×d))-norm in combination with the uniform bound (4.76)
allows us to conclude

C ≥ lim inf
n→∞

∫
Q̃δν

µ(%τn)e(uτn) : e(uτn) dx dt ≥ lim inf
n→∞

∫
Q̃δν

µ(ν/2)e(uτn) : e(uτn) dxdt

≥
∫
Q̃δν

µ(ν/2)e(u) : e(u) dx dt for all ν > 0 .

Invoking Remark 4.7 ultimately yields (4.77).
To (4.78): Here we repeat the steps of the proofs of (4.44b) and (4.44c) as well as (4.68) based on

the non-cylindrical domains Q̃δν .
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4.3 Proof of Theorem 2.7: Non-negativity & boundedness of %, and refined
identification of Bµ and ζ

In this section we verify the statements of Theorem 2.7. First, we shall deduce that the density of the
limit system % has the property

0 ≤ %(t) ≤ %crit a.e. in Ω for all t ∈ [0, T ] . (4.84)

Property (4.84) will be established with the aid of two separate lemmata: In a first step, in Lemma 4.9
we show that the velocity of the limit system satisfies e(u) = 0 on subsets B ⊂ (0, T ) × Ω, where % is
strictly negative, i.e., on sets B ⊂ [% < 0], or where it reaches or even exceeds the critical value %crit, i.e.,
on sets B ⊂ [% ≥ %crit], cf. notation (2.1). This result will be deduced by investigating the convergence of
the approximating velocities (uτn)τn on suitable non-cylindrical domains, where additional information
can be drawn from the a priori bound (3.9a) by exploiting the growth properties (3.3) of the viscosities
(µτ (%τn))τn. With the aid of the information e(u) = 0 on B and suitably devised test functions for the
limit transport equation (2.5a), it will be shown in a second step in Lemma 4.10 that the sets [%(t) < 0]
and [%(t) > %crit] are Ld-null sets for all t ∈ [0, T ].

Lemma 4.9. Let the assumptions of Theorem 2.4 be valid and assume that (%, u,Bµ, ζ) is a weak solution
of (1.1) in the sense of Definition 2.2 and Thm. 2.4, obtained by discrete approximation via scheme (3.2)
and extracted from discrete solutions (%τn, uτn)τn through convergences (4.1). Then, for all ν > 0 the
following convergence information hold true

‖e(uτn)‖L2([%τn<−ν];Rd×d) → 0 as τ → 0, n→∞, (4.85a)

‖e(uτn)‖L2([%τn>%crit+ν];Rd×d) → 0 as τ → 0, n→∞. (4.85b)

and the velocity u has the property

e(u) = 0 a.e. on [% < 0] ∪ [% ≥ %crit] . (4.86)

Proof. To (4.85): Keep ν > 0 fixed and recall from (3.3a) the definition of µτ . Thus, for [%τn < −ν] the
a priori estimate (3.9a) yields

‖e(uτn)‖2L2([%τn<−ν];Rd×d) ≤
τ(n)α

ν ‖
√
µτe(uτn)‖2L2([%τn<−ν];Rd×d) ≤

Cτ(n)α

ν → 0 as τ(n)→ 0 ,

where we again used the notation of (4.45). Similarly, one finds for [%τn > %crit + ν]

‖e(uτn)‖2L2([%τn>%crit+ν];Rd×d) ≤
τ(n)α|%crit−τ |

ν̃ν ‖√µτe(uτn)‖2L2([%τn>%crit+ν];Rd×d) <
Cτ(n)α%crit

ν̃ν → 0

as τ(n)→ 0. Hence (4.85) is verified.
To (4.86): For each δ > 0 and every ν > 0, we define the non-cylindrical domains B•δ,ν with

• ∈ {−,+} by

B•δ,ν :=
⋃
t∈Iδ

{t} × Ω•ν(t) ⊂ [0, T ]× Ω,

where Ω−ν (t) := {x ∈ Ω | %(t) < −ν} and Ω+
ν (t) := {x ∈ Ω | %(t) > %crit − ν} for suitably small ν > 0. By

virtue of a priori estimate (3.9a), we obtain in particular for B•δ,ν , • ∈ {−,+},∥∥√µτ (%τn) e(uτn)
∥∥
L2(B•;Rd×d)

≤ C. (4.87)

In the following we work again with a subsequence τ = τ(n) as defined in (4.45). In this notation, due
to the uniform convergence (4.43a), we have

∃n(ν/2) ∈ N ∀n ≥ n(ν/2) ∀(t, x) ∈ B−δ,ν : %τn(t, x) < −ν
2
, (4.88a)

∃n(ν/2) ∈ N ∀n ≥ n(ν/2) ∀(t, x) ∈ B+
δ,ν : %τn(t, x) > %crit −

ν

2
. (4.88b)
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In view of the definition (3.3a) of the viscosity µτ , estimate (4.87) implies for B−δ,ν∫
Iδ

∫
Ω−ν (t)

|%τn|ν̃
%αcrit

e(uτn) : e(uτn) dxdt︸ ︷︷ ︸
≥0

+

∫
Iδ

∫
Ω−ν (t)

1

τα
|%τn|2 e(uτn) : e(uτn) dxdt︸ ︷︷ ︸

≥0

+

∫
Iδ

∫
Ω−ν (t)

τβ e(uτn) : e(uτn) dx dt︸ ︷︷ ︸
≥0

≤ C . (4.89)

Applying (4.88a) to the second term of (4.89) we obtain∫
B−δ,ν

e(uτn) : e(uτn) dx dt =

∫
Iδ

∫
Ω−ν (t)

e(uτn) : e(uτn) dxdt ≤ 4C

ν2
τα . (4.90)

With similar ideas we now deduce a uniform L2-estimate for e(uτn) on B+
δ,ν . In view of (4.88b), for all

t ∈ Iδ and for all n ≥ n(ν/2) the set Ω+
ν (t) can be decomposed as follows:

Ω+
ν (t) =

(
Ω+
ν (t) ∩ [%τn(t) ≥ %crit − τ ]

)
∪
(
Ω+
ν (t) ∩ [%τn(t) < %crit − τ ]

)
=
(
Ω+
ν (t) ∩ [%τn(t) ≥ %crit − τ ]

)
∪
(
Ω+
ν (t) ∩ [%crit − ν

2 < %τn(t) < %crit − τ ]
)
.

(4.91)

Thus, for all n ≥ n(ν/2) decomposition (4.91) together with the definition (3.3a) of the viscosity µτ and
estimate (4.87) yields

C ≥
∫
B+
δ,ν

µτ (%τn) e(uτn) : e(uτn) dxdt

=

∫
Iδ

∫
Ω+
ν (t)∩[%τn(t)≥%crit−τ ]

ν̃|%τn|2

τα|%crit − τ |
e(uτn) : e(uτn) dxdt︸ ︷︷ ︸

≥0

+

∫
Iδ

∫
Ω+
ν (t)∩[%τn(t)≥%crit−τ ]

τβ e(uτn) : e(uτn) dx dt︸ ︷︷ ︸
≥0

+

∫
Iδ

∫
Ω+
ν (t)∩[%crit− ν2<%τn(t)<%crit−τ ]

|%τn|ν̃
(%crit − %τn)α

e(uτn) : e(uτn) dxdt︸ ︷︷ ︸
≥0

+

∫
Iδ

∫
Ω+
ν (t)∩[%crit− ν2<%τn(t)<%crit−τ ]

τβ e(uτn) : e(uτn) dxdt︸ ︷︷ ︸
≥0

.

(4.92)

To estimate (4.92) from below we disregard the second and the fourth term on its right-hand side. For the

first term we see that ν̃|%τn(t)|2
τα|%crit−τ | ≥

ν̃|%crit−τ |
τα >

ν̃|%crit− ν2 |
τα on Ω+

ν ∩ [%τn(t) ≥ %crit−τ ]. For the third term on

the right-hand side of (4.92) we have that |%τn(t)|ν̃
(%crit−%τn(t))α >

ν̃|%crit− ν2 |
τα on Ω+

ν ∩[%crit− ν
2 < %τn(t) < %crit−τ ].

Altogether this gives∫
B+
δ,ν

e(uτn) : e(uτn) dxdt =

∫
Iδ

∫
Ω+
ν (t)

e(uτn) : e(uτn) dxdt <
Cτα

ν̃|%crit − ν
2 |
. (4.93)

Based on the uniform estimates (4.90) and (4.93) we may repeat the arguments of (4.47)–(4.55) in the
proof of Lemma 4.5 in order to extract a (not relabelled) subsequence (uτn)n with the properties

uτn ⇀ u in L2(B•δ,ν ;Rd) and e(uτn) ⇀ e(u) in L2(B•δ,ν ;Rd×d) . (4.94)
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Moreover, in the notation of (4.49b) we have that

en ⇀ e :=

{
e(u) on B•δ,ν ,

0 on ((0, T )× Ω)\B•δ,ν ,
weakly in L2(0, T ;L2(Ω)) .

Hence, we find by weak sequential lower semicontinuity of the L2(0, T ;L2(Ω))-norm∫
Iδ

∫
Ω•ν(t)

e(u) : e(u) dxdt =

∫ T

0

∫
Ω

e : edx dt

≤ lim inf
n→∞

∫ T

0

∫
Ω

en : en dxdt = lim inf
n→∞

∫
Iδ

∫
Ω•ν(t)

e(uτn) : e(uτn) dxdt ≤ lim
n→∞

L(•) τ(n)α = 0 ,

where for • ∈ {−,+}, we have L(−) := 4C
ν2 and L(+) := C

ν̃|%crit− ν2 |
. This gives e(u) = 0 a.e. on B•δ,ν

for • ∈ {−,+}, for all δ > 0 and all ν > 0. For every δ > 0 and all t ∈ Iδ we further notice that
[%(t) < 0] =

⋃
ν>0 Ω−ν (t) and [%(t) ≥ %crit] =

⋂
ν>0 Ω+

ν (t). Choosing now a sequence (δj)j∈N such that
δj → 0 as j → ∞, as outlined in Remark 4.7, Item 2, we see that [% < 0] =

⋃
j∈N

⋃
t∈Iδj

[%(t) < 0] in

L1-measure as well as [% ≥ %crit] =
⋃
j∈N

⋃
t∈Iδj

[%(t) ≥ %crit] in L1-measure. In this way we conclude

(4.86).

Information (4.85) in particular provides that

‖ div uτn‖L2(Aντn) → 0 for Aντn ∈ {[%τn < −ν], [%τn ≥ %crit + ν]}, for any ν > 0 . (4.95)

This will be used to ultimately infer the statements of Proposition 2.7. More precisely, we will show in
Lemma 4.10 and Lemma ?? that the sets [% < 0] and [% ≥ %crit] are Ld+1-null sets. This will be achieved
by testing the discrete transport equation (3.7a) with suitably devised test functions and by exploiting
information (4.95) together with the strong Lp(0, T ;W 1,p(Ω))-convergence (4.1j) of the approximating
sequence (%τn)τn when letting τ = τ(n)→ 0 and n→∞.

Lemma 4.10. Let the assumptions of Lemma 4.9 be valid. Further assume that the initial datum has
the property

%0 ∈ L2(Ω) , such that 0 ≤ %0 ≤ %crit a.e. in Ω . (4.96)

Then, for all t ∈ [0, T ], the sets [%(t) < 0] and [%(t) > %crit] are Ld-null sets, i.e.,

Ld([%(t) < 0]) = 0 for all t ∈ [0, T ] , (4.97a)

Ld([%(t) > %crit]) = 0 for all t ∈ [0, T ] . (4.97b)

Proof. In order to verify the assertion (4.97) one would like to test the transport equation (2.5a), here

〈∂t%, ψ〉Lp(0,T ;W 1,p(Ω)) −
∫ T

0

∫
Ω

(%u) · ∇ψ dxdt+

∫ T

0

∫
Ω

ε|∇%|p−2∇% · ∇ψ dxdt = 0 (4.98)

by functions of the type ψ := max{%, a} or ψ := min{%, a} for a constant a ∈ R and % ∈ Lp(0, T ;W 1,p(Ω)).
We note that the functions max{·, a} : R → R and min{·, a} : R → R are Lipschitz-continuous func-
tions. Thus [MM79] ensures that their composition with a Lp(0, T ;W 1,p(Ω))-function again results in a
Lp(0, T ;W 1,p(Ω))-function. However, to handle the drift term in (4.98) would require an integration by
parts in space, which is not admissible for the limit problem because it is not clear that (%u) ∈ H1(Ω;Rd)
for all of Ω. Therefore we instead resort to the discrete equation (3.7a), where, for all τ = τ(n) > 0
and n ∈ N fixed µτ from (3.3a) provides the needed information (%τnuτn) ∈ H1(Ω;Rd). Yet, in the
space-discrete setting the above described functions involving the cut-off by max or min, denoted here for
brevity by Ψ′t∗(%), are not admissible test functions for the discrete transport equation (3.7a). To make
it admissible, we shall apply the projector Pτl : Lp(0, T ; X)→ Lp(0, T ; Xl) from (3.6) to such a function
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and then we use the projected function PτlΨ
′
t∗(%) as a test function for (3.7a) for any n ≥ l ∈ N. For %

a solution of (2.5a), this results in

〈
Dτ%τn, Pτl(Ψ

′
t∗(%))

〉
Lp(0,T ;Xl)

−
∫ T

0

∫
Ω

%τnuτn · ∇Pτl(Ψ′t∗(%)) dxdt

+

∫ T

0

∫
Ω

ε|∇%τn|p−2∇%τn · ∇Pτl(Ψ′t∗(%)) dxdt = 0 .

(4.99)

Yet, in (4.99) it is neither possible to integrate the first term in time nor to judge about the sign of
the p-Laplacian term. Both steps would be possible if Pτl(Ψ

′
t∗(%)) was replaced by Ψ′t∗(%τn). Therefore,

we shall add to (4.99) the desired terms and subtract them again for compensation. Morally, we would
test each of the terms in (3.7a) by Ψ′(%τn), then add and subtract the resulting terms to (4.99). At
this point, we note that 〈Dτ%τn,Ψ

′
t∗(%τn)〉Lp(0,T ;Xl) is well-defined for all τ > 0, n ∈ N fixed, since

Ψ′(%τn) ∈ Lp(0, T,W 1,p(Ω)). But we cannot obtain any information about the convergence of this term,
because a priori estimate (3.9j) only provides uniform boundedness of (Dτ%τn)τn in (Lp(0, T ; Xl))

∗ but
not in (Lp(0, T ; X))∗, where X = W 1,p(Ω). Therefore, instead of adding and subtracting to (4.99) the
term 〈Dτ%τn,Ψ

′
t∗(%τn)〉Lp(0,T ;Xl), we will use the time-integrated version of it. To be more specific about

this, let us suppose that Ψ′t∗(ρ) has the following properties for all ρ ∈ Lp(0, T ;W 1,p(Ω)):

Ψ′t∗(ρ(t)) = 0 a.e. in Ω, for all t ∈ (t∗, T ], for any t∗ ∈ (0, T ) general but fixed, (4.100a)

Ψ′t∗ : Lp(0, T ;W 1,p(Ω))→ Lp(0, T ;W 1,p(Ω)) is continuous , (4.100b)

Ψ′t∗ is the derivative of the convex, continuous function Ψt∗ : R→ R , (4.100c)

Ψ′′t∗(ρ(t, x)) ≥ 0 for all x ∈ A(ρ(t)) and Ψ′t∗(ρ(t, x)) = 0 otherwise . (4.100d)

Hence, by properties (4.100a) and (4.100c) we find that〈
Dτ%τn,Ψ

′
t∗(%τn)

〉
Lp(0,T ;Xn)

≥ ‖Ψt∗(%τn(t̄τ (t∗)))‖L1(Ω) − ‖Ψt∗(%τn(0))‖L1(Ω)

= ‖Ψt∗(%τn(t∗))‖L1(Ω) − ‖Ψt∗(%τn(0))‖L1(Ω) ,
(4.101)

where we exploited the convexity of Ψt∗ and used the notation (3.5d). Thanks to the well-preparedness
of the initial data and the strong L2(Ω)-convergence (4.1g) of (%τn)τn pointwise for all t ∈ [0, T ] together
with (4.100c) we further deduce that

‖Ψt∗(%τn(t∗))‖L1(Ω) − ‖Ψt∗(%τn(0))‖L1(Ω) → ‖Ψt∗(%(t∗))‖L1(Ω) − ‖Ψt∗(%(0))‖L1(Ω) (4.102)

as n→∞. In view of this, we will add and subtract to (4.99) directly the limit terms on the right-hand
side of (4.102). In this way, we get

‖Ψt∗(%(t∗))‖L1(Ω) − ‖Ψt∗(%(0))‖L1(Ω) −
∫ t∗

0

∫
Ω

%τnuτn · ∇Ψ′t∗(%τn) dxdt

(4.103a)

+

∫ t∗

0

∫
Ω

ε|∇%τn|p−2∇%τn · ∇Ψ′t∗(%τn) dxdt+

3∑
j=1

Rj,nl = 0, where

R1,nl :=
〈
Dτ%τn, Pτl(Ψ

′
t∗(%))

〉
Lp(0,T ;Xl)

−
(
‖Ψt∗(%(t∗))‖L1(Ω) − ‖Ψt∗(%(0))‖L1(Ω)

)
, (4.103b)

R2,nl := −
∫ t∗

0

∫
Ω

%τnuτn · ∇
(
Pτl(Ψ

′
t∗(%))−Ψ′t∗(%τn)

)
dxdt , (4.103c)

R3,nl :=

∫ t∗

0

∫
Ω

ε|∇%τn|p−2∇%τn · ∇
(
Pτl(Ψ

′
t∗(%))−Ψ′t∗(%τn)

)
dxdt . (4.103d)

For the sum of the error terms in (4.103a) we shall verify below that

3∑
j=1

Rj,nl → 0 as n ≥ l→∞ . (4.104)
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We now discuss the treatment of the remaining two terms in (4.103a). In view of (4.100d) and (4.100d)
we readily observe for the p-Laplacian term in (4.103a)∫ t∗

0

∫
Ω

ε|∇%τn|p−2∇%τn · ∇Ψ′t∗(%τn) dxdt =

∫ t∗

0

∫
A(%τn(t))

ε|∇%τn|p−2∇%τn ·Ψ′′t∗(%τn)∇%τn dxdt

=

∫ t∗

0

∫
A(%τn(t))

ε|∇%τn|pΨ′′t∗(%τn) dx dt ≥ 0 .

(4.105)

For the drift term we are now in the position to apply integration by parts in space and with the function
Ψ′(%τn) precisely tailored to the two cases (4.97a) and (4.97b) it will be the goal to show that∣∣∣∣−∫ t∗

0

∫
Ω

%τnuτn · ∇Ψ′t∗(%τn) dxdt

∣∣∣∣ ≤ c ‖div(uτn)‖L2(A(%τn)) → 0 , (4.106)

where the convergence ‖div(uτn)‖L2(A(%τn)) → 0 follows from information (4.85) for A(%τn) = [%τn < −ν]
or A(%τn) = [%τn > %crit + ν] for any ν > 0.

Now, putting together (4.103a) and (4.104)–(4.106) leads to the following estimate

‖Ψt∗(%(t∗))‖L1(Ω) ≤ ‖Ψt∗(%(0))‖L1(Ω) +
∣∣∣ 3∑
j=1

Rj,nl

∣∣∣+ c ‖div(uτn)‖L2(A(%τn))

=
∣∣∣ 3∑
j=1

Rj,nl

∣∣∣+ c ‖div(uτn)‖L2(A(%τn)) −→ 0 as n ≥ l→∞ .

(4.107)

given that the initial datum satisfies ‖Ψt∗(%(0))‖L1(Ω) = 0. In the limit we thus have

‖Ψt∗(%(t∗))‖L1(Ω) = 0 , (4.108)

and for suitably tailored Ψt∗ this will result in the information (4.97a) and (4.97b).
Proof of the convergence (4.104) of the error terms: We have %τn → % strongly in Lp(0, T ;W 1,p(Ω))

by (4.1j). Since the function Ψ′t∗ : Lp(0, T ;W 1,p(Ω))→ Lp(0, T ;W 1,p(Ω)) is continuous, there also holds
Ψ′t∗(%τn)→ Ψ′t∗(%) in Lp(0, T ;W 1,p(Ω)). Furthermore, by the approximation properties of the projector
we then also have PτnΨ′(%)→ Ψ′(%) in Lp(0, T ;W 1,p(Ω)). Then, the subsequent estimates will allow us
to conclude (4.104). We start with R1. For this, we may first repeat the arguments of (4.6)–(4.6c) and
subsequently apply integration by parts in time to arrive that

lim
l→∞

lim
n→∞
n≥l
〈Dτ%τn, Pτl(Ψ

′
t∗(%))〉Lp(0,T ;Xl) = 〈∂t%,Ψ′t∗(%)〉Lp(0,T ;X) = ‖Ψt∗(%(t∗))‖L1(Ω)−‖Ψt∗(%(0))‖L1(Ω) .

In view of (4.103b) this shows that R1,nl → 0 as n ≥ l→∞.
For the error term R2,nl we deduce via Hölder’s inequality and with the aid of a priori estimate (3.9d)

together with the strong Lp(0, T ;W 1,p(Ω))-convergence of PτnΨ′(%)−Ψ′(%τn) that

|R2,nl| =
∣∣∣∣−∫ t∗

0

∫
Ω

%τnuτn · ∇
(
Pτl(Ψ

′
t∗(%))−Ψ′t∗(%τn)

)
dxdt

∣∣∣∣
≤ ‖%τnuτn‖L2(0,T ;L2(Ω;Rd))

∥∥∇(Pτl(Ψ′t∗(%))−Ψ′t∗(%τn)
)∥∥
L2(0,T ;L2(Ω;Rd))

≤ C
∥∥∇(Pτl(Ψ′t∗(%))−Ψ′t∗(%τn)

)∥∥
L2(0,T ;L2(Ω;Rd))

→ 0 as n ≥ l→ 0 .

With similar arguments also the convergence of R3,nl follows, now exploiting a priori estimate (3.9k),
resp. (3.9g)

|R3,nl| ≤ ‖∇%τn‖
p−1
Lp(0,T ;X)

∥∥∇(Pτl(Ψ′t∗(%))−Ψ′t∗(%τn)
)∥∥
Lp(0,T ;Lp(Ω;Rd))

≤ C
∥∥∇(Pτl(Ψ′t∗(%))−Ψ′t∗(%τn)

)∥∥
Lp(0,T ;Lp(Ω;Rd))

→ 0 as n ≥ l→ 0 .
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Thus, (4.104) is verified.
To (4.97a): We apply the reasoning (4.99)–(4.108) with the function

Ψ′t∗(ρ(t)) = (ρ(t))ν−,t∗ :=

{
(ρ(t))ν− for t ∈ [0, t∗],

0 for t ∈ (t∗, T ],
where (ρ(t))ν− := min{ρ(t) + ν, 0} (4.109)

for any ν > 0. We note that (ρ)ν−,t∗ ∈ L
p(0, T ;W 1,p(Ω)) for any ρ ∈ Lp(0, T ;W 1,p(Ω)), for all t∗ ∈ [0, T ]

and all ν > 0. As outlined in (4.99) we test the discrete transport equation (3.7a) by PτlΨ
′
t∗(%) with

% ∈ Lp(0, T ;W 1,p(Ω)) a solution of (2.5a). Moreover, we carry out the steps (4.99)–(4.108) also with
Ψ′t∗(%τn) = (%τn)−,t∗ . To arrive at (4.108) we have to verify for the function Ψ′t∗(ρ(t)) := (ρ(t))ν−,t∗
defined in (4.109) that properties (4.100) hold true and that the drift term can be estimated as claimed
in (4.106).

To properties (4.100) for Ψ′t∗ from (4.109): Clearly, by definition (4.109) property (4.100a) is valid.
Moreover, the function (•)ν− = min{•+ ν, 0} is Lipschitz continuous and thus Ψ′t∗ : Lp(0, T ;W 1,p(Ω))→
Lp(0, T ;W 1,p(Ω)) from (4.109) is continuous, which is (4.100b). We further observe that the primitive
and the derivative of Ψ′t∗ are given by

Ψt∗(ρ(t)) :=

{
1
2 ((ρ(t))ν−)2 for t ∈ [0, t∗],
0 for t ∈ (t∗, T ],

(4.110a)

Ψ′′t∗(ρ(t)) :=

 1 if ρ(t) < −ν and for t ∈ [0, t∗],
0 if ρ(t) ≥ −ν and for t ∈ [0, t∗],
0 for t ∈ (t∗, T ] .

(4.110b)

From (4.110a) we see that Ψt∗ is continuous for t ∈ [0, t∗]. Moreover (4.110b) yields (4.100d) with
A(ρ(t)) := [ρ(t) < −ν], which then also provides the convexity of Ψt∗ and thus finishes the proof of
property (4.100c).

To estimate (4.106) for the drift term: For Ψ′t∗(%τn(t)) := (%τn(t))ν−,t∗ from (4.109) the expression
(4.106) can now be handled using integration by parts in space, also exploiting that uτn(t) = 0 on ∂Ω
for a.a. t ∈ (0, T ), i.e.,∣∣∣− ∫ t∗

0

∫
Ω

%τnuτn · ∇Ψ′t∗(%τn) dxdt
∣∣∣ =

∣∣∣− ∫ t∗

0

∫
Ω

%τnuτn · ∇(%τn)ν− dxdt
∣∣∣

=
∣∣∣− ∫ t∗

0

∫
Ω

(%τn + ν)uτn · ∇(%τn)ν− dxdt+

∫ t∗

0

∫
Ω

νuτn · ∇(%τn)ν− dxdt
∣∣∣

=
∣∣∣− ∫ t∗

0

∫
Ω

uτn · ∇
((%τn)ν−)2

2
dxdt+

∫ t∗

0

∫
Ω

νuτn · ∇(%τn)ν− dxdt
∣∣∣

≤
∣∣∣ ∫ t∗

0

∫
Ω

div(uτn)
((%τn)ν−)2

2
dxdt−

∫ t∗

0

∫
∂Ω

(uτn · ~n)
((%τn)ν−)2

2
dHd−1 dt

∣∣∣
+
∣∣∣ ∫ t∗

0

∫
Ω

ν div(uτn)(%τn)ν− dxdt−
∫ t∗

0

∫
∂Ω

ν(uτn · ~n)(%τn)ν− dHd−1 dt
∣∣∣

=
∣∣∣ ∫ t∗

0

∫
[%τn(t)<−ν]

div(uτn)
((%τn)ν−)2

2
dx dt

∣∣∣+
∣∣∣ ∫ t∗

0

∫
[%τn(t)<−ν]

ν div(uτn)(%τn)ν− dxdt
∣∣∣

≤ ‖div(uτn)‖L2([%τn(t)<−ν])

(
1
2‖((%τn)ν−)2‖L2(0,T ;L2(Ω)) + ν‖(%τn)ν−‖L2(0,T ;L2(Ω))

)
= c‖ div(uτn)‖L2([%τn(t)<−ν]) → 0 as n→∞

(4.111)

by information (4.85a) and thanks to the assumptions p ≥ 4 and %0 ≥ 0 a.e. in Ω by (4.96). This proves
(4.106). Now the validity of properties (4.100) and (4.106) provides (4.108), i.e., that ‖Ψt∗(%(t∗))‖L1(Ω) =
‖(%(t∗))

ν
−‖L1(Ω) = 0, which gives (4.97a).

To (4.97b): Now, we apply the reasoning (4.99)–(4.108) using the function

Ψt∗(ρ(t)) = (%(t))νcrit+,t∗ :=

{
(ρ(t))νcrit+ for t ∈ [0, t∗],

0 for t ∈ (t∗, T ],
where (ρ(t))νcrit+ := max{ρ(t)− %crit − ν, 0}

(4.112)
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and to arrive at (4.108) we have to show that Ψt∗(ρ(t)) = (%(t))νcrit+,t∗
satisfies properties (4.100) and

that estimate (4.106) holds true.
To properties (4.100) for Ψt∗ from (4.112): Here, the primitive and the derivative are given by

Ψt∗(ρ(t)) :=

{
1
2 ((ρ(t))νcrit+)2 for t ∈ [0, t∗],
0 for t ∈ (t∗, T ],

(4.113a)

Ψ′′t∗(ρ(t)) :=

 1 if ρ(t) > %crit + ν and for t ∈ [0, t∗],
0 if ρ(t) ≤ %crit + ν and for t ∈ [0, t∗],
0 for t ∈ (t∗, T ] .

(4.113b)

Now similar arguments as for (4.109) provide properties (4.100) also for Ψt∗ from (4.112).
To estimate (4.106) for the drift term: Very similar calculations via integration by parts in space, as

in (4.111), also here result in∣∣∣− ∫ t∗

0

∫
Ω

%τnuτn · ∇Ψ′t∗(%τn) dxdt
∣∣∣ =

∣∣∣− ∫ t∗

0

∫
Ω

%τnuτn · ∇(%τn)νcrit+ dx dt
∣∣∣

=
∣∣∣− ∫ t∗

0

∫
Ω

(%τn − %crit − ν)uτn · ∇(%τn)νcrit+ dxdt−
∫ t∗

0

∫
Ω

(%crit + ν)uτn · ∇(%τn)νcrit+ dxdt
∣∣∣

=
∣∣∣− ∫ t∗

0

∫
Ω

uτn · ∇
((%τn)νcrit+)2

2
dxdt−

∫ t∗

0

∫
Ω

(%crit + ν)uτn · ∇(%τn)νcrit+ dxdt
∣∣∣

≤
∣∣∣ ∫ t∗

0

∫
Ω

div(uτn)
((%τn)νcrit+)2

2
dxdt−

∫ t∗

0

∫
∂Ω

(uτn · ~n)
((%τn)νcrit+)2

2
dHd−1 dt

∣∣∣
+
∣∣∣ ∫ t∗

0

∫
Ω

(%crit + ν) div(uτn)(%τn)νcrit+ dxdt+

∫ t∗

0

∫
∂Ω

(%crit + ν)(uτn · ~n)(%τn)νcrit+ dHd−1 dt
∣∣∣

=
∣∣∣ ∫ t∗

0

∫
[%τn(t)>%crit+ν]

div(uτn)
((%τn)νcrit+)2

2
dxdt

∣∣∣
+
∣∣∣ ∫ t∗

0

∫
[%τn(t)>%crit+ν]

(%crit + ν) div(uτn)(%τn)νcrit+ dx dt
∣∣∣

≤ ‖div(uτn)‖L2([%τn(t)>%crit+ν])

(
1
2‖((%τn)νcrit+)2‖L2(0,T ;L2(Ω)) + ν‖(%τn)νcrit+‖L2(0,T ;L2(Ω))

)
= c‖ div(uτn)‖L2([%τn(t)>%crit+ν]) → 0 as n→∞

(4.114)

by information (4.85a) and thanks to %0 ≤ %crit a.e. in Ω by (4.96). This proves (4.106). Now the validity
of properties (4.100) and (4.106) provides (4.108), i.e., that ‖Ψt∗(%(t∗))‖L1(Ω) = ‖(%(t∗))

ν
crit+‖L1(Ω) = 0,

which yields (4.97b).
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