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Description of the dynamics

We consider a mechanical system with a finite number of degrees of freedom.
The unconstrained dynamics is given by

M(q)d = g(t,q,4q).
We assume that the system is submitted to unilateral constraints described by

git) e K={qeRY fu(q) >0Vae{l,...,v}}, v>1

Adding the reaction force due to the constraints, we obtain

M(q)j = g(t,q,q) + R, Supp(R) C {t;q(t) € OK}.



We assume moreover that the constraints are perfect, i.e.

e there is no adhesion
Vo € Tk(q) : (R,v) >0,
e contact is without friction
Vo € Ti(q) N (=Tk(q)) : (R,v) =0,
with
Tr(q) = {w € RY (Vfalg),w) > 0Va e J(g)},

and

J(q) ={ae{l,....v}; fulqg) <0}



Using Farkas' lemma we infer that

R= ) XVfalg), >0
acl(q)

Moreover the velocity may be discontinuous whenever q(t) € 0K since
G (t) € T (q(t)), ¢ (t) € Tr(q(t)).
So R is a measure and we get the following Measure Ditferential Inclusion
M(q)j — 9(t,q,9) € —Nkl(q).
It follows that

M (q(t)) (¢7(t) = ¢~(t)) € Nx(q(t)) if q(t) € OK.



If J(q(t)) = {a} we infer that there exists ¢ > 0 such that

(Viala(®). (1))
(Vialg()), M~ (q(1))V fa(q(t))

() =q () — (1 +e)

which can be rewritten as

q+<t> - _6q_<t> + (1 + 6>Proj,/\4(q(t)) (TK (Q<t>) ) q_<t>)
= —eProj gy (M (q(t)) Nic(q(8)), 4 (t)) + Projasee (T (a(t)), a7 (1)).

The kinetic energy satisfies

1 2
EX(t) = 51" 1) ary
! :

= 5 (|Projasey (T (a(t)) (1) o T € 1PrOdarey (M (a8) Nic (a(t)), 67 () [y )

and E7(t) < E(t) if e € 0, 1] (mechanical consistency).



In the general case, the transmission of the velocity at impacts is modelled by the Newton's
law

G (t) = —eProjyymy (N (@), 4~ (1)) 4 Proj s (T (a(t)). ¢ (1))

with a restitution coefficient e € [0, 1].
Remarks:

e This model is mechanically consistent
e If ¢ = 1, the kinetic energy is conserved at impacts (elastic shocks)
o If e =0, we have

¢ (t) = Proj sy (TK (q(t)) , q_(t)) = Argmin,er el — ¢ Ol arq)

(standard inelastic shocks)
o If Card(J(q(t))) > 1 this is not the only mechanically consistent model.



We consider the following Cauchy problem:

Problem (P) Let (qg,ug) € K X Tx(qp) be admissible initial data. Find a function ¢ :
0,7] — R with 7 > 0. s.t.

(P1) g € C°([0,7);IRY), ¢ € BV(0, 7 IRY),
(P2) q(t) € K forall t € |0, 7],

(P3) there exists a non negative measure i such that the Stieltjes measure dg = ¢ and the
Lebesgue’'s measure dt admit densities relatively to dp, denoted respectively uL and t;ﬂ and

M (q(0)ul(t) — g(t,alt), d0)E,(6) € —Nic(q(t))  dps ae,

(P4) q(0) = qo, ¢*(0) = uy,
(P5) ¢ (t) = —eq(t) + (1 + e)Projasye (Tx (q(t)), 4 (t)) for all t € (0, 7).
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e Time-discretization at the position level

LP - M.Schatzman (93), LP - M.Schatzman (98), LP - M.Schatzman (02)

e Time-discretization at the velocity level

J.J.Moreau (83, 85 ...), M.Monteiro Marques (87, 93), M.Mabrouk (98),
R.Dzonou - M .Monteiro Marques - LP (06, 09).

Uniqueness is not true in general (A Bressan 1959)).
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Existence and approximation of solutions: multi-constraint case (v > 1)

e Penalty method
M.Schatzman (78), LP (00),

e Theoretical existence result

P.Ballard (00)

New difficulty: continuity on data does not hold in general but holds if the following "angle
condition" on the active constraints is satisfied:

(Vfalg), M(q)"'V f3(q)) <0 ife=0
(Viala), M(q) "'V fs(q)) =0 ife+#0

for all (cr, B) € J(q)* such that oo # 3, for all ¢ € OK.

References: P.Ballard (00) and LP (05).



A "simple" case: M =1Id and K convex

The MDI can be rewritten as
G+ 0v(q) > 9(t,q,q)

and we propose the following implicit time-discretization

qn+1 o Qqn T qn—l
h2

+ 0y (¢") 2 G"
which is equivalent to
qn+1 _ PI‘OJ(K, 2qn o qn—l 4+ hZGn)

where G" is an approximate value of ¢(¢,q,q) at t =t, = nh.

We initialize the algorithm by defining

¢" = q, ¢' = Proj (K, qo + hug + hz(h))  with limy,_oz(h) = 0.



Example (bouncing ball): d =1, K =1R", M(q)=1,9g=0,q =1, up = —1.
The solution of problem (P) is

qit)=1—1t iftel0,1], qt)=0 ift>1
Assume that h € (0,1/2). We obtain ¢" =1, ¢! =1 — h and forall n > 1
" = Proj(R",2¢" — ¢" ') = max(2¢" — ¢" 1, 0).
There exists p > 1 (p = [1/h] — 1) such that
p:max{k >0: 2¢" —q" 1 >0Vn € {O,...,k}}

and ¢" =1 —nhforalln € {0,...,p+ 1} Then

qp+2 _ O, qu+2 o qp+1 _ _qp+1 S 0

and ¢* =0forall k> p+2



Let us assume
(H1) g is a continuous function from [0, 7] x IR? x IR? (T’ > 0) to IR,

(H2) for all « € {1,..., v}, the function f, belongs to CY(IR%;IR), V f, is Lispchitz contin-
uous and does not vanish in a neighbourhood of {g € IR’ : f,(q) =0},

(H3) the active constraints along are functionnally independent i.e., for all ¢ € K the vectors
(Vfa(q))aej(q> are linearly independent.

We define the approximate solution (qy)p~0 by a linear interpolation of the ¢"'s, i.e.

n—+1 n

— (
h

() = ¢+ (t —nh)? vt € [nh, (n+ 1)h] N[0, T]
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Theorem (LP 2005) Let (qo, ug) € K X Tx(qo) be admissible data. Then there exist 7 €
(0,T] and a subsequence of (gp,)n~0, still denoted (q;)n~0, such that

an — ¢ in C°([0, 7] IR)
and q satisfies the properties (P1)-(P2)-(P3)-(P4).

If we assume moreover that, for all ¢ € 0K, we have
(V£al@),Vfs5(q)) <0 forall (a, 8) € J(g)? such that a # 3,
then the limit function ¢ satisfies also (P5) with e =0, i.e.
q"(t) = proj(Tx (q(t)), 4 (t)) Vt € (0,7)

and ¢ is a solution of the Cauchy problem.

Furthermore, if ¢ is Lispchitz continuous in its last two arguments, uniformly with respect to
the first one, the previous convergence holds on the whole time interval [0, 7.



Sketch of the proof

Step 1: We establish uniform estimates for the discrete velocities and accelerations.

qn—H L qn
h
| VAR VAR TELS NK(q”H), Ve —TK(Q”H).

Lemma 1: Foralln >1, let V" = . Then

As a consequence

V< IV + RGP

Step 2: We define the approximate solutions (g ),~0 by a linear interpolation of the ¢"'s. We
pass to the limit by using Ascoli's and Helly's theorems. Hence the limit ¢ satisfies the property
(P1) and, by using again lemma 1, we prove that ¢ takes its values in K and satisfies the MDI
and the initial conditions.



Step 3: We assume now that the "angle condition" holds i.e. for all ¢ € OK:

(V/a(@),V3(q) <0 forall (o, 3) € J(q)? such that a # .

We observe first that

q(t) € Ti(alt)), a (1) € =Tie(q(), ¢"(1) =4~ (1) € =N (q(t)).
Hence the impact law reduces to (¢ (¢) — ¢ (¢),¢"(¢)) = 0 and we have

Q=g )= > —uaVia(a®), pa <0, (Via(a(t),q"(t)) =0 Va e J(q(t)).

acJ(q(t))

Consequently we only need to prove the following complementarity condition

1o (Vfa(q),q () =0 forall a € J(q(t))



(V/al(q(t)),q"(t)) <0 forall @ € J(g(t)) such that p, # 0.

Using again lemma 1, we get

VIl VEEhGt = Y iV s, <0,
geJ(g"th)

We infer that, if u, # 0, in any neighbourhood V of the impact instant ¢, there exists at least
one discrete impact i.e. there exists at least a discrete instant ¢,,, such that fa(g ) <0

It follows that o € J(¢""!) and V™ € —Ty(q" ") thus

(Vfalg"th), V) <0.

Finally, by considering the last discrete impact ¢,, € V and using the "angle condition" we

obtain (Vf.(q(t)),q"(t)) <O0.



Let us consider now e € [0, 1] but still M = Id and K convex. The vibro-impact problem is
described by the MDI

G+ 0vr(q) = g(t,q,4)
and the impact law
.+ . [ . A . . R . R
¢" = —eq” + (1+¢e)Proj(Tw(q),4~) = —eProj(Nk(q),q") + Proj(Tx(q), 4" ).

Starting from the model problem of the bouncing ball, propose the following algorithm:

n+1 —2q" + n—1 n+&_+_€ n—1
q ];12 q +aW((J 1+q >9G”
e

which can be rewritten as

2¢" — (1 —e)g" 1 + hQG”>

n-+1 n—1 .
— 4+ (1+e)P K,
q eq (1+e) I‘OJ( e



Example (bouncing ball): d=1, K =1R", M(¢)=1, f=0,q =1, up = —1.
The solution of problem (P) is

{q(t)zl—t if t €0, 1],
qit) =e(t—1) ift > 1.

Assume that h € (0,1/2). We obtain ¢" =1, ¢* =1 — h and

2¢" — (1 —e)g" !
1+e

¢" = —eq" ' +(1+€)Proj (IR+, ) — —eq" max(2¢"—(1—e)g" 1, 0).

There exists p > 1 such that
p:max{k >0, 2¢" —(1—e)¢g" ' >0Vn € {O,...,k}}

and ¢" =1 —nhforalln € {0,...,p+1} Then ¢"? = —eq”.



But
2" — (1 —e)g" = ~2eq” — (1 —¢)2¢" —¢"') = —(2¢" — (1 —e)¢"') <0

so ¢' = —eqg?™t and

" = P fekh Yk > 0.



General case: e € [0,1], M # Id and /or K not convex

e \We extend first this definition to the case of a non trivial inertia operator but still a convex
set KX by considering the projection on K relatively to the kinetic metric at ¢" instead of the
projection relatively to the Euclidean metric.

e In the case of a non convex set K we extend once again the definition of the algorithm by
replacing the projection on K by the Argmin of the distance.

More precisely we propose now the following time-stepping scheme

¢ =q. 4" € Argmingepe|lqo + huo+ hz(h) = 2|y, limz(h) =0

and for all n >1

qn+1 _ —an_l + (1 4+ G)Zn

with
2¢" — (1 —e)g" 1 + h2G"

Zn c Al‘gminZGK | n
(&

7|
M(q")

and G™ is an approximate value of M ~'(q)g(t,q, ¢) at t = t,, = nh.
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Let us assume
(H1) g is a continuous function from [0, 7] x IR? x IR? (T > 0) to IR,

(H2) for all v € {1,..., v}, the function f, belongs to C'(IR%;IR), V £, is Lispchitz contin-
uous and does not vanish in a neighbourhood of {q c R : f.(q) = O},

(H3) the active constraints along are functionnally independent ie., for all ¢ € K the vectors
(vfa<q>)a€J(q) are linearly independent.

(H4) M is a mapping of class C'! from R to the set of symmetric positive definite d x d
matrices.

Without further assumptions on M and g, we can not expect a global existence result for

problem (P) on [0, T7.



Indeed, for any solution ¢ defined on [0, 7| (with 7 € (0,T7]), we have

Br (0 < B{O)+ [ (o(s.alsi(s)il9) ds
J%/o (Q(S), (dM(q(s))q(s))q(s)) ds Vte|0,7)

and finite time explosion may occur. Nevertheless, we can establish that

Proposition (energy estimate): Let C' > |lug|/a(y)- Then, there exists 7(C') € (0,7]
s.t., for any solution ¢ of problem (P) defined on [0, 7], we have

lq(t) —qo|| < C Vt e [O,min( )},
)|l argey < C dt ae. on [O mm(T(C),T)}

We define once again the approximate solutions (gp,)n~0 by a linear interpolation of the ¢"'s
and we establish the convergence to a solution of the Cauchy problem on [0,7’(0)] for any
C > |[uol v (q)-



First we observe that

Lemma 2: Foralln >1

M(g") (V"' = V" + hG™) € Ng(Z").



First we observe that

Lemma 2: Foralln >1

M(g") (V"' = V" + hG™) € Ng(Z").

Next we prove

Lemma 3: For all n > 2 and for all « € J(Z")

(VfulZ™), V" +eV"2) <OV + eV 2|1,



Proof: If a € J(Z"), we have f,(Z") =0 and f(Z"') >0, thus

1
0 < fo( 2" Y = fu(Z27) = /O (Vfu(Z"+s(2" = 2"), 2" = Z7) ds.

h
Observing that Z" — Z"! = .

m (V" +eV™ %), we get
e

1

(VfalZ™), V" +eV"?) < — / (VfulZ" 4+ s(Z" = Z7) =V [u(Z7), V" + eV ?) ds
< OM|[V" + V22, :



Case 1: e = 0 With lemma 2 and lemma 3 we infer that

Zn _ qn+1 c K, M(qn)(vn—l o Vn + hGn) c NK(qn+1)

and

(Vfalg™™), V") < OMIV* VYa € J(g").

Hence — V" does not belong necessarily to T (¢" ™). We can still reproduce the convergence
proof as in the "simple" case but now we have to deal with some O(h) perturbating terms
coming from the variation of the kinetic metric and the lack of convexity of K

Case 2: e # 0 With lemma 2 and lemma 3 we infer that

n+1 n—1
g = 11669 c K, M(¢")(V" — V" +hG") € Ng(Z")

and

(Vfu(Z7), V" +eV"%) < Oh)||V" + eV ?||? Va e J(ZM).



Consequently it is much more difficult to prove a priori uniform estimates for the discrete
velocities and accelerations.
Indeed, let us assume again that M (q) = Id and K convex, we get

VeVt e —Tx(Z")
and
(V"L V" hG", V" + eV ) >0
which vields
(L= IV < @+ )V 4 2e[[VT2)1 + O(h).

If K is not convex and/or M(q) # Id, we obtain the same kind of estimate up to O(h)
perturbating terms.

Nevertheless, with more technicalities, we can still prove that the sequence (gp)n~0 is uniformly
Lipschitz continuous on a non trivial time interval [0, 7], 7 € (0,7, and the sequence (¢s)n=0

is bounded in BV (0, 7; IRY),



Furthermore it is also more difficult to establish that the limit ¢ satisfies the impact law

q"(t) = —eq (t) + (1 + €)Projasy (T (a(t)) . 4™ (1)) (1)
With (P1), (P2) and (P3) we know that
¢"(t) € Tk(q(t)), ¢ (t) € =Tx(a(t)), M(a(t))(d" () —q (1)) € =Nk (q(t)). (2)

It follows that (1) holds if ¢(t) € Int(K). Otherwise .J(q(t)) # 0 and

M) (@O —d (1) =~ 3 paViala®). pa <.

acJ(q(t))

Hence (1) reduces to

ta(Via(a), ¢7(t) +eq(t) =0, (Vfala(t)),q () +eq () >0

for all @ € J(q(1)).



Recalling the "angle condition" ie. for all ¢ € 0K
(Vfal@), M q)V f3(q)) =0 for all (a, ) € J(¢)* such that o # 3

and using (2), we get

(Vala@®),d" (@) >0, (Via(qlt)),q (t) <0
and

(VEula®), 4" 1) = (Vfa(a®),d ) = pall VFa (@) |10

If 11, = 0 the conclusion follows immediately. Otherwise, we have to prove that

(Vfala(®),d"(t) +eg (1)) =0.

By using lemma 2, we can prove as in the "simple case" the existence of discrete impacts and
using lemma 3, we finally get the conclusion.
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