Some mathematical results for a model of thermally-induced phase transformation in shape-memory materials

Adrien Petrov
Weierstraß-Institute für Angewandte Analysis und Stochastik

joint work with Alexander Mielke and Laetitia Paoli

DFG Research Center MATHEON
Mathematics for key technologies
1. Introduction
2. Mathematical formulation
3. Convergence of the space-time discretization
4. Temporal regularity via uniform convexity
Outline

1 Introduction
2 Mathematical formulation
3 Convergence of the space-time discretization
4 Temporal regularity via uniform convexity
Previous works:

- The model for average of the transformation strain
 - Souza, Mamiya & Zouain’98, Auricchio & Petrini’04
 - Mielke’07, Mielke & P.’07, Auricchio, Mielke & Stefanelli’08

- The model for each pure phase independently
 - Mielke, Theil & Levitas’02, Govindjee, Mielke & Hall’02, Kružík, Mielke & Roubíček’05

- The energetic formulation theory of rate-independent systems
 - Mielke & Theil’04, Mielke’05
1. Introduction
2. Mathematical formulation
3. Convergence of the space-time discretization
4. Temporal regularity via uniform convexity
We consider a body with reference configuration $\Omega \subset \mathbb{R}^d$.

- $u : \Omega \to \mathbb{R}^d$: the phase transformation and deformations
- $z : \Omega \to Z := \text{conv}\{e_1, \ldots, e_N\}$: the internal variable

The **potential energy** has the following form:

$$
\mathcal{E}(t, u, z) := \int_{\Omega} \left(\mathcal{W}(e(u), z, \theta) + \frac{\sigma}{2} |\nabla z|^2 \right) \mathrm{d}x - \langle l(t), u \rangle,
$$

- \mathcal{W}: the stored energy density depends on $e(u), z, \theta$
 - $e(u) := \frac{1}{2}(\nabla u + \nabla u^T)$: the linearized deformation
 - θ: the temperature
- $\sigma > 0$: measures some nonlocal interaction effect for z
- $l(t)$: the applied mechanical loading

The **dissipation potential** is defined by

$$
\mathcal{D}(z_1, z_2) = \int_{\Omega} \psi(x, z_2 - z_1) \mathrm{d}x,
$$

- $\psi(x, \cdot)$: convex, l.s.c., positively homogeneous of degree 1 for a.e. $x \in \Omega$
Assumptions

- We do not solve an associated heat equation, i.e. $\theta = \theta_{\text{appl}}(t, x)$ is given

- This approximation used in engineering models:
 - the changes of the loading are slow
 - the body is small in at least one direction

 \Rightarrow excess heat can be transported very fast to the surface

- Examples: the wires

- $u = u_{\text{Dir}}(t)$ on $\Gamma_{\text{Dir}} \subset \partial\Omega$

Notations: the set $Q := \mathcal{F} \times \mathcal{Z}$ where

- $\mathcal{F} := \{\tilde{u} \in H^1(\Omega; \mathbb{R}^d) | \tilde{u}|_{\Gamma_{\text{Dir}}} = 0\}$: the set of admissible displacements

- $\mathcal{Z} := \{z \in H^1(\Omega; \mathbb{R}^N) | z(x) \in Z \text{ a.e. } x \in \Omega\}$: the set where lies the internal variable
Assumption: Initial data \((u(0), z(0)) = (u_0, z_0) \in \mathcal{F} \times \mathcal{Z}\) are given.

Energetic formulation: (Theil & Mielke’04, Mielke’05)
A function \(q := (\bar{u} = u - u_{\text{Dir}}(t), z) : [0, T] \to \mathcal{Q}\) is an energetic solution of the rate-independent problem associated with \(E\) and \(\mathcal{D}\) if for all \((s, t) \in [0, T]^2\), the global stability condition (S) and the global energy conservation (E) are satisfied, i.e.

\[
\begin{align*}
\text{(S)} & \quad \forall \bar{q} = (\bar{u}, \bar{z}) \in \mathcal{Q} : \tilde{E}(t, q(t)) \leq \tilde{E}(t, \bar{q}) + \mathcal{D}(z(t), \bar{z}), \\
\text{(E)} & \quad \tilde{E}(t, q(t)) + \text{Var}_\mathcal{D}(z; [0, t]) = \tilde{E}(0, q(0)) + \int_0^t \partial_s \tilde{E}(s, q(s)) \, ds,
\end{align*}
\]

with \(\tilde{E}(t, q(t)) := E(t, \bar{u}(t) + u_{\text{Dir}}(t), z(t), \theta_{\text{appl}}(t))\),

\[
\text{Var}_\mathcal{D}(z; [r, s]) := \sup \left\{ \sum_{j=1}^p \mathcal{D}(z(t_{j-1}), z(t_j)) \ \big| \ p \in \mathbb{N}, \ r \leq t_0 < \ldots < t_p \leq s \right\}.
\]
Remark: (S) is equivalent to

\[
q(t) \in S(t) := \{ q \in Q \mid \forall \overline{q} \in Q : \tilde{E}(t, q) \leq \tilde{E}(t, \overline{q}) + D(z, \overline{z}) \}
\]

for all \(t \in [0, T] \).
1. Introduction
2. Mathematical formulation
3. Convergence of the space-time discretization
4. Temporal regularity via uniform convexity
Convergence of the space-time discretization

Notations:

- \(\mathcal{F}_h, \mathcal{V}_h \): closed subspaces resp. of \(\mathcal{F} \) and \(\mathcal{V} := H^1(\Omega; \mathbb{R}^N) \)
- \(Q_h := \mathcal{F}_h \times \mathcal{Z}_h \) and \(\mathcal{Z}_h = \{ z_h \in \mathcal{V}_h \mid z_h(x) \in \mathcal{Z} \text{ a.e. in } \Omega \} := \mathcal{Z} \cap \mathcal{V}_h \)
- \(\Pi^\tau := \{ 0 = t_0^\tau < t_1^\tau < \ldots < t_k^\tau = T \} \): a partition with \(\tau \in (0, T) \) and \(t_k^\tau - t_{k-1}^\tau \leq \tau \) for \(k = 1, \ldots, k^\tau \)

Assumptions:

- \(\forall q = (\tilde{u}, z) \in Q \quad \exists (q_h)_{h>0} : q_h = (\tilde{u}_h, z_h) \in Q_h \) and \(q_h \to q \) strongly in \(Q \)
- the initial condition \(q_0 \) is approximated by \([q_0]^h \in Q_h \)

One has to solve the following incremental problems:

\[
(IP)^{\tau,h} \left\{ \begin{array}{l}
\text{for } k = 1, \ldots, k^\tau \text{ find }

q_k^{\tau,h} \in \operatorname{Argmin}\{ \tilde{\mathcal{E}}(t_k^\tau, \hat{q}^h) + \mathcal{D}(z_{k-1}^{\tau,h}, \hat{z}^h) \mid \hat{q}^h \in Q_h \},

\end{array} \right.
\]

where \(q_k^{\tau,h} := (\tilde{u}_k^{\tau,h}, z_k^{\tau,h}) \) and \(\hat{q}^h := (\hat{u}^h, \hat{z}^h) \).
Convergence of the space-time discretization

Assumptions:

- $\theta_{\text{appl}} \in C^1([0, T]; L^\infty(\Omega; [\theta_{\text{min}}, \theta_{\text{max}}]))$, $l \in C^1([0, T]; (H^1(\Omega; \mathbb{R}^d))')$
- $u_{\text{Dir}} \in C^1([0, T]; H^1(\Omega; \mathbb{R}^d))$
- $\forall v \in \mathbb{R}^N_0 \ \exists c_\psi, C_\psi > 0: c_\psi |v|_1 \leq \psi(x, v) \leq C_\psi |v|_1$ with $|v|_1 := \sum_{j=1}^{N} |v_j|$
- $W \in C^0(\mathbb{R}_\text{sym}^{d \times d} \times \mathbb{Z} \times [\theta_{\text{min}}, \theta_{\text{max}}]; \mathbb{R})$ is strictly convex $\forall (z, \theta) \in \mathbb{Z} \times [\theta_{\text{min}}, \theta_{\text{max}}]$
- $\forall (e, z, \theta) \in \mathbb{R}_\text{sym}^{d \times d} \times \mathbb{Z} \times [\theta_{\text{min}}, \theta_{\text{max}}] \ \exists c, C > 0:\n\quad c(|e|^2 + |z|^2) - C \leq W(e, z, \theta) \leq c(|e|^2 + |z|^2) + C$

Proposition 1. The following properties hold:

(i) D is continuous for the weak topology of $H^1(\Omega)$

(ii) for all $t \in [0, T]$, $\tilde{E}(t, \cdot)$ has weakly compact sublevels

(iii) $\forall (t, q) \in [0, T] \times \mathcal{Q} \ \exists C, c > 0: C\|q\|_{\mathcal{Q}}^2 - c \leq \tilde{E}(t, q) \leq C\|q\|_{\mathcal{Q}}^2 + c$
Convergence of the space-time discretization

The incremental problems $(\text{IP})^h_\Pi$ admit a solution $(q^{\tau,h}_k)_{1 \leq k \leq k^\tau}$, we have

$$\forall q^{\tau,h} \in Q_h: \ 	ilde{\mathcal{E}}(t_k^{\tau}, q^{\tau,h}_k) \leq \tilde{\mathcal{E}}(t_{k-1}^{\tau}, q^{\tau,h}_{k-1}) + \mathcal{D}(z^{\tau,h}_{k-1}, z^{\tau,h}_k) - \mathcal{D}(z^{\tau,h}_{k-1}, z^{\tau,h}_k)$$

$$\leq \tilde{\mathcal{E}}(t_k^{\tau}, q^{\tau,h}_k) + \mathcal{D}(z^{\tau,h}_k, z^{\tau,h}_k),$$

i.e. $q^{\tau,h}_k \in S_h(t_k^{\tau}) = \{ q^h \in Q_h | \bar{q}^h \in Q_h : \tilde{\mathcal{E}}(t, q^h) \leq \tilde{\mathcal{E}}(t, \bar{q}^h) + \mathcal{D}(z^h, \bar{z}^h) \}$.

Assumptions:

- $\partial_\theta \mathcal{W} \in C^0(\mathbb{R}^{d \times d}_{\text{sym}} \times Z \times [\theta_{\text{min}}, \theta_{\text{max}}]; \mathbb{R})$
- $\partial_e \mathcal{W} \in C^0(\mathbb{R}^{d \times d}_{\text{sym}} \times Z \times [\theta_{\text{min}}, \theta_{\text{max}}]; \mathbb{R}^{d \times d})$

Then for all $1 \leq k \leq k^\tau$ (discrete upper energy inequality)

$$\tilde{\mathcal{E}}(t_k^{\tau}, q^{\tau,h}_k) - \tilde{\mathcal{E}}(t_{k-1}^{\tau}, q^{\tau,h}_{k-1}) + \mathcal{D}(z^{\tau,h}_{k-1}, z^{\tau,h}_k) \leq \int_{t_{k-1}^{\tau}}^{t_k^{\tau}} \partial_t \tilde{\mathcal{E}}(t, q^{\tau,h}_{k-1}) \, dt,$$

and for all $2 \leq k \leq k^\tau$ (discrete lower energy inequality)

$$\tilde{\mathcal{E}}(t_k^{\tau}, q^{\tau,h}_k) - \tilde{\mathcal{E}}(t_{k-1}^{\tau}, q^{\tau,h}_{k-1}) + \mathcal{D}(z^{\tau,h}_{k-1}, z^{\tau,h}_k) \geq \int_{t_{k-1}^{\tau}}^{t_k^{\tau}} \partial_t \tilde{\mathcal{E}}(t, q^{\tau,h}_k) \, dt.$$
We define now the approximate solution $\bar{q}^{\tau,h} : [0,T] \rightarrow \mathcal{Q}$ as the right-continuous piecewise constant approximation, namely

$$
\bar{q}^{\tau,h}(t) := \begin{cases}
q_{k-1}^{\tau,h} & \text{for } t^{\tau}_{k-1} \leq t < t^{\tau}_k, \ k = 1, \ldots, k^{\tau}, \\
q_{k^{\tau}}^{\tau,h} & \text{for } t = T.
\end{cases}
$$

Goal: investigate the asymptotics as $h \to 0$ and $\tau \to 0$.

Assumptions on W: There exist positive constants $C_0^W, C_1^W, C^{\theta}, C_0^{\theta}, C_1^{\theta}, C^e, C_0^e, C_1^e$ and a nondecreasing function $\omega : [0, \infty) \rightarrow [0, \infty)$ with $\lim_{\tau \to 0^+} \omega(\tau) = 0$ such that for all $e, e_1, e_2 \in \mathbb{R}_d^{d \times d}, z, z_1, z_2 \in \mathbb{Z}$ and $\theta, \theta_1, \theta_2 \in [\theta_{\text{min}}, \theta_{\text{max}}]$, we have

$$
|\partial_e W(e, z, \theta)|^2 + |\partial_\theta W(e, z, \theta)| \leq C_1^W (W(e, z, \theta) + C_0^W),
$$

$$
|\partial_\theta W(e, z, \theta_1) - \partial_\theta W(e, z, \theta_2)| \leq C_1^{\theta} (W(e, z, \theta_1) + C_0^{\theta}) \omega(|\theta_1 - \theta_2|),
$$

$$
|\partial_e W(e, z, \theta_1) - \partial_e W(e, z, \theta_2)|^2 \leq C_1^e (W(e, z, \theta_1) + C_0^e) \omega(|\theta_1 - \theta_2|),
$$

$$
|\partial_\theta W(e_1, z_1, \theta) - \partial_\theta W(e_2, z_2, \theta)| \leq C^{\theta} (|e_1 - e_2| + |z_1 - z_2|)(1 + |e_1 + e_2| + |z_1 + z_2|),
$$

$$
|\partial_e W(e_1, z_1, \theta) - \partial_e W(e_2, z_2, \theta)| \leq C^e (|e_1 - e_2| + |z_1 - z_2|).$$
Proposition 2. We have

(P1) Let $q = (\tilde{u}, z) \in Q$. Then $\tilde{E}(\cdot, q)$ lies in $C^1([0, T])$ and

$$
\partial_t \tilde{E}(t, q) = \int_{\Omega} \partial_e W(e(u + u_{\text{Dir}}(t)), z, \theta_{\text{appl}}(t)) e(u_{\text{Dir}}(t)) \, dx \\
+ \int_{\Omega} \partial_\theta W(e(u + u_{\text{Dir}}(t)), z, \theta_{\text{appl}}(t)) \dot{\theta}_{\text{appl}}(t) \, dx - \langle \dot{l}(t), u \rangle.
$$

(P2) There exist $C_0^\varepsilon, C_1^\varepsilon > 0$ such that

$$
\forall (t, q) \in [0, T] \times Q : \quad |\partial_t \tilde{E}(t, q)| \leq C_1^\varepsilon (\tilde{E}(t, q) + C_0^\varepsilon).
$$

(P3) For each $\varepsilon > 0$ and $E \in \mathbb{R}$ there exists $\delta > 0$ such that for all $(s, t, q) \in [0, T]^2 \times Q$ with $\tilde{E}(0, q) \leq E$ and $|s - t| < \delta$ we have

$$
|\partial_t \tilde{E}(s, q) - \partial_t \tilde{E}(t, q)| \leq \varepsilon.
$$
Notations: For all \(k \in \{0, \ldots, k^\tau\} \) and for all \(t \in [0, T] \):

\begin{itemize}
\item \(\bar{\eta}_{k}^{\tau,h}(t) := \mathcal{E}(t, \bar{q}_{k}^{\tau,h}(t)), \quad \eta_{k}^{h} := \mathcal{E}(0, [q_{0}]^{h}) \) and \(\bar{\delta}_{k}^{\tau,h}(t) := \text{Var}_{\mathcal{D}}(\bar{z}_{k}^{\tau,h}; [0, t]) \),
\item \(\bar{\eta}_{k}^{\tau,h}(t) := \mathcal{E}(t_{k}^{\tau}, q_{k}^{\tau,h}) \) and \(\delta_{k}^{\tau,h} := \mathcal{D}(z_{k-1}^{\tau,h}, z_{k}^{\tau,h}) \).
\end{itemize}

Step 1: A priori estimates

Lemma 1. \(\| \bar{q}_{k}^{\tau,h}(t) \|_{Q}, \| \bar{\eta}_{k}^{\tau,h}(t) \|, \| \partial_{t} \bar{\mathcal{E}}(t, \bar{q}_{k}^{\tau,h}(t)) \|, \text{Var}(\bar{\eta}_{k}^{\tau,h}; [0, t]) \) and \(\| \bar{\delta}_{k}^{\tau,h}(t) \| \) are bounded independently of \(\tau, h \) and \(t \).
Convergence of the space-time discretization

Step 2. Selection of subsequences

Proposition 3. (Helly’s selection principle) Assume that

\[\forall (z, \tilde{z}) \in \mathcal{Z}^2, \forall (z^h, \tilde{z}^h) \in \mathcal{Z}^2_h : \]
\[z = \lim_{h \to 0} z^h \text{ and } \tilde{z} = \lim_{h \to 0} \tilde{z}^h \implies \mathcal{D}(z, \tilde{z}) \leq \liminf_{h \to 0} \mathcal{D}(z^h, \tilde{z}^h), \]

\[\forall z \in \mathcal{Z}, \forall K \subset \mathcal{Z} \text{ sequentially compact }, \forall (z_n)_{n \in \mathbb{N}} \in K^\mathbb{N} : \]
\[\min(\mathcal{D}(z_n, z), \mathcal{D}(z, z_n)) \to 0 \text{ for } n \to \infty \implies z = \lim_{n \to \infty} z_n. \]

Let \((z_n)_{n \in \mathbb{N}}\) be a sequence such that

\[\exists C > 0 \forall n \in \mathbb{N} : \text{Var}_\mathcal{D}(z_n; [0, T]) \leq C, \]
\[\exists K \subset \mathcal{Z} \text{ sequentially compact } \forall n \in \mathbb{N} \forall t \in [0, T] : z_n(t) \in K. \]

Then, there exists \((z_{n_j})_{j \in \mathbb{N}},\) a nondecreasing function \(\delta : [0, T] \to \mathbb{R},\) and \(z : [0, T] \to \mathcal{Z}\) such that for all \((s, t) \in [0, T]^2\) with \(s \leq t\)

\[z(t) = \lim_{j \to \infty} z_{n_j}(t), \delta(t) = \lim_{j \to \infty} \text{Var}_\mathcal{D}(z_{n_j}; [0, t]), \text{Var}_\mathcal{D}(z; [s, t]) \leq \delta(t) - \delta(s). \]
Convergence of the space-time discretization

Assumptions on \(\psi \Rightarrow \mathcal{D}\) satisfies the properties given in Proposition 1 with Lemma 1 \(\Rightarrow\) there exists a subsequence \((\tau_n, h_n)_{n \in \mathbb{N}}\) such that for all \((s, t) \in [0, T]^2, s \leq t:\)

\[
\overline{\eta}^{\tau_n, h_n}(t) \to \eta(t), \quad \overline{\delta}^{\tau_n, h_n}(t) \to \delta(t), \quad \overline{z}^{\tau_n, h_n}(t) \to z(t) \text{ in } \mathcal{Z},
\]

\[
\text{Var}_\mathcal{D}(z; [s, t]) \leq \delta(t) - \delta(s), \quad \partial_t \mathcal{E}(\cdot, \overline{q}^{\tau_n, h_n}) \rightharpoonup \xi_* \text{ weakly } * \text{ in } L^\infty([0, T]).
\]

with \(\eta \in \text{BV}([0, T]; \mathbb{R}), \delta : [0, T] \to \mathbb{R}\) a non decreasing function, \(z : [0, T] \to \mathcal{Z}\).

Step 3: Stability of the limit process.

Since \(\|\overline{q}^{\tau, h}(t)\|_\mathcal{Q}\) is bounded independently of \(\tau\) and \(h\), there exists a subsequence \((n_j^t)_{j \in \mathbb{N}}\) (depending on \(t\)) such that

\[
\overline{q}^{n_j^t, h_j^t}(t) \rightharpoonup q(t) \text{ weakly in } \mathcal{Q},
\]

and thus \(q(t) = (\tilde{u}(t), z(t))\).

Lemma 2. We have

\[
q(t) \in S(t) = \{ q \in \mathcal{Q} \mid \forall \overline{q} \in \mathcal{Q} : \tilde{\mathcal{E}}(t, q) \leq \tilde{\mathcal{E}}(t, \overline{q}) + \mathcal{D}(z, \overline{z}) \}.
\]
Convergence of the space-time discretization

Sketch of the proof. Let \(\overline{q} \in Q \) and define

\[
t_j = \max \left\{ t_k^{\tau_{n_j}^f, h_{n_j}^f} \leq t, k = 0, \ldots, k_{\tau_{n_j}^f} \right\}.
\]

We have \(\lim_{j \to \infty} t_j = t \) and \(\overline{q}^{\tau_{n_j}^f, h_{n_j}^f}(t) \in S_{h_{n_j}^f}(t_j) \).

Using (P1), we have

\[
\tilde{E}(t, \overline{q}^{\tau_{n_j}^f, h_{n_j}^f}(t)) \leq \exp(C_1^E |t-t_j|)\tilde{E}(t_j, \overline{q}^{\tau_{n_j}^f, h_{n_j}^f}(t)) + C_0^E (\exp(C_1^E |t-t_j|)-1)
\]

\[
\leq \exp(C_1^E |t-t_j|)(\tilde{E}(t_j, q^{h_{n_j}^f}) + D(\overline{Z}^{\tau_{n_j}^f, h_{n_j}^f}(t), z^{h_{n_j}^f})) + C_0^E (\exp(C_1^E |t-t_j|)-1)
\]

for all \(q^{h_{n_j}^f} \in Q_{h_{n_j}^f} \). Then, we choose \((q^{h_{n_j}^f})_{j \in \mathbb{N}} \) such that \(q^{h_{n_j}^f} \to \overline{q} \) in \(Q \) and we pass to the limit. As a consequence \(\tilde{u}(t) \in \text{Argmin}\{ \tilde{E}(t, \tilde{u}, z(t)) \mid \tilde{u} \in \mathcal{F} \} \).

Since \(\tilde{E}(t, \cdot, z(t)) \) is strictly convex, the whole sequence \((\overline{u}^{\tau_{n}^f, h_n}(t))_{n \in \mathbb{N}} \) converges weakly in \(Q \).

So we have defined a limit process \(q \in L^\infty([0, T]; Q) \) which satisfies the global stability property.
Convergence of the space-time discretization

Step 4: Upper energy estimate

With the discrete upper energy estimate and step 1, there exists $C > 0$ such that

$$\overline{\eta}^{\tau,h}(t) + \overline{\delta}^{\tau,h}(t) \leq \eta_0^h + \int_0^t \partial_t \widehat{E}(s, \overline{q}^{\tau,h}(s)) \, ds + C(\exp(C_1^\varepsilon \tau) - 1)$$

for all $t \in [0, T]$, for all τ and h, which yields at the limit

$$\forall t \in [0, T] : \eta(t) + \text{Var}_D(q; [0, t]) \leq \eta(t) + \delta(t) \leq \eta(0) + \int_0^t \xi_*(s) \, ds.$$

Lemma 3. For all $t \in [0, T]$:

$$\lim_{n \to \infty} \widehat{E}(t, \overline{q}^{\tau_n,h_n}(t)) = \eta(t) = \widehat{E}(t, q(t)),$$

$$\lim_{n \to \infty} \partial_t \widehat{E}(t, \overline{q}^{\tau_n,h_n}(t)) = \partial_t \widehat{E}(t, q(t)).$$
Convergence of the space-time discretization

Sketch of the proof. Since $\tilde{E}(t, \cdot)$ is l.s.c., we have

$$\tilde{E}(t, q(t)) \leq \liminf_{n \to \infty} \tilde{E}(t, q^{T_n \cdot h_n}(t)) = \liminf_{n \to \infty} \tilde{\eta}^{T_n \cdot h_n}(t) = \eta(t).$$

But $q^{T_n \cdot h_n}(t) \in S_{h_n}(t_j)$ and with the same computations as in step 2 with $q^{T_n \cdot h_n} \to q(t)$ in Q, we get

$$\eta(t) = \limsup_{n \to \infty} \tilde{E}(t, q^{T_n \cdot h_n}(t)) \leq \tilde{E}(t, q(t)) + D(z(t), z(t)) = \tilde{E}(t, q(t)),$$

and thus $\lim_{n \to \infty} \tilde{E}(t, q^{T_n \cdot h_n}(t)) = \eta(t) = \tilde{E}(t, q(t))$. Then, using (P2), we find

$$\lim_{n \to \infty} \partial_t \tilde{E}(t, q^{T_n \cdot h_n}(t)) = \partial_t \tilde{E}(t, q(t)).$$
Step 5: Lower energy estimate.
Notations:

- $\Pi^n := \{0 = t^n_0 < t^n_1 < \ldots < t^n_{N_n} = t\}$: a sequence of partitions of $[0, t]$, such that $\lim_{n \to \infty} \Delta(\Pi^n) = 0$ and

$$\int_0^t \partial_t \widetilde{E}(\sigma, q(\sigma)) \, d\sigma = \lim_{n \to \infty} \sum_{j=1}^{N_n} \partial_t \widetilde{E}(t^n_j, q(t^n_j))(t^n_j - t^n_{j-1}).$$

- $\mu^n_j := \int_{t^n_{j-1}}^{t^n_j} (\partial_t \widetilde{E}(s, q(t^n_j)) - \partial_t \widetilde{E}(t^n_j, q(t^n_j))) \, ds$

We have $q(t^n_{j-1}) \in S(t^n_{j-1})$. Choosing $\bar{q} = (\tilde{u}(t^n_j), z(t^n_j))$, we obtain

$$\widetilde{E}(t^n_{j-1}, q(t^n_j)) - \widetilde{E}(t^n_{j-1}, q(t^n_{j-1})) + \mathcal{D}(q(t^n_{j-1}), q(t^n_j)) \geq \int_{t^n_{j-1}}^{t^n_j} \partial_t \widetilde{E}(s, q(t^n_j)) \, ds$$

and after summation over j

$$\widetilde{E}(t, q(t)) - \widetilde{E}(0, q(0)) + \text{Var}_{\mathcal{D}}(q; [0, t]) \geq \sum_{j=1}^{N_n} \partial_t \widetilde{E}(t^n_j, q(t^n_j))(t^n_j - t^n_{j-1}) + \sum_{j=1}^{N_n} \mu^n_j,$$
Notice that
\[|\mu_j^n| \leq (t_j^n - t_{j-1}^n) \omega_E(\Delta(\Pi^n)) \]
with \(\lim_{\rho \to 0} \omega_E(\rho) = 0 \).

Then passing to the limit as \(\Delta(\Pi^n) \) tends to zero, we get
\[
\tilde{E}(t, q(t)) - \tilde{E}(0, q(0)) + \text{Var}_D(q; [0, t]) \geq \int_0^t \partial_t \tilde{E}(s, q(s)) \, ds.
\]

Finally we have
\[
\tilde{E}(0, q(0)) + \int_0^t \partial_t \tilde{E}(s, q(s)) \, ds
\leq \tilde{E}(t, q(t)) + \text{Var}_D(q; [0, t]) \leq \eta(t) + \delta(t) \leq \tilde{E}(0, q(0)) + \int_0^t \xi_*(s) \, ds,
\]
and \(\xi_* = \partial_t \tilde{E}(\cdot, q) \) a.e. in \([0, T] \). Hence all the inequalities are in fact equalities, thus
\[\forall t \in [0, T] : \, \delta(t) = \text{Var}_D(q; [0, t]). \]

and
\[
\partial_t \tilde{E}(\cdot, \overline{q}^{tn} h^n) \to \partial_t \tilde{E}(\cdot, q) \text{ strongly in } L^1([0, T]).
\]
Assumption: Let $[q_0]^h \in \mathcal{Q}_h$ be such that $[q_0]^h \to q_0$ in \mathcal{Q}.

Theorem 1 (Convergence of the approximate solutions). There exist a subsequence $(\tau_n, h_n)_{n \in \mathbb{N}}$ tending to $(0, 0)$ and an energetic solution $q = (\tilde{u}, z) : [0, T] \to \mathcal{Q}$ of (\mathcal{S}) and (\mathcal{E}) such that $q(0) = q_0$,

$$
\tilde{u} \in L^\infty([0, T]; H^1(\Omega; \mathbb{R}^d)),
$$

$$
z \in L^\infty([0, T]; H^1(\Omega; Z)) \cap BV([0, T]; L^1(\Omega; Z)),
$$

and, for all $t \in [0, T]$, the following convergences hold:

$$
\overline{q}^{\tau_n, h_n}(t) \to q(t) \text{ strongly in } \mathcal{Q},
$$

$$
\tilde{\mathcal{E}}(t, \overline{q}^{\tau_n, h_n}(t)) \to \tilde{\mathcal{E}}(t, q(t)),
$$

$$
\text{Var}_D(\overline{z}^{\tau_n, h_n}; [0, t]) \to \text{Var}_D(z; [0, t]),
$$

$$
\partial_t \tilde{\mathcal{E}}(\cdot, \overline{q}^{\tau_n, h_n}) \to \partial_t \tilde{\mathcal{E}}(\cdot, q) \text{ strongly in } L^1([0, T]).
$$
1 Introduction
2 Mathematical formulation
3 Convergence of the space-time discretization
4 Temporal regularity via uniform convexity
Assumption:

- \(W \) is \(\alpha_W \)-uniformly convex in its first two arguments.

Proposition 3. \(q \) is Lipschitz continuous.

Sketch of the proof. The uniform convexity of \(W \) implies that there exists \(\kappa > 0 \) such that \((t, q_1, q_2) \in [0, T] \times (\mathcal{F} \times V)^2:\)

\[
\frac{\kappa}{2} \| q_2 - q_1 \|^2_Q \leq \tilde{E}(t, q_2) - \tilde{E}(t, q_1) - \langle D_q \tilde{E}(t, q_1), q_2 - q_1 \rangle.
\]

On the other hand, (S) implies

\((S)_{\text{loc}} \forall s \in [0, T], \forall \nu = (\tilde{u}, z) \in Q : \langle D_q \tilde{E}(s), \nu - q(s) \rangle + D(z(s), z) \geq 0. \)

So, with \(q_1 = q(s), q_2 = q(t), 0 \leq s \leq t \leq T \)

\[
\frac{\kappa}{2} \| q(t) - q(s) \|^2_Q \leq \tilde{E}(s, q(t)) - \tilde{E}(s, q(s)) + \text{Var}_D(z; s, t)
\]

\[
= - \int_s^t \partial_r \tilde{E}(r, q(t)) \, dr + \int_s^t \partial_r \tilde{E}(r, q(r)) \, dr \leq C \int_s^t \| q(r) - q(t) \|_Q \, dr.
\]

Then we infer that \(\| q(t) - q(s) \|_Q \leq \frac{2C}{\kappa} (t - s) \)