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4";:‘ Shape-memory alloys

Shape-memory alloys are used because of their

> shape memory under heating and cooling,
> superelastic properties under mechanical loading,

> hysteretic behavior for damping of vibrations.

Applications: medical, space applications, MEMS...
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4";}‘ Shape-memory alloys

AIM: Model that describes the evolution of phase mixtures

Pure phases can be measured experimentally: energy functionals
ze{e ,..., e ,..., ey} CRVN W(E,e). j=1,...,N
~— ~— ~—
martl martk aust
Mixtures z € Z = conv{e;, ..., ey} is the Gibbs simplex
W(E,z) : ngxmd x Z — R is the mixture function called the free-energy of

mixing by Govindjee, Hackl & Heinen'07

State variables Applied fields
u:Q — R? displacement /o, 1 [0, T| — F*  mechanical loading
z:Q — Z phase mixture 6, : [0, T] x Q2 — R temperature given

upir: the time-dependent Dirichlet boundary data
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AIM: Model that describes the evolution of phase mixtures

Pure phases can be measured experimentally: energy functionals
ze{e ,..., e ,..., ey} CRVN W(E,e). j=1,...,N
~— ~— ~—~
martl martk aust
Mixtures z € Z = conv{e;, ..., ey} is the Gibbs simplex

W(E,z) : deyxmd x Z — R is the mixture function called the free-energy of
mixing by Govindjee, Hackl & Heinen'07

State variables Applied fields
u:Q — R? displacement £, € CL([0, T]; HY(Q; RY))
z:Q — Z phase mixture Oapp € CH([0, T]; L°°(2; [Omins Omax]))

Upir € Cl([ov T]v Hl(Qde))
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4";}‘ Mathematical formulation

Energy: &(t,0.2) = Jo(W(x.e(u-uni(1).20(6) +5 V) dx—(t(2) )
where e(u) = 3(Vu+Vu") is the infinitesimal strain

Dissipation distance: D(z, ) fQ x,zp—z1)dx
where ¢(x, -) is convex, |.s.c., positively homogeneous of degree 1
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4":}‘ Mathematical formulation

Energy: (t,0.2) = fo(W(x.e(u-tuni(1).20(6) +5 V) dx—(t(2) )
where e(u) = 3(Vu+Vu") is the infinitesimal strain

Dissipation distance: D(z,z) fQ x,zp—z1)dx
where ¢(x, -) is convex, |.s.c., positively homogeneous of degree 1

Mielke & Theil'04.
(u,z) : [0, T] — F x Z is called energetic solution, if

(S) E(t,u(t),z(t)) < E(t,u,Z) + D(2(t),Z) for all (4,7) € F x 2
(E) &(t,u(t),z(t)) + Varp(z; [0, t]) = (0, uo, z0)+ [y OsE(-, u, z)ds
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where e(u) = 3(Vu+Vu") is the infinitesimal strain
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Mielke & Theil'04.
(u,z) : [0, T] — F x Z is called energetic solution, if

(S) &(t,u(t),z(t)) <&(t,u,z)+D(z(t),z) for all (u,z) e F x 2
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If £(¢,-) convex, then (S)&(E) <> {0 € 0ué(t,u,2) elast. equil.

0 € 0Y(z)+ 0,E(t,u,z) flow rule
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4":}‘ Mathematical formulation

Energy: (t,0.2) = fo(W(x.e(u-tuni(1).20(6) +5 V) dx—(t(2) )
where e(u) = 3(Vu+Vu") is the infinitesimal strain

Dissipation distance: D(z,z) fQ x,zp—z1)dx
where ¢(x, -) is convex, |.s.c., positively homogeneous of degree 1

Mielke & Theil'04.
(u,z) : [0, T] — F x Z is called energetic solution, if

(S) &(t,u(t),z(t)) < &(t,4,Z) + D(2(t),z) for all (7,2) € F x 2
(E) &(t,u(t),z(t)) + Varp(z; [0, t]) = (0, uo, z0)+ [y OsE(-, u, z)ds

If £(¢,-) convex, then (S)&(E) <> {0 € 0ué(t,u,2) elast. equil.

0 € dY(z) + 0,E(t, u, z) flow rule
Previous works:

> Govindjee, Mielke & Hall'03

> Souza, Mamiya & Zouain'98, Auricchio & Petrini’04, Mielke & P.’07
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4";}‘ The existence result

Assumptions on W. Let w: [0,00) — [0,00) be a nondecreasing function
with lim, o+ w(7) = 0 such that

W(-,z,0) is strictly convex,

W, 0o W € CO(RESI X Z X [Omin, Omax]; R)

9eW € CORE I X Z X [Ormin, Omax]; RO )

c(lel*+|z|?) = C < W(e,z,0) < c(lef+|z]*) + C

|0.W (e, z,0)|* + [0 W (e, z,0)| < CY (W(e,z,0)+C")

|0gW (e, z,01)—0gW(e,z,0,)| < CY (W(e, z,61)+Cf) w(|61—02|)

|0eW (e, z,01)—0: W (e, z,05)|> < C§(W(e, z,01)+C5) w(|01—b5])

{&;W e1,21,0)—0g W (e, 2o, )| < Cler—er|+|z1— 2| ) (14| @1+ €| +|z1+22|)

|0e W (er, 21,0)—0e W (e2, 22,0)| < CE(|ler—es|+|z1—2])

—~ o~~~

Assumption on D. C1|21—22| < D(21,22) < C2|21—Z2|
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4";}‘ The existence result

Theorem (The Existence result)

Under the assumptions on W and 1) given above. Let (u(0),z(0)) satisfies
(S). Then there exists (u,z) : [0, T| — F x Z satisfying (S)&(E) such
that

u e L=([0, T]; HY(Q; RY))

z € L*(]o, T];HI(Q; Z))
z € BV([o, T]; L}(Q; 2))
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Theorem (The Existence result)

Under the assumptions on W and 1) given above. Let (u(0),z(0)) satisfies

(S). Then there exists (u,z) : [0, T| — F x Z satisfying (S)&(E) such
that
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Nothing is known about uniqueness
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4";}‘ The existence result

Theorem (The Existence result)

Under the assumptions on W and 1) given above. Let (u(0),z(0)) satisfies
(S). Then there exists (u,z) : [0, T| — F x Z satisfying (S)&(E) such
that

u e L=([0, T]; HY(Q; RY))

z € L*(]o, T];HI(Q; Z))
z € BV([o, T]; L}(Q; 2))

Nothing is known about uniqueness

If W is a-uniformly convex jointly in the first two arguments then (u, z) is
Lipschitz continuous
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4";}‘ Convergence of the space-time discretization

Finite-element spaces F, C F and Z, C Z, time step 7 > 0
Density assumption: (up, z,) — (u, z) strongly in F x Z
——

EFnXZp

Space-Time Discretization

(IP)h’T qZ7T € Argmin (E(t;,/q\h) + D(szl,/z\h))
ahE]:hXZh

where g, = (u}"",z)"") and §" = (4",2")
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Finite-element spaces F, C F and Z, C Z, time step 7 > 0
Density assumption: (up, z,) — (u, z) strongly in F x Z
——

EFnXZp

Space-Time Discretization

(IP)h’T qZ7T € Argmin (E(t;,/q\h) + D(szl,/z\h))
ahE]:hXZh

where g, = (u}"",z)"") and §" = (4",2")

Like Backward Euler for the heat equation:

u+Au=0 uZ7T S ArgAmin(fQ %|Vﬂ|2dx + ﬁ“ﬁ—uﬁflﬂz)
u

te_1

Piecewise constant interpolants g"7(t) = (u"7,z"7) . [0, T] — F x 2,
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4";}‘ Convergence of the space-time discretization

Finite-element spaces F, C F and Z, C Z, time step 7 > 0
Density assumption: (up, z,) — (u, z) strongly in F x Z
——

EFnXZp

Space-Time Discretization

(IP)h’T qZ7T € Argmin (E(t;,/q\h) + D(szl,/z\h))
ahE]:hXZh

where g, = (u}"",z)"") and §" = (4",2")

Like Backward Euler for the heat equation:

ur+Au=0 uZ7T S ArgAmin(fQ %|Vﬂ|2dx + 72(&_1&71) Hﬁ—u,’(’flﬂz)
u

Piecewise constant interpolants g"7(t) = (u"7,z"7) . [0, T] — F x 2,

AIM: investigate the asymptotics as h — 0 and 7 — 0
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4";}‘ Convergence of the space-time discretization

Convergence of the space-time discretization follows from

> uniform a priori estimates ~» numerical stability
> accumulation points are solutions ~~ consistency

Previous works: Mielke'05, Roubicek & Mielke'06
Theorem (Convergence of the space-time discretization)

Under the assumptions given above. Then there exists a subsequence
g™ = (a7, Z"7) which converges to a solution (u, z) of (S)&(E) and
u e LOO([O7 T];HI(Q;Rd))
ze LOO([O7 T]; HY(Q; Z))
ze BV([0, T; LY(; 2))
such that
G (t)— q(t) strongly in F x Z

E(t, g™ (1)) — E(t, q(t))
Varp(G"™: [0, t])— Varp(g; [0, t])
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4":}‘ Conclusion

e

> nothing is known about uniqueness

> understand the limit when o — 0 (formation of microstructure)
> include rate-dependent effects like a heat equation

> develop the theory to include other multifunctional materials
(ferroelectric materials, magnetostrictive materials)
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> include rate-dependent effects like a heat equation

> develop the theory to include other multifunctional materials
(ferroelectric materials, magnetostrictive materials)

Thank you for your attention !

Papers on line: http://www.wias-berlin.de/people/petrov
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