

Existence and approximation for a 3D model of thermally-induced phase transformations in shape-memory alloys

Adrien Petrov Weierstraß-Institute für Angewandte Analysis und Stochastik

joint work with Alexander Mielke and Laetitia Paoli

DFG Research Center MATHEON Mathematics for key technologies

Shape-memory alloys are used because of their

- shape memory under heating and cooling,
- superelastic properties under mechanical loading,
- hysteretic behavior for damping of vibrations.

Applications: medical, space applications, MEMS...

AIM: Model that describes the evolution of phase mixtures

Pure phases can be measured experimentally:

$$z \in \{\underbrace{e_1}_{\mathsf{mart1}}, \dots, \underbrace{e_k}_{\mathsf{martk}}, \dots, \underbrace{e_N}_{\mathsf{aust}}\} \subset \mathbb{R}^N$$

energy functionals
$$W(\mathsf{E},e_j),\ j=1,\ldots,N$$

Mixtures $z \in Z = \text{conv}\{e_1, \dots, e_N\}$ is the Gibbs simplex $W(\mathbf{E}, z): \mathbb{R}_{\text{sym}}^{d \times d} \times Z \to \mathbb{R}$ is the mixture function called the free-energy of mixing by Govindjee, Hackl & Heinen'07

State variables

Applied fields

$$u:\Omega \to \mathbb{R}^d$$
 displacement

$$u: \Omega \to \mathbb{R}^d$$
 displacement $\ell_{\text{appl}}: [0, T] \to \mathcal{F}^*$ mechanical loading

$$z:\Omega o Z$$
 phase mixture $heta_{\mathrm{appl}}:[0,T] imes\Omega o\mathbb{R}$ temperature given

 $u_{\rm Dir}$: the time-dependent Dirichlet boundary data

AIM: Model that describes the evolution of phase mixtures

Pure phases can be measured experimentally: energy functionals
$$z \in \{\underbrace{e_1}, \ldots, \underbrace{e_k}, \ldots, \underbrace{e_N}\} \subset \mathbb{R}^N$$
 $W(\mathsf{E}, e_j), j = 1, \ldots, N$

Mixtures $z \in Z = \text{conv}\{e_1, \dots, e_N\}$ is the Gibbs simplex $W(\mathbf{E}, z) : \mathbb{R}^{d \times d}_{\text{sym}} \times Z \to \mathbb{R}$ is the mixture function called the free-energy of mixing by Govindjee, Hackl & Heinen'07

State variables

Applied fields

$$\begin{array}{l} u: \Omega \to \mathbb{R}^d \text{ displacement} & \ell_{\mathrm{appl}} \in \mathrm{C}^1([0,T];\mathrm{H}^1(\Omega;\mathbb{R}^d)') \\ z: \Omega \to Z \text{ phase mixture} & \theta_{\mathrm{appl}} \in \mathrm{C}^1([0,T];\mathrm{L}^\infty(\Omega;[\theta_{\min},\theta_{\max}])) \end{array}$$

$$u_{\mathrm{Dir}} \in \mathrm{C}^1([0,T];\mathrm{H}^1(\Omega;\mathbb{R}^d))$$

Energy:
$$\mathcal{E}(t,u,z) = \int_{\Omega} (W(x,e(u+u_{\mathrm{Dir}}(t)),z,\theta(t)) + \frac{\sigma}{2} |\nabla z|^2) \,\mathrm{d}x - \langle \ell(t),u \rangle$$
 where $e(u) = \frac{1}{2} (\nabla u + \nabla u^{\mathrm{T}})$ is the infinitesimal strain

Dissipation distance: $\mathcal{D}(z_1, z_2) = \int_{\Omega} \psi(x, z_2 - z_1) dx$ where $\psi(x, \cdot)$ is convex, l.s.c., positively homogeneous of degree 1

Energy: $\mathcal{E}(t,u,z) = \int_{\Omega} (W(x,e(u+u_{\mathrm{Dir}}(t)),z,\theta(t)) + \frac{\sigma}{2} |\nabla z|^2) dx - \langle \ell(t),u \rangle$ where $e(u) = \frac{1}{2}(\nabla u + \nabla u^{\mathsf{T}})$ is the infinitesimal strain

Dissipation distance: $\mathcal{D}(z_1, z_2) = \int_{\Omega} \psi(x, z_2 - z_1) dx$ where $\psi(x,\cdot)$ is convex, l.s.c., positively homogeneous of degree 1

| Mielke & Theil'04.

$$(S) \quad \mathcal{E}(t,u(t),z(t)) \leq \mathcal{E}(t,\widetilde{u},\widetilde{z}) + \mathcal{D}(z(t),\widetilde{z}) \text{ for all } (\widetilde{u},\widetilde{z}) \in \mathcal{F} \times \mathcal{Z}$$

(u, z):
$$[0, T] \to \mathcal{F} \times \mathcal{Z}$$
 is called **energetic solution**, if
(S) $\mathcal{E}(t, u(t), z(t)) \leq \mathcal{E}(t, \widetilde{u}, \widetilde{z}) + \mathcal{D}(z(t), \widetilde{z})$ for all $(\widetilde{u}, \widetilde{z}) \in \mathcal{F} \times \mathcal{Z}$
(E) $\mathcal{E}(t, u(t), z(t)) + \operatorname{Var}_{\mathcal{D}}(z; [0, t]) = \mathcal{E}(0, u_0, z_0) + \int_0^t \partial_s \mathcal{E}(\cdot, u, z) \, \mathrm{d}s$

Energy: $\mathcal{E}(t,u,z) = \int_{\Omega} (W(x,e(u+u_{\mathrm{Dir}}(t)),z,\theta(t)) + \frac{\sigma}{2} |\nabla z|^2) dx - \langle \ell(t),u \rangle$ where $e(u) = \frac{1}{2}(\nabla u + \nabla u^{\mathsf{T}})$ is the infinitesimal strain

Dissipation distance: $\mathcal{D}(z_1, z_2) = \int_{\Omega} \psi(x, z_2 - z_1) dx$ where $\psi(x,\cdot)$ is convex, l.s.c., positively homogeneous of degree 1

Mielke & Theil'04.

$$(u,z):[0,T]\to\mathcal{F}\times\mathcal{Z}$$
 is called energetic solution, if

$$(S) \quad \mathcal{E}(t,u(t),z(t)) \leq \mathcal{E}(t,\widetilde{u},\widetilde{z}) + \mathcal{D}(z(t),\widetilde{z}) \text{ for all } (\widetilde{u},\widetilde{z}) \in \mathcal{F} \times \mathcal{Z}$$

(u, z):
$$[0, T] \to \mathcal{F} \times \mathcal{Z}$$
 is called **energetic solution**, if
(S) $\mathcal{E}(t, u(t), z(t)) \leq \mathcal{E}(t, \widetilde{u}, \widetilde{z}) + \mathcal{D}(z(t), \widetilde{z})$ for all $(\widetilde{u}, \widetilde{z}) \in \mathcal{F} \times \mathcal{Z}$
(E) $\mathcal{E}(t, u(t), z(t)) + \operatorname{Var}_{\mathcal{D}}(z; [0, t]) = \mathcal{E}(0, u_0, z_0) + \int_0^t \partial_s \mathcal{E}(\cdot, u, z) \, \mathrm{d}s$

If
$$\mathcal{E}(t,\cdot)$$
 convex, then **(S)&(E)** \iff
$$\begin{cases} 0 \in \partial_u \mathcal{E}(t,u,z) & \text{elast. equil.} \\ 0 \in \partial \psi(z) + \partial_z \mathcal{E}(t,u,z) & \text{flow rule} \end{cases}$$

Energy:
$$\mathcal{E}(t,u,z) = \int_{\Omega} (W(x,e(u+u_{\mathrm{Dir}}(t)),z,\theta(t)) + \frac{\sigma}{2} |\nabla z|^2) \,\mathrm{d}x - \langle \ell(t),u \rangle$$
 where $e(u) = \frac{1}{2} (\nabla u + \nabla u^{\mathrm{T}})$ is the infinitesimal strain

Dissipation distance: $\mathcal{D}(z_1, z_2) = \int_{\Omega} \psi(x, z_2 - z_1) dx$ where $\psi(x,\cdot)$ is convex, l.s.c., positively homogeneous of degree 1

| Mielke & Theil'04.

$$(u,z):[0,T] o \mathcal{F} imes \mathcal{Z}$$
 is called energetic solution, if

$$(S) \quad \mathcal{E}(t,u(t),z(t)) \leq \mathcal{E}(t,\widetilde{u},\widetilde{z}) + \mathcal{D}(z(t),\widetilde{z}) \text{ for all } (\widetilde{u},\widetilde{z}) \in \mathcal{F} \times \mathcal{Z}$$

(u, z):
$$[0, T] \to \mathcal{F} \times \mathcal{Z}$$
 is called **energetic solution**, if
(S) $\mathcal{E}(t, u(t), z(t)) \leq \mathcal{E}(t, \widetilde{u}, \widetilde{z}) + \mathcal{D}(z(t), \widetilde{z})$ for all $(\widetilde{u}, \widetilde{z}) \in \mathcal{F} \times \mathcal{Z}$
(E) $\mathcal{E}(t, u(t), z(t)) + \operatorname{Var}_{\mathcal{D}}(z; [0, t]) = \mathcal{E}(0, u_0, z_0) + \int_0^t \partial_s \mathcal{E}(\cdot, u, z) \, \mathrm{d}s$

If
$$\mathcal{E}(t,\cdot)$$
 convex, then **(S)&(E)** \iff
$$\begin{cases} 0 \in \partial_u \mathcal{E}(t,u,z) & \text{elast. equil.} \\ 0 \in \partial \psi(\dot{z}) + \partial_z \mathcal{E}(t,u,z) & \text{flow rule} \end{cases}$$

Previous works:

- ▶ Govindjee, Mielke & Hall'03
- Souza, Mamiya & Zouain'98, Auricchio & Petrini'04, Mielke & P.'07

Assumptions on W. Let $\omega:[0,\infty)\to[0,\infty)$ be a nondecreasing function with $\lim_{\tau\to 0^+}\omega(\tau)=0$ such that

$$\begin{split} & W(\cdot,z,\theta) \text{ is strictly convex,} \\ & W, \partial_{\theta}W \in \mathrm{C}^{0}(\mathbb{R}^{d \times d}_{\mathsf{sym}} \times Z \times [\theta_{\min},\theta_{\max}];\mathbb{R}) \\ & \partial_{e}W \in \mathrm{C}^{0}(\mathbb{R}^{d \times d}_{\mathsf{sym}} \times Z \times [\theta_{\min},\theta_{\max}];\mathbb{R}^{d \times d}_{\mathsf{sym}}) \\ & c(|e|^{2}+|z|^{2}) - C \leq W(e,z,\theta) \leq c(|e|^{2}+|z|^{2}) + C \\ & |\partial_{e}W(e,z,\theta)|^{2} + |\partial_{\theta}W(e,z,\theta)| \leq C^{W}_{1}(W(e,z,\theta) + C^{W}_{0}) \\ & |\partial_{\theta}W(e,z,\theta_{1}) - \partial_{\theta}W(e,z,\theta_{2})| \leq C^{\theta}_{1}(W(e,z,\theta_{1}) + C^{\theta}_{0}) \, \omega(|\theta_{1} - \theta_{2}|) \\ & |\partial_{e}W(e,z,\theta_{1}) - \partial_{e}W(e,z,\theta_{2})|^{2} \leq C^{e}_{1}(W(e,z,\theta_{1}) + C^{e}_{0}) \, \omega(|\theta_{1} - \theta_{2}|) \\ & |\partial_{\theta}W(e_{1},z_{1},\theta) - \partial_{\theta}W(e_{2},z_{2},\theta)| \leq C^{\theta}(|e_{1} - e_{2}| + |z_{1} - z_{2}|)(1 + |e_{1} + e_{2}| + |z_{1} + z_{2}|) \\ & |\partial_{e}W(e_{1},z_{1},\theta) - \partial_{e}W(e_{2},z_{2},\theta)| \leq C^{e}(|e_{1} - e_{2}| + |z_{1} - z_{2}|) \end{split}$$

Assumption on \mathcal{D} . $c_1|z_1-z_2| \leq D(z_1,z_2) \leq c_2|z_1-z_2|$

4014814818 800

Theorem (The Existence result)

Under the assumptions on W and ψ given above. Let (u(0), z(0)) satisfies **(S)**. Then there exists $(u, z) : [0, T] \to \mathcal{F} \times \mathcal{Z}$ satisfying **(S)&(E)** such that

$$u \in L^{\infty}([0, T]; H^{1}(\Omega; \mathbb{R}^{d}))$$
$$z \in L^{\infty}([0, T]; H^{1}(\Omega; Z))$$
$$z \in BV([0, T]; L^{1}(\Omega; Z))$$

Theorem (The Existence result)

Under the assumptions on W and ψ given above. Let (u(0), z(0)) satisfies **(S)**. Then there exists $(u, z) : [0, T] \to \mathcal{F} \times \mathcal{Z}$ satisfying **(S)&(E)** such that

$$u \in L^{\infty}([0, T]; H^{1}(\Omega; \mathbb{R}^{d}))$$

 $z \in L^{\infty}([0, T]; H^{1}(\Omega; Z))$
 $z \in BV([0, T]; L^{1}(\Omega; Z))$

Nothing is known about uniqueness

Theorem (The Existence result)

Under the assumptions on W and ψ given above. Let (u(0), z(0)) satisfies **(S)**. Then there exists $(u, z) : [0, T] \to \mathcal{F} \times \mathcal{Z}$ satisfying **(S)&(E)** such that

$$u \in L^{\infty}([0, T]; H^{1}(\Omega; \mathbb{R}^{d}))$$

$$z \in L^{\infty}([0, T]; H^{1}(\Omega; Z))$$

$$z \in BV([0, T]; L^{1}(\Omega; Z))$$

Nothing is known about uniqueness

If W is α -uniformly convex jointly in the first two arguments then (u,z) is Lipschitz continuous

Finite-element spaces
$$\mathcal{F}_h \subset \mathcal{F}$$
 and $\mathcal{Z}_h \subset \mathcal{Z}$, time step $\tau > 0$
Density assumption: $\underbrace{(u_h, z_h)}_{\in \mathcal{F}_h \times \mathcal{Z}_h} \rightarrow (u, z)$ strongly in $\mathcal{F} \times \mathcal{Z}$

Space-Time Discretization

$$(\mathsf{IP})^{h,\tau} \qquad \qquad q_k^{h,\tau} \in \mathop{\mathrm{Argmin}}_{\widehat{q}^h \in \mathcal{F}_h \times \mathcal{Z}_h} \big(\mathcal{E}(t_k^\tau, \widehat{q}^h) + \mathcal{D}(z_{k-1}^{h,\tau}, \widehat{z}^h) \big)$$

where
$$q_k^{h, au}=(u_k^{h, au},z_k^{h, au})$$
 and $\widehat{q}^h=(\widehat{u}^h,\widehat{z}^h)$

Finite-element spaces
$$\mathcal{F}_h \subset \mathcal{F}$$
 and $\mathcal{Z}_h \subset \mathcal{Z}$, time step $\tau > 0$
Density assumption: $\underbrace{(u_h, z_h)}_{\in \mathcal{F}_h \times \mathcal{Z}_h} \rightarrow (u, z)$ strongly in $\mathcal{F} \times \mathcal{Z}$

Space-Time Discretization

$$(\mathsf{IP})^{h,\tau} \qquad \qquad q_k^{h,\tau} \in \operatorname*{Argmin}_{\widehat{q}^h \in \mathcal{F}_h \times \mathcal{Z}_h} \left(\mathcal{E}(t_k^\tau, \widehat{q}^h) + \mathcal{D}(z_{k-1}^{h,\tau}, \widehat{z}^h) \right)$$

where
$$q_k^{h, au}=(u_k^{h, au},z_k^{h, au})$$
 and $\widehat{q}^h=(\widehat{u}^h,\widehat{z}^h)$

Like Backward Euler for the heat equation:

$$u_t + \Delta u = 0 \qquad \qquad u_k^{h,\tau} \in \mathop{\rm Argmin} \left(\int_{\Omega} \tfrac{1}{2} |\nabla \widehat{u}|^2 \, \mathrm{d}x + \tfrac{1}{2(t_k - t_{k-1})} \|\widehat{u} - u_{k-1}^{h,\tau}\|^2 \right)$$

Piecewise constant interpolants $\overline{q}^{h,\tau}(t) = (\overline{u}^{h,\tau}, \overline{z}^{h,\tau}) : [0,T] \to \mathcal{F}_h \times \mathcal{Z}_h$

4D + 4A + 4B + B + 900

Finite-element spaces
$$\mathcal{F}_h \subset \mathcal{F}$$
 and $\mathcal{Z}_h \subset \mathcal{Z}$, time step $\tau > 0$
Density assumption: $\underbrace{(u_h, z_h)}_{\in \mathcal{F}_h \times \mathcal{Z}_h} \rightarrow (u, z)$ strongly in $\mathcal{F} \times \mathcal{Z}$

Space-Time Discretization

$$(\mathsf{IP})^{h,\tau} \qquad q_k^{h,\tau} \in \operatorname*{Argmin}_{\widehat{q}^h \in \mathcal{F}_h \times \mathcal{Z}_h} \left(\mathcal{E}(t_k^\tau, \widehat{q}^h) + \mathcal{D}(z_{k-1}^{h,\tau}, \widehat{z}^h) \right)$$

where
$$q_k^{h, au}=(u_k^{h, au},z_k^{h, au})$$
 and $\widehat{q}^h=(\widehat{u}^h,\widehat{z}^h)$

Like Backward Euler for the heat equation:

$$u_t + \Delta u = 0 \qquad \qquad u_k^{h,\tau} \in \operatorname{Argmin} \left(\int_{\Omega} \frac{1}{2} |\nabla \widehat{u}|^2 \, \mathrm{d}x + \frac{1}{2(t_k - t_{k-1})} \|\widehat{u} - u_{k-1}^{h,\tau}\|^2 \right)$$

Piecewise constant interpolants $\overline{q}^{h,\tau}(t) = (\overline{u}^{h,\tau}, \overline{z}^{h,\tau}) : [0,T] \to \mathcal{F}_h \times \mathcal{Z}_h$

AIM: investigate the asymptotics as $h \to 0$ and $\tau \to 0$

Convergence of the space-time discretization follows from

- □ uniform a priori estimates → numerical stability
 □ accumulation points are solutions → consistency

Previous works: Mielke'05, Roubíček & Mielke'06

Theorem (Convergence of the space-time discretization)

Under the assumptions given above. Then there exists a subsequence $\overline{q}^{h,\tau}=(\overline{u}^{h,\tau},\overline{z}^{h,\tau})$ which converges to a solution (u,z) of (S)&(E) and

$$u \in L^{\infty}([0, T]; H^{1}(\Omega; \mathbb{R}^{d}))$$

$$z \in L^{\infty}([0, T]; H^{1}(\Omega; Z))$$

$$z \in BV([0, T]; L^{1}(\Omega; Z))$$

such that

$$\overline{q}^{h_n, au_n}(t) {
ightarrow} q(t)$$
 strongly in $\mathcal{F} imes \mathcal{Z}$ $\mathcal{E}(t,\overline{q}^{h_n, au_n}(t)) {
ightarrow} \mathcal{E}(t,q(t))$ $\operatorname{Var}_{\mathcal{D}}(\overline{q}^{h_n, au_n};[0,t]) {
ightarrow} \operatorname{Var}_{\mathcal{D}}(q;[0,t])$

- ▶ nothing is known about uniqueness
- ightharpoonup understand the limit when $\sigma
 ightharpoonup 0$ (formation of microstructure)
- ▷ include rate-dependent effects like a heat equation
- ▶ develop the theory to include other multifunctional materials (ferroelectric materials, magnetostrictive materials)

- ▶ nothing is known about uniqueness
- ightharpoonup understand the limit when $\sigma
 ightharpoonup 0$ (formation of microstructure)
- ▷ include rate-dependent effects like a heat equation
- ▶ develop the theory to include other multifunctional materials (ferroelectric materials, magnetostrictive materials)

Thank you for your attention!

Papers on line: http://www.wias-berlin.de/people/petrov