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The phase transformations of the crystallographic lattice are characterized by an
internal variable z : Q) — Z = conv{ey, ..., en}.

Interpretation: if z(x) = Z]kvzl Ai(x)er, Ap(x)= volume fraction of phase k.
The model is described by

e a stored energy density W (e(u), z,0) where u denotes the displacements,
e(u) = %(Vu + Vu'), and 6 is the temperature,

e a dissipation D(zy, 29) due to phase changes.

We assume that D is given by

D(z1, 29) = /Qw(a:, 29 — 21)dx

where 1(x, -) is convex, |.s.c. and positively homogeneous of degree 1 for ae. x € ).

We study the quasi-static evolution in small strain regime, within the framework of
the variational theory of rate-independent processes.



The potential energy is given by

E(t,u,z,0) = /Q (W(e(u), z,0) + %\Vz\z) dr — ({(t), u)

: : : : o : :
where £ is a time-dependent applied loading and —|Vz\2, with o > 0, takes into account

some non-local effects for the internal variable z.

We assume that 0 = 0,,,1(f, z) is a given data (valid if €2 is small in at least one direction)
and that u = up;(t) on I'py, C O

We define the set QO = F x Z by

F={ue H(QR");ur,, =0},
Z={zc H(Q;RY); 2(z) € Z ae. x € Q}.



We look for an energetic solution for the rate independent problem associated to £ and
D,ieq=(u=u—upiy,z): |0, T] — Q satisfying the global stability condition (S) and
the global energy balance (E)

(S)Va = (%) € Q: §<t,q< >><8<t 7) + D(=(t), 2),
(E) E(t, q(t)) + Varp(z:0,t) = / 8, (s, q(s
with
E(t,q(t)) = E(t,a(t) + upir(t), 2(t), Gappi(1))
and
Varp(z;, S)—Sup{ZD 1), 2(t5)) ’pE IN, r <tp <ty <... <tp§3}

=1
for all (r,s) € [0,T]? such that r < s.

Let us observe that (S) is equivalent to

q(t) € S(t) {qEQE(t ) <EL,Q+D(z2) qe Q} forallt el0,T).



In order to construct approximate solutions we consider closed subspaces Fj, and V), of
F and V = HY(Q; IRY) respectively (e.g. finite dimensional subspaces) and we define

Qn=Fn X Zn, Zp={zn € Viszp(x) € Zae inQ}=ZNV,.

We assume that for all ¢ = (u, 2) € Q there exists a sequence (q;)p~0 such that

qn = (up,vp) € Qn Yh >0, ¢, — q strongly in Q.

We consider also a partition [T = (¢] )o<i<p of [0,T7, i.e.

O=t)<t;<...<t.=T

such that A(Il) =sup{t] —t; |, 1 <k <k} <7, with7t € (0,7T).



We approximate the initial condition gy by [go]" € Q), and we solve the following
incremental problems:

f =1,. T
(IP)%{ or k k7 find

7,h ~7h Th T AT, Tho o7 77
g, = (", 2 )EArgmm{St M+ D(z0, 27" [ = (@™ 27 € Qu .

| et us assume that :

9app1 S Cl([ov T]S LOO<Q5 [emim emaXD)
(H1) ¢ e CH[0,T); (H' (2 IRY))
upiy € CH[0, T, H'(; IRY))

N
H2) 3y, Cyp >0 st cylvh < v(a,v) < Cyloli Vo€ RY, |vli= ) |v)]

(W € COURXE x Z X [Drmins Omaxl; IR)

sym
(H3) ) W (-, z,0) is stricly convex for all (z,0) € Z x [@mm O max]

Je, 0 >0 st cflef*+]z]?) = C < Wi(e, 2,0) < c(le]*+|z]*) + C
\ V( Z @) c RIXd 5 7 x [eminaemax]

sym




Proposition 1. The following properties hold:

e D is continuous for the weak topology of H'(Q),

o for all t € [0, 7], £(t,-) has weakly compact sublevels,

e there exist positive real numbers Cy, ¢y, C1, ¢q such that

Collgly — o < E(t,q) < Cillallg — e
for all (¢,q) € [0,T] x Q.

We infer that the incremental problems (IP)% admit a solution and, forall k=1,... k",
we have

E(th,ay") < Eth, a7 + Dzt 271 = D"y, 2p") < E(tg, a7 + DUz, 27

forall " € Qy ie.

P e Sty ={d" € Qu: &t ¢") < Et, 7" + D" 7 e Q).



Let us assume moreover that OgW € CO(RIXT x Z X [Dins Omax]; IR) and

oW € C’O(Rg;;nd X Z X [Omin, Hmax];ngﬁd).sijhen
Bt~ Bty + DU 0 < [ adnatya
il
for all 1 < k < k7 (discrete upper energy inequality) and
Bt ") — Byt + DU N 2 [ a8 gt
fl

for all 2 < k < k7 (discrete lower energy inequality).

We define the approximate solution qgh by

") =" vteltn ), Yk=1,... .k, ¢"T) =g



Next we investigate the asymptotics as A and 7 tend to zero.

Proposition 2. Let us assume that there exist positive constants C(I)/V, C'1W, C? C’g,
C? C¢ C¢, C¢ and a nondecreasing function w : [0, 00) — [0, 00) with lim o+ w(7) = 0
such that for all e,e1,e0 € R4 2 2, 20 € Z and 0,01, 05 € [Opmin, Omax], We have

sym

8 W( 2,02+ [0yW (e, 2,0)] < CY (W (e, z,0)+C)),
Wie, z,01)—0W (e, z,0)| < Cf<W( 2,01)+Cf) w(|81—b2]),
Wie, z,01)— 0W( 2,00)]* < C{(W (e, 2, 01)+CF) w(|01—0a]),
(6 <21, ) W<€2,22,9>’ S ‘9(’61—62’+’21—Zg|><1+’61+62’—|-’2’1—|—2’2|>
4 ) <C

€1, <1, > aW(627227 | (’61_62|—|—|21_22|>

Then
(i) there exist C&, Cf > 0 such that

0E(L, q)| < CEE(, q)+CF) Y(t,q) €[0,T] x Q

(i) for all B/ € IR there exists a nondecreasing function wg : [0, 00) — [0, 00)
with lim, o+ wg(p) = 0 such that

0,E(s,q)—0E(t, q)| <wr(|t —s|) V(s,t,q) €[0,T]* x Qs.t. £(0,q) < E.



Let us introduce the following notations:

5Th—D(zk 1,2,:h), n;,h:g( k,q;h) Vk € {0,...,k"}

and

0T () = Varp(20":0,1),  ni"(t) = E(t, ¢} () VYt € [0,T).

Step 1: A priori estimates

7,h T,h o T,h T,h 7,h
Lemma 1. g7 (!)lo. 75" (8], [9:(t, (1)), Var(r": 0,¢) and |3 (1)
are bounded independently of 7, h and t.



Step 2: Passage to the limit

We will use Helly's selection principle:

Lemma (Helly’s selection principle). Assume that the following properties hold:

V(2,2) € 2%, V(2" 2" e 2% }

z = limy,_,q 2" Zh

= D(2,%) < liminf D(2",Z"),

and z =1lim;,_,o 2 h—0

and

= 2z = lim z,.
n—aoo

Vz € Z, VK C Z sequentially compact , V(2,) N € KN }
min(D(z,, z), D(z, z,)) — 0 for n — oo

Let (2,,), N be a sequence such that z, : [0,7] — Z for all n € IIN and satisfying

AC' > 0, Vn € IIN : Varp(2,;0,T) < C,
K C Z sequentially compact , Vn € IIN, Vt € [0,T]: z,(t) € K.

Then, there exists a subsequence <Z”j>j€]]N' a nondecreasing function ¢ : [0, 7] — IR,
and a limit process z : [0, T] — Z such that for all (s,t) € [0, T]* with s < ¢, we have

2(t) = lim z,,(t), 6(t) = lim Varp(z,;0,t), Varp(z;s,t) < 0(t) — d(s).
j—00 j—00



Assumption (H2) implies that D satisfies the previous properties and with lemma 1
we infer that there exists a subsequence (7, hy,), N such that

ngb’h”(t) — n(t), 5{{””(75) — (), zﬁ”’h”(t) —z(t) in Z Vtel0,T]

with n € BV([0,T];IR), 6 : [0,T] — IR a non decreasing function and z : [0,T] — Z
such that

Varp(z;s,t) < 8(t) — 6(s) forall (s,t) € [0,T]* with s < t.

Moreover, possibly extracting another subsequence, we have

~

& (-, q;{”h") — &, weakly x in L>([0,T]).



Let t € [0,T7]. Since Hq;’h(t)HQ is bounded independently of 7 and h, there exists a
subsequence (nz-)jEHN (depending on t) such that

Tt hng.

ijj (t) — q(t) weakly in O

and thus q(t) = (u(t), z(t)).
Lemma 2. We have

q(t) € S(t) ={q€ QE(t,q) <E(t,q)+D(z,2) Yge Q}.

Sketch of the proof. Let ¢ € Q and define

Totsh ot
tj=max{t,” ' <t,k=0,... k- }.

ne.
J

Tnt.’hnt.
We have lim; .o t; =t and gz’ (1) € S ,(1;).

J



So using (i) in proposition 2, we get

~ Tnt. ’hnt. ~ Tnt. ’hnt.
E(t,qr” (1)) < eXp(Cf\t—tng(tj,th‘ '(t) + CF (exp(CF [t—)—1)
Tt t h

-~ h n. n. nl
< exp(CElt—t,]) (E(t), g "N4D(z? (1), 2 3)) + C§ (exp(CE|t—t;])—1)

h h h
for all ¢ " € Q.. Then, we choose (g n‘Z;)je[IN such that ¢ N g in @ and we pass to

J
the limit.

As a consequence

u(t) € Argmin{g(t, u,z(t), ue F}.

Since g(t, . z(t)) is strictly convex, the whole sequence (@’h”(t))nem converges weakly

in O.

So we have defined a limit process ¢ € LOO([O,T]; Q) which satisfies the global stability
property.



Step 3: Energy estimate

With the discrete upper energy estimate and step 1, there exists C' > 0 such that
T () + 05 () <l + / 0,&(s, 5" (s)) ds + Clexp(CET) — 1)
for all £ € [0, 77, for all 7 and h, which yields at the limit
1)+ Varola:0,6) < l6) +50) < n(0) + [ €)ds € 0.7,

Moreover

Lemma 3. For all t € [0, T, the following convergences hold:

lim o0 € (8, g5 (1)) = n(t) = E(t,q(t)),
lim,, o0 B:E (¢, g™ (1)) = BE(t, q(t)).



Sketch of the proof. Let t € [0,7T)]. Since £(t,-) is lower-semicontinuous we have

E(t, q(t)) < liminf E(t, gz (£)) = lim inf n™ (1) = n(2).

n——+0oo Nn——-+00

Tnahn

But qp""(t) € Sh, (t;) and with the same computations as in step 2 with ¢"" — ¢(t)
in Q, we get

n(t) = limsup E(t, g5 () < E(t, (1)) + D(=(t), 2(1)) = E(t, q(t))

n—-+oo

and thus lim,, .o, E(t, 0" (1)) = n(t) = E(t, q(1)).
Then, using property (ii) of proposition 2, we infer that

lim &,E(t, g7 (1)) = 9E(t, q(1)).

Nn—-+00



Next, we fix t € [0,T] and let [IP = {0 =¢t) < t] < ... < t?vp =t} be a sequence
of partitions of [0, ¢], such that lim, A(Hp) = (0 and

/8,5 o,q(0))do = lim Z@t (5, q(t)(t — t5_1).

p—+00

We have q(t}_;) € S(t]_,) so, by choosing ¢ = (u(t), 2(7)), we obtain

E(_ 1 q(th) — EE_,q(t_) + Dia(t_), a(t?) / 8.2 (5, ¢(t"))
and after summation over j
Np
E(t,q(t)) — £(0,q(0)) + Varp(q; 0,¢) > >~ OE(E, q(th)) (i —t0_,) + Zuj,
j=1

th = pt :
where 4] = |11 (O a(t)~DE(E, () ds| < (12— £ )(ATP)) wit
lim, ,owg(p) = 0. Then passing to the limit as A(II”) tends to zero, we get

E(t, q(t)) — £(0,4(0)) + Varp(q; 0, ¢) > /Ot 0,E (s, q(s))ds.



Finally we have

£(0.q(0 / 9,& (s,q(s)) ds < E(t,q(t)) + Varp(q: 0,)

< nt) +d(t) < /s*

and

~

. =0&(-,q) ae inl0,T]

Hence all the inequalities are in fact equalities, thus

6(t) = Varp(q;0,t) YVt €0,T]

and

(%5( T”h”)%ﬁtg(-,q) strongly in  L*([0,T7).



Theorem 1 (Convergence of the approximate solutions).

There exist a subsequence {(7,,, h,)}, .\ tending to (0,0) and an energetic solution
q=(u,z):0,T] — Q of (S) and (E) such that ¢(0) = qq,

u e L>([0,T); HY(;IRY)),
2 € L>([0,T); H'(; Z2)) n BV ([0, T]; LY Z)),

and, for all t € [0, T, the following convergences hold:

2R "n(t) — z(t) strongly in Z,
f&/glh (t) = u(t) weakly in F,
E(t, T”h”( £) — E(t.qlt)),
Varg(zR :0,t) — Varp(z;0,t),
AE (-, qn" h”) — 9,E(+, q) strongly in  L1([0, T).



Proposition 3. Let us assume moreover that W is ayy-uniformly convex in its first two
arguments. Then ¢ is Lipschitz continuous.

Sketch of the proof. The uniform convexity of W implies that there exists kK > 0 s.t.

/{ ~ o~ ~
vt € [0,T], Y(q1, ) € Q° §|\Qz —qillg < Et, @) — Et,q) — (DE{, q1), g2 — q1)-

On the other hand, (S) implies
(Sloc) Vs € [0,T],Vv = (u,2) € Q: (D,E(s),v —q(s)) + D(z(s), z) > 0.

So, with g1 = q(s), g =q(t), 0 < s <t <T

—Hq —q(s)]|5 < E(s,q(t)) — E(s, q(s)) + Varp(z; s, 1)

/087%] ))dr + /857“(] dfr<(]/ lq(r) — q(t)|| o dr.

Then we infer that ||q(t) — q(s)|lo < —(t — 5).
K



The strict convexity assumption is not necessary to prove a convergence result.
Indeed, let us assume that W (-, z,0) is convex for a.e. (2,0) € Z X [Omin, Omax), then
e proposition 1 and proposition 2 are still true,

e the incremental problems (IP)% still admit a solution q,?h for all k = 1,..., k" such that
q,:’h € Sp(t7) and which satisfies the discrete upper/lower energy inequalities,

e the approximate solution q;’h still satisfies the a priori estimates,

e we can apply Helly’s selection principle and extract a subsequence (7, hy,), N such that
nf{"hn(t) — (1), 517{“]1”(75) — (), zf{"h”(t) — z(t) in Z2 Vtel0,T]

and

~

D,E (-, gy — €, weakly % in L([0,T])

with n € BV ([0, T];IR)and ¢ : [0,7] — IR a non decreasing function such that

Varp(z;s,t) < 8(t) — 6(s) forall (s,t) € [0,T]* with s < t.



e Forany fixed t € [0, T], we can define a limit displacement u(t) by considering a subsequence

T otsl ot
qr’ (1) weakly converging in Q. Once again

g(t) = (Ult), 2(t)) € S(t), ult) € Argmin{&(t,u, 2(t)), U € F}.

But &(t, -, 2(t)) is not strictly convex any more and we can not infer that the whole sequence

(NTn Jin

upy <t>)n€ﬂN converges weakly in Q.

e \We still have a upper energy estimate (which is a consequence of the discrete upper energy
estimate and the a priori estimates), i.e.

n(t) + Varp(q; 0,t) < n(t) + 6(t / £.(s)ds YVt e [0,T].



e We have also a lower energy estimate (which is a consequence of the stability of the limit
process), i.e.

E(t, q(t)) — £(0,4(0)) + Varp(q; 0, ¢) > /Ot 9,E (s, q(s))ds.

Thus we obtain

£(0, ¢(0 / (9t (s,q(s)) ds < E(t, q(t)) + Varp(q; 0, )

< nt)+6(t) < E(0,q(0) /5*

and it remains to compare &, and (9t5(-, q). So we go back to the proof of lemma 3.



Let ¢ € [0,T]. Since E(¢,-) is lower-semicontinuous we have

~ Tt Tl
E(t q(t) < liminf E(t,qp’ " (8)) = liminfng () = n(t).
J]—+00 J)—+00
Tl by

Moreover gz’ 7 (t) € Sp, , (t;) and with the same computations as in step 2 with ¢ "7 — ¢(¢)
J

in Q, we get
' N Tl t N ~
n(t) = hmiup Et,qp’ (1) < E(t,q(t) + D(2(¢), 2(1)) = E(t, q(t))
j—+00
Tl ~
j

and thus lim; 00 E(t, q” (1)) = n(t) = E(L, q(1)).
Then, using property (ii) of proposition 2, we infer that

~  Tthot -

lim 8,E(t, qp’ (1) = BE(t, q(t))

jooo

—~ ~

but we can not conclude directly that & = w * —lim oo (0.7 0 E (-, qg"h”) is equal to 0;,£(+, q)
ae. in 0,7



h

T nt‘
J

t
n'
So we choose the subsequence (qR ’

<t>)jel]N in such a way that

Tl

Tim 0E(t qn’ (1)) = Eap(t)

J—+00

with Eqp € Ll([O,T]) given by

Vs € [0, T]: &upl(s) = limsup E?tg(s, qg“h”(s)).

n——+0oo

Then, &up(t) = B,E(t, qt)) forall £ € [0,T] and £,(t) < Eaup(t) forae. tin [0, T]. Thus

/gsup 1ds = £(0, ¢(0 /at s, q(s)) ds < &(t, q(t)) + Varp(g; 0,1
< (t) + 6(t) < (0, q(0) /5* ds < £(0, 4(0) /gsup



Hence all the inequalities are in fact equalities, i.e.

0(t) = Varp(q:0,t) Yt e [0,T), & =&uwp = 0E(-,q) ae in[0,T]

and

atg('v qg’hn) — atg('a Q) Strongly In Ll([ov T])

Remark.

This construction of u(t) does not ensure the measurability of the
mapping t — wu(t) but we still have an uniform estimate of ||u(t)||o on [0, T].



Theorem 2 (Convergence of the approximate solutions).
There exist a subsequence {(7,,, h,,)}, N tending to (0,0) and an energetic solution
q=(u,z):0,T] — Q of (S) and (E) such that ¢(0) = qq,

|w(t)|| £ is uniformly bounded on |0, T,
ze L>([0,T; H(Q; Z)) N BV ([0, T); LY Z)),

and, for all t € [0, T, the following convergences hold:

2 () = 2(t) weakly in 2,

Et,ay ™ (1)) — E(t,q(1)),
Varp(q;{”’h”; 0,t) — Varp(q;0,t),

~ —~

@5(-,(];{“%) — O&(+, q) strongly in  L'([0,T7).
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