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Mathematial formulationWe onsider a body with referene on�guration Ω ⊂ R
d .

◮ u : Ω → R
d : the phase transformation and deformations,

◮ z : Ω → R
d×ddev := {z ∈ R

d×dsym : tr(z) = 0}: the internal variable,Notations
◮ R

d×dsym := {z ∈ Rd×d : z = zT}

◮ a : b := tr(ab) = aij bij : the salar produt,
◮ |a|2 := a : a = aijaij : the norm,

◮ (·)T : the transpose of the matrix (·),
◮ tr(·): the trae of the matrix (·).



The potential energy has the following form:
E(t,u, z) :=

Z

Ω

W (e(u), z , θ) +
σ2 |∇z |2 dx − 〈l(t),u〉,Notations

◮ The stored energy density is de�ned byW (e(u), z , θ) :=
12 (e(u) − z) : C(θ) : (e(u) − z) + h(z , θ),

◮ e(u) := ∇u + ∇uT : the linearized deformation satis�es the Korn'sinequality, i.e.
Z

Ω
|e(u)|2 dx ≥ Korn‖u‖2W1,2 , Korn > 0,

◮ C(θ) : R
d×dsym → R

d×dsym : the elastiity tensor (symmetri positive linear map)that depends on the temperature θ and is de�ned as follows:
C(θ) : a := λ(θ)tr(a) + 2µ(θ)a,

◮ λ(θ), µ(θ): the Lamé oe�ients depending on the temperature θ.
◮ h(z , θ) := 1(θ)|z |2 + 2(θ)

p

δ2 + |z |2 +
`

|z |2 − 3(θ)
´3
+
,

◮ σ > 0: measures some nonloal interation e�et for z ,



◮ l(t): the applied mehanial loading is de�ned as follows:
〈l(t),u〉 =

Z

Ω

fappl(t, x) · u(x) dx +

Z

∂Ω

gappl(t, x) · u(x) dγ.The dissipation potential is de�ned by
R(ż) :=

Z

Ω

ρ|ż | dx = ρ‖ż‖L1(Ω), ρ > 0.Remark 1.
◮ We do not solve an assoiated heat equation,
◮ This approximation used in engineering models:Assumptions:

◮ the hanges of the loading are slow,
◮ the body is small in at least one diretion,

⇒ exess heat an be transported very fast to the surfae.



We speify now the set of admissible deformations F by hoosing a suitableSobolev spae W 1,2(Ω; Rd ) and by desribing Dirihlet data at the part ΓDir ofthe boundary ∂Ω

F := {u ∈ W 1,2(Ω; Rd ) : u|ΓDir = 0},and the internal variable z live in Z := L1(Ω; R
d×ddev ).



We speify now the set of admissible deformations F by hoosing a suitableSobolev spae W 1,2(Ω; Rd ) and by desribing Dirihlet data at the part ΓDir ofthe boundary ∂Ω

F := {u ∈ W 1,2(Ω; Rd ) : u|ΓDir = 0},and the internal variable z live in Z := L1(Ω; R
d×ddev ).Assumptions: Initial data (u(0), z(0)) = (u0, z0) ∈ F × Z are given.



We speify now the set of admissible deformations F by hoosing a suitableSobolev spae W 1,2(Ω; Rd ) and by desribing Dirihlet data at the part ΓDir ofthe boundary ∂Ω

F := {u ∈ W 1,2(Ω; Rd ) : u|ΓDir = 0},and the internal variable z live in Z := L1(Ω; R
d×ddev ).Assumptions: Initial data (u(0), z(0)) = (u0, z0) ∈ F × Z are given.Energeti formulation:A funtion (u, z) : [0,T ] → F ×Z is an energeti solution of therate-independent problem assoiated with E and R if for all t ∈ [0,T ], theglobal stability ondition (S) and the global energy onservation (E ) aresatis�ed, i.e.

(S) ∀(ū, z̄) ∈ F × Z : E(t,u(t), z(t)) ≤ E(t, ū, z̄) + R(z̄ − z(t)),
(E ) E(t,u(t), z(t)) +

Z t0 R(ż(s)) ds
= E(0, u0, z0) +

Z t0 ∂sE(s,u(s), z(s)) ds.
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|∂tE(t1, u, z) − ∂tE(t2, u, z)|
≤

Z

Ω

|∂θW (e(u), z , θappl(t1)) − ∂θW (e(u), z , θappl(t2))| dx‖θ̇appl‖L∞
+

Z

Ω

|∂θW (e(u), z , θappl)| dx‖θ̇appl(t1) − θ̇appl(t2)‖L∞
+‖l̇(t1) − l̇(t2)‖(W1,2)′‖u‖W1,2 .The mean-value theorem, Lemma 1 and Lemma 2 ⇒ (3). Conditions



Goal: the energeti formulation (S) and (E ) has at least one solution.



Goal: the energeti formulation (S) and (E ) has at least one solution.Remark 2. Existene theory for (S) and (E ), based on the inrementalminimization problem, was developed in [Mainik/Mielke'05, Mielke'05,Franfort/Mielke'06℄



Goal: the energeti formulation (S) and (E ) has at least one solution.Remark 2. Existene theory for (S) and (E ), based on the inrementalminimization problem, was developed in [Mainik/Mielke'05, Mielke'05,Franfort/Mielke'06℄Notations
◮ Argmin{ϕ(u) : u ∈ H}: the set of all minimizers of a funtional

ϕ : H → R∞,
◮ Π = {0 = t < t1 < . . . < tN = T}: a given partition.



Goal: the energeti formulation (S) and (E ) has at least one solution.Remark 2. Existene theory for (S) and (E ), based on the inrementalminimization problem, was developed in [Mainik/Mielke'05, Mielke'05,Franfort/Mielke'06℄Notations
◮ Argmin{ϕ(u) : u ∈ H}: the set of all minimizers of a funtional

ϕ : H → R∞,
◮ Π = {0 = t < t1 < . . . < tN = T}: a given partition.We de�ne the inremental problem as follows:
(IP)Π

( for k = 1, . . . , d �nd
(uk , zk ) ∈ Argmin{E(tk , eu,ez) + R(ez − zk ) : (eu,ez) ∈ F ×Z}.



Goal: the energeti formulation (S) and (E ) has at least one solution.Remark 2. Existene theory for (S) and (E ), based on the inrementalminimization problem, was developed in [Mainik/Mielke'05, Mielke'05,Franfort/Mielke'06℄Notations
◮ Argmin{ϕ(u) : u ∈ H}: the set of all minimizers of a funtional

ϕ : H → R∞,
◮ Π = {0 = t < t1 < . . . < tN = T}: a given partition.We de�ne the inremental problem as follows:
(IP)Π

( for k = 1, . . . , d �nd
(uk , zk ) ∈ Argmin{E(tk , eu,ez) + R(ez − zk ) : (eu,ez) ∈ F ×Z}.

◮ (IP)Π has always solutions,



Goal: the energeti formulation (S) and (E ) has at least one solution.Remark 2. Existene theory for (S) and (E ), based on the inrementalminimization problem, was developed in [Mainik/Mielke'05, Mielke'05,Franfort/Mielke'06℄Notations
◮ Argmin{ϕ(u) : u ∈ H}: the set of all minimizers of a funtional

ϕ : H → R∞,
◮ Π = {0 = t < t1 < . . . < tN = T}: a given partition.We de�ne the inremental problem as follows:
(IP)Π

( for k = 1, . . . , d �nd
(uk , zk ) ∈ Argmin{E(tk , eu,ez) + R(ez − zk ) : (eu,ez) ∈ F ×Z}.

◮ (IP)Π has always solutions,
◮ we are able to de�ne the pieewise onstant interpolant

(uΠ, zΠ) : [0,T ] → F ×Z with (uΠ(t), zΠ(t)) = (uj , zj ) for t ∈ [tj−1, tj )for j = 0, . . . ,N.



Goal: the energeti formulation (S) and (E ) has at least one solution.Remark 2. Existene theory for (S) and (E ), based on the inrementalminimization problem, was developed in [Mainik/Mielke'05, Mielke'05,Franfort/Mielke'06℄Notations
◮ Argmin{ϕ(u) : u ∈ H}: the set of all minimizers of a funtional

ϕ : H → R∞,
◮ Π = {0 = t < t1 < . . . < tN = T}: a given partition.We de�ne the inremental problem as follows:
(IP)Π

( for k = 1, . . . , d �nd
(uk , zk ) ∈ Argmin{E(tk , eu,ez) + R(ez − zk ) : (eu,ez) ∈ F ×Z}.

◮ (IP)Π has always solutions,
◮ we are able to de�ne the pieewise onstant interpolant

(uΠ, zΠ) : [0,T ] → F ×Z with (uΠ(t), zΠ(t)) = (uj , zj ) for t ∈ [tj−1, tj )for j = 0, . . . ,N.Assumption: (u0, z0) ∈ F × Z are given stable initial datum, i.e. (u0, z0)satis�es the global stability ondition (S) at t = 0.



Theorem 1. Assume that E and R satisfy the assumptions from above. Then,for eah stable (u(0), z(0)) = (u0, z0), there exists an energeti solution
(u, z) : [0,T ] → F ×Z suh thatu ∈ L∞([0,T ];W 1,2(Ω; Rd )),z ∈ BV ([0,T ]; L1(Ω; Rd×ddev )).



Theorem 1. Assume that E and R satisfy the assumptions from above. Then,for eah stable (u(0), z(0)) = (u0, z0), there exists an energeti solution
(u, z) : [0,T ] → F ×Z suh thatu ∈ L∞([0,T ];W 1,2(Ω; Rd )),z ∈ BV ([0,T ]; L1(Ω; Rd×ddev )).Moreover, let Πk = {0 = tk0 < tk1 < . . . < tkNk = T}, k ∈ N, be a sequene ofpartitions with �neness ∆(Πk ) := max{tkj − tkj−1 j = 1, . . . ,Nk} tends to zeroand (uΠk , zΠk ) : [0,T ] → F ×Z be pieewise onstant interpolants of thesolution of the inremental problem (IP)Πk , then there exists a subsequene
(ūn, z̄n) := (uΠkn , zΠkn ) suh that for all t ∈ [0,T ] the following holdsz̄n(t) → z(t) in Z,

E(t, ūn(t), z̄n(t)) → E(t,u(t), z(t)),
Z t0 R( ˙̄zn(s)) ds → Z t0 R(ż(s)) ds,there exists a subsequene (Ntl )l∈N suh thatūNtl (t) → u(t) in F for l → 0.



Conlusion
◮ Uniqueness result,
◮ Existene result for the same problem with an assoiated heat equation.



Assumptions on θappl and l imply that
‖l̇(t1) − l̇(t2)‖(W1,2)′ + ‖θ̇appl(t1) − θ̇appl(t2)‖L∞ ≤ ω(|t1 − t2|),where ω : [0, +∞) → [0, +∞) is a modulus of ontinuity with ω(0) = 0.
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