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Mathematical formulation

We consider a body with reference configuration Q c RY.

» u:Q — R?: the phase transformation and deformations,

> 2:Q - R = {z € R tr(z) = 0}: the internal variable,

dev
Notations
> ngﬁd ={zeRI¥d:2z=2T}
> a:b:=tr(ab) = ajb;: the scalar product,
> |a® := a:a = aja;: the norm,

> (-)T: the transpose of the matrix (-),

> tr(-): the trace of the matrix (-).



The potential energy has the following form:
E(t,u,z) = /Q W(e(v),2,0) + 2| V2l dx = (I(¢), u),
Notations
» The stored energy density is defined by

Wi(e(u),z0) := %(e(u) —2z):C(0) : (e(u) — z) + h(z,0),

» e(u) ;= Vu+ VuT: the linearized deformation satisfies the Korn's
inequality, i.e.

/‘e(u)|2 dx Z CKorn”u”%/Vl,zy CKorn > 07
Q

> C(0) : ]ngfnd — ]ngfnd: the elasticity tensor (symmetric positive linear map)

that depends on the temperature 6 and is defined as follows:
C(0) : a:= X(0)tr(a) + 2u(0)a,
> X(0), (0): the Lamé coefficients depending on the temperature 6.

> h(z,0) = c1(0)|z2 + 2(0) /3 + [z + (2> — c3(0)).

» o > 0: measures some nonlocal interaction effect for z,



» [(t): the applied mechanical loading is defined as follows:

(1)) = [ () w0 b+ [ gupn(tx) - ulx) .

The dissipation potential is defined by

R(2) = [ plzlde = pllllscar, >0
Q
Remark 1.
» We do not solve an associated heat equation,

» This approximation used in engineering models:

Assumptions:

> the changes of the loading are slow,

> the body is small in at least one direction,

= excess heat can be transported very fast to the surface.



We specify now the set of admissible deformations F by choosing a suitable
Sobolev space W*2(Q; R?) and by describing Dirichlet data at the part ' of
the boundary 9Q

Fi={ue W*(QR): ury, =0},

and the internal variable z live in Z := [*(Q; RZX9).

dev
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We specify now the set of admissible deformations F by choosing a suitable
Sobolev space W*2(Q; R?) and by describing Dirichlet data at the part ' of
the boundary 9Q

Fi={ue WY(QRY): ury, =0},
and the internal variable z live in Z := L*(Q; R3X?).
Assumptions: Initial data (u(0),z(0)) = (uo,z0) € F x Z are given.

Energetic formulation:

A function (u,z) : [0, T] — F x Z is an energetic solution of the
rate-independent problem associated with £ and R if for all t € [0, T], the
global stability condition (S) and the global energy conservation (E) are
satisfied, i.e.

(S) Y(b,z) € Fx Z: E(t,u(t),z(t)) < E(t,0,2) + R(z — z(t)),
(E) &(t,u(t),z / R(z
= &(0, uo, 20) + / 0sE(s, u(s), z(s)) ds



A priori estimates
We clarify now the assumptions and we establish some preliminary results that
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A priori estimates
We clarify now the assumptions and we establish some preliminary results that
we will use in the next section.

Lemma 1. Assume ¢;(0), j=1,...,3, belong to C*([0, T]). Then there exist
ch, Jj = 1,2, such that for all j = 1,2,

)W (e(u), 2,0)| < et (W(e(u),2,0) + ")

Idea of the proof. These estimates result from the application of Young's
inequality.
Lemma 2. Under the assumptions of Lemma 1, for all 01 € [Omin, Omax], we have

W(e(u),z,01) + co' < exp(cr” |01 — 0])(W(e(u),z,0) + ¢ ).
Idea of the proof. Estimates obtained in the Lemma 1 for j = 1 and then the
application of classical Gronwall's lemma yield the desired result.
Remark 1. There exist ¢ > 0 and C > 0 such that

W (e(u),z,0) > cle(u)® - C.
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Existence result

Assumptions: The temperature 0,5, and the external loading / with

> Oappl € CH([0, T1; L°(; [Ormin, Omax])).
» e CY([0, T]; WH2(Q; RY)").

Proposition 1. Under the above assumptions the following holds:

1. If for some (t,u,z) € [0, T] X F x Z we have &(t, u,z) < 400, then
E(+, u, z) are bounded in C*([0, T]) and

0eE(t,u,z) = /Q89W(e(u),zﬂapm(t))éapm(t) dx — (I(t),u). (1)

2. There exist two constants c¢ > 0 and ¢f > 0 such that £(t, u,z) < +o0
implies
|0:E(t,u, 2)| < cf (E(t,u,2) + c5 ). (2)
3. For each strictly positive £ and E € R there exists 6 such that
E(t1,u,z) < E and |t1 — t2| < & imply

|0:E(t1, u, z) — 0:E(t2, u,z)| < €. (3)



Proof:
1. The Korn's inequality and Remark 1 = 3¢ > 0, C > 0 such that
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Proof:
1. The Korn's inequality and Remark 1 = 3¢ > 0, C > 0 such that

E(t,u,z) > collull3yr2 — Co.
For all h# 0 and t + h € [0, T] the mean-value theorem provides that

%(5(1: 4 hyu,z) — E(tu,2)) = DE(t + sh, u, 2)

= / Op W (e(u), 2, Oappt )appl (£ + sh) dx — (I(t + h) — I(t), u), s € (0,1).
Q

The Lebegue's theorem = the differentiability of £(t, u, z) (0:£(t, u, 2)).
(E(t,1,2) < +00 = 0 < W(e(u), 2, bap(t)) € L*(Q)

2. Lemma 1 for j = 1 and Cauchy-Schwarz's inequality = (2).

3. Observe now that
|8t€(t17 u, Z) - atg(t27 u, Z)|

< /lae W(e(u), 2, Bappi(t1)) — o W (e(u), 2, Gappi(2))| dx|[Bappi| o
Q

+ / 106 W (1), 2, Bapp)| dx[Gappt (1) — Baper(£2) 1
Q

Hli(tr) = () lwaay llullwa 2.

The mean-value theorem, Lemma 1 and Lemma 2 = (3).
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Remark 2. Existence theory for (S) and (E), based on the incremental
minimization problem, was developed in [Mainik/Mielke'05, Mielke'05,
Francfort/Mielke'06]

Notations

> Argmin{p(u) : u € H}: the set of all minimizers of a functional
(Vo) H — R,

» N={0=t<t <...<ty= T}: agiven partition.

We define the incremental problem as follows:

(IP) for k=1,...,d find
f (uk, zi) € Argmin{E(te, 1, Z) + R(Z — z) : (4,%) € F x Z}.

> (IP)n has always solutions,

» we are able to define the piecewise constant interpolant
(u™, 2" 1 [0, T] = F x Z with (u"(t), 2" (t)) = (uj, z) for t € [tj_1, ;)
forj=0,...,N.

Assumption: (uo,20) € F x Z are given stable initial datum, i.e. (uo, z0)
satisfies the global stability condition (S) at t = 0.



Theorem 1. Assume that £ and R satisfy the assumptions from above. Then,
for each stable (u(0), z(0)) = (uo, z0), there exists an energetic solution
(u,z) : [0, T] = F x Z such that
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Theorem 1. Assume that £ and R satisfy the assumptions from above. Then,
for each stable (u(0), z(0)) = (uo, z0), there exists an energetic solution
(u,z) : [0, T] = F x Z such that

ue L>([0, T]; Wh2(Q;RY)),
z € BV([0, T]; L*(Q; RIX?Y).

dev
Moreover, let M, = {0 = t(l)‘ <th<.. . < t,’(,k =T}, k €N, be a sequence of
partitions with fineness A(M) := max{t}‘ — t}‘_lj =1,..., N} tends to zero
and (u", z"k) : [0, T] — F x Z be piecewise constant interpolants of the
solution of the incremental problem (/P)n,, then there exists a subsequence
(Tin, Za) := (u™*n, z"*n ) such that for all t € [0, T] the following holds

Z,,(t) — Z( ) in Z,
t Un(t) Zn( )) _’g(t7 u(t),Z(t))7

/ R(Za(s)) ds — /OtR(é(s)) ds

there exists a subsequence (N/)jen such that
DN;(t) — u(t) in F for | — 0.



Conclusion

» Uniqueness result,

» Existence result for the same problem with an associated heat equation.



Assumptions on G.pp and [ imply that

1(t2) = 1(t2) | wa2y + [Gappi(t2) = Oappi(t2) e < w(|ts = ta]),

where w : [0, +00) — [0, 4+00) is @ modulus of continuity with w(0) = 0.
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