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4";}‘ Introduction

The motivation to study the problem: prove a “stability result” in a much more
general situation than in the work of J.A.C. Martins et al.

In this work: we consider the variational inclusion to which a standard theoritical
results can be applied to prove existence and uniqueness of a solution and a priori
estimates lead to the convergence result.

Previous works:
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4";}‘ Mathematical formulation

We consider the variational inclusion

Mg+ Aq + OR(q) 3 I(t), (1)
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4";}‘ Mathematical formulation

We consider the variational inclusion

Mg+ Aq + OR(q) 3 I(t), (1)

m

> Mass matrix M = < 0 g
m = m* € Lin(Hy, H;) and m~! € Lin(H, Hy)

with

> q:=(u,z) € H=Hy x Hy

. - a a
> Strictly positive operator A := e
a1 a»

> Exterior loading /(t) := ( ZES )

> Dissipation functional R : H — [0, oq]

» convex, lower-semicontinuous, homogeneous of degree 1
» the subdifferential is defined by

OR(v) = {0 € H*|Yw € H: R(w) > R(v) + (o, w — v)}
» R(q) = R(2)
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4";}‘ Mathematical formulation

The variational inequality
Yv e H: (Mg+Aq—I(t),v—g) +R(v) —R(q) > 0. (2)
The quasi-static (Q.S.) system (M = 0 in (1))
Ag + 9R(q) > I(t). 3)
The variational inequality
Vv e H: (Ag—1,v—g) +R(¥)—R(g) > 0. (4)
Energetic solution: ¢ = (v,z) : [0, T] = V
(S) Va e H: &(t,a(1),a(t)) < £(t,G,9) +R(G — a(t)),

t,G,q) + /R a(s (0,0, Go) — (I(s), a).-
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4";}‘ Mathematical formulation

The governing dynamic system

mt/2i—v =0,
m1/2|'/+311U—|—3122: fu(t), (5)
z— 8R*(—321u — 3222) S fz(t),

with initial conditions

(4(0), q(0)) = (i(0), u(0), 2(0)) = (in, to, 20) = (o, qo) € Hu x V. (6)
The quasi-static system

a1l + a1z = f,(t), (7)
z— 8R*(—321T1 — 3222) S fz(t),

with initial conditions

Ql
—
o
N—r
Il
—~~
]
—
o
N—r
NI

(0)) = (do,20) = o € V. (8)
Notations:

> R*(-) is the Legendre transform of ﬁ()
> V = V1 X V2
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4";}‘ Existence and uniqueness results

Existence and uniqueness of solution to

Vte[0,T]: w(t) e D(A) :={w e Y|Aw # 0}, (9a)
w(t) + Aw(t) > g(t), t >0, (9b)
w(0) = wyp. (9¢)

comes from

Proposition 1. Assume that A is a maximal monotone operator in the Hilbert
space Y, g € WHL([0, T); Y) and wo € D(A). Then there exists a unique
solution w € W1>°([0, T]; Y) of (9).

Notations:

Zurich, 18 June 2007 10 / 23



4";}‘ Existence and uniqueness results

Existence and uniqueness of solution to

Vte[0,T]: w(t) e D(A) :={w e Y|Aw # 0}, (9a)
w(t) + Aw(t) > g(t), t >0, (9b)
w(0) = wyp. (9¢)

comes from

Proposition 1. Assume that A is a maximal monotone operator in the Hilbert
space Y, g € WHL([0, T); Y) and wo € D(A). Then there exists a unique
solution w € W1>°([0, T]; Y) of (9).

Notations:

> w = (51/2U, v, 3;21/26) with 2 := (311 — 31232_21321), e .= fz — (321u + 3222)

Zurich, 18 June 2007 10 / 23



4";}‘ Existence and uniqueness results

Existence and uniqueness of solution to

Vte[0,T]: w(t) e D(A) :={w e Y|Aw # 0}, (9a)
w(t) + Aw(t) > g(t), t >0, (9b)
w(0) = wyp. (9¢)

comes from

Proposition 1. Assume that A is a maximal monotone operator in the Hilbert

space Y, g € WHL([0, T); Y) and wo € D(A). Then there exists a unique
solution w € W1>°([0, T]; Y) of (9).

Notations:

> w = (32u, v, a;QI/Qe) with 3 := (a11 — 212855 a21), € := f, — (ap1u + axz)
0 /2 p1/2 0

> A= | m1/232 0 —m~12a5a2,,?

0 ay,anm 7 a2OR*(a})’ ()

Zurich, 18 June 2007 10 / 23



4";}‘ Existence and uniqueness results

Existence and uniqueness of solution to

Vte[0,T]: w(t) e D(A) :={w e Y|Aw # 0}, (9a)
w(t) + Aw(t) > g(t), t >0, (9b)
w(0) = wyp. (9¢)

comes from

Proposition 1. Assume that A is a maximal monotone operator in the Hilbert

space Y, g € WHL([0, T); Y) and wo € D(A). Then there exists a unique
solution w € W1>°([0, T]; Y) of (9).

Notations:

> w = (51/2U, v, 3;21/26) with 2 := (311 — 31232_21321), e .= fz — (321u + 3222)

0 —3/2m—1/2 0
> A= m2E 0 —m 1 apa,,"?
0 a5 %am V2 &foR (a47())
0
> g = mY2(f(t) + anay, (1))
az_zlfz(t)

Zurich, 18 June 2007 10 / 23



4";}‘ Existence and uniqueness results

Corollary 1. Assume that | € W'([0, T]; H) and (io, qo) € H1 x V satisfy
2(0) € OR(0) + as1ug + az2zo. Then there exists a unique solution

q € W1e2([0, T]; V) that solves (5) and (6). This solution additionally satisfies
Mg € W?°2([0, T]; H).

The energy associated to (3) (Q.S.) is given by

(‘:(t, (_]) = <AEI, fl) - <I(t)v (_7> (10)

Lemma 1. Assume that | € C'([0, T]; V*) and o € V satisfying

OR(0) > —Ago + /(0). Then, the variational inequality (4) and hence also (7)-(8)
have a unique solution g € C*?([0, T]; V).

Idea of the proof.

> E(t,-) € C3(V) is uniformly convex
> R is convex, lower-semicontinuous, homogeneous of degree 1

> Use time dicretization and solve a vartiational inequality in each time step
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4";}‘ A priori estimates for the dynamic problem

Notations:

> gl = v/ (Ag.q). ]l == /(I AT, |qlum = [|M*/?q||n
> The bilinear form B:V — H— V* = R:
Bla,q, 1] := |gliy + llg — A7H|I> + |12
which verifies that
> Bla(t), 4(t), I(£)] = 2&(t, (1), 4(t)) + 2||/(1)]2
> gz (llal® + g2 + I712) < Bla, a1 < g(llall* + lali + I1/11%)

with g == %g ~ 1.618 is the golden number.

Using (o, g) > 0 for all o € OR(4)

Le(t.q(1).a(0)) < ~(0(1), (1),
Then, we deduce that
%B[q(t), a(t), (0] < [[1(1)]1-28v2\/Bla(t), a(t), I(1)].
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4";}‘ A priori estimates for the dynamic problem

Dividing by \/Bl[q(t), q(t), /(t)] and integrating both sides, for 0 < s < t < T:

VBIa(®), 4(0) 0] < v/Bla(s), (), 1(9)] + &v/2 / (7)1 dr,

which implies that

(la(OI2+a(®)3) "> < g2 (Ia()I2+a() 3 +11(0)12)? + g2V2 / (7).

Similarly, using (13) we obtain a priori bounds on the energy, namely

£(t,q(1), (1)) < (v/E(0, 9(0), 4(0)) + [1(O)] +g/ i)l ) =) 2.
Proposition 2. Let h,hh € WH([0, T]; V*) and q1 and g, be solutions of (1)

with right-hand sides |, and |, respectively, then w = g, — q, satisfies for all
t € [0, T] the following estimate

Blw(t), w(t), h(t)—h(t)]*? < B[w(0), w(0), h(0)—h(0)]*/?
+gV2 /0 I (r) = b(7)||.dr.

(11)
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4";}‘ A priori estimates for the dynamic problem

For arbitrary functions y € L>([0, T]; Y), h >0, t € [0, T—h]
1
ony(t) = 7 (v(t+ h) = y(2)).
For all p € [1,00] and y € WP([0, T]; Y) we have

108y leo o, 71 v) < ¥ IlLe (o, T3 v)-
Taking g1(t) = q(t+h) and g2(t) = q(t) in Proposition 1, for all 0 < s < ¢t

BLna(t), 64a(t), 54 (D] <B[Sna(s), 6n(s), 54/(5)]
g2 / G
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> The additional assumptions iy € V4, /(0) € OR(0) + Ag(0) do not help.
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4";}‘ A priori estimates for the dynamic problem

Assumption:

Ip>031e WH([—p,0]; V*) Iq = (u,z) € WH([—p,0]; V) :

ue W([-p,0]; H1), (1) is satisfied, q(0) = qo, (0) = ipo.

= The stability condition /(0) € dR(0) + Ago holds
= The following limits for h ™\, 0 exist:
onq(—h) — Qin V, Spiu(—h) — Uin Hy, pl(—h) — Lin V*

Remark 1. There are two cases where this condition can be easily satisfied. The
first one will be essential in the next section.

Zurich, 18 June 2007 16 / 23



4";}‘ A priori estimates for the dynamic problem

Assumption:

Ip>031e WH([—p,0]; V*) Iq = (u,z) € WH([—p,0]; V) :

ue W([-p,0]; H1), (1) is satisfied, q(0) = qo, (0) = ipo.

= The stability condition /(0) € dR(0) + Ago holds
= The following limits for h ™\, 0 exist:
onq(—h) — Qin V, Spiu(—h) — Uin Hy, pl(—h) — Lin V*

Remark 1. There are two cases where this condition can be easily satisfied. The
first one will be essential in the next section.

> if g = 0, then we may choose q(t) = qo for all t € [—p,0] and let /(t) = Aqo.
Then @ =0, U=0, L=0.

Zurich, 18 June 2007 16 / 23



4";}‘ A priori estimates for the dynamic problem

Assumption:

Ip>031e WH([—p,0]; V*) Iq = (u,z) € WH([—p,0]; V) :

2 s ' _ (13)
u e W=>([—p,0]; Hi), (1) is satisfied, g(0) = qo, u(0) = tpo.

= The stability condition /(0) € dR(0) + Ago holds
= The following limits for h ™\, 0 exist:
onq(—h) — Qin V, Spiu(—h) — Uin Hy, pl(—h) — Lin V*
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first one will be essential in the next section.

> if g = 0, then we may choose q(t) = qo for all t € [—p,0] and let /(t) = Aqo.
Then @ =0, U=0, L=0.

> If g € Vi and if the block structure is present, we may choose
q(t) = qo + t(i,0)" and let I(t) = I(0) + tA(in,0)".
Then Q = (ﬂo,O)T, U= 0, and L = A(ﬂo,O)T.
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4";}‘ A priori estimates for the dynamic problem

Theorem 1. Let | € W*([0, T]; V*) and (qo, in) € V x Vi be given such that
condition (13) holds. Then, the unique solution q of (5) and (6) satisfies the a
priori estimate

Bla(), (i(1), 0) (1)} 2
< BQ,(0,0)", []'/2 + gv2(|| L-1(0)]. + /0 ()] ).

Idea of the proof. Concatenate the artifical solution g € W°°([—p,0]; V) and the
given solution g € W1°°([0, T]; V) as well as the loadings.
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Goal: Compare the solution g of the kinetic equation
Mg+ 0R(q) + Aq > I(t), q(0) =qo, ©(0)= io,
with the corresponding solution g of the quasistatic equation
OR(q) + Ag > I(t), (0) = qo. (15)

Proposition 3. Assume that / € W([0, T]; V*), (Mgo,q0) € H x V, Go € V.
Then we have

. 2 — .2 —
la(t)[y + lla(t) — a(®)lI” < ||y, + llgo — Goll?

) t (16)
—|—2esssup|q(5)|M/ (s)[ pds.
s€[0,T] 0

Idea of the proof.

> Add variational inequalities (v = g and ¥ = g resp. in (2) and (4))

> Use Cauchy-Schwarz's inequality.
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4":}‘ Rate-independent limit

e

Very slow dynamics: Rescale the time as t = ¢t (loading given /(t) = /(ct))
We consider now the problem (replace M by £2M)

Mg + Ag. + OR(4.) 3 I(t), q(0) = qo, M@.(0) = Mgo.  (17)

Zurich, 18 June 2007 20 / 23



4":}‘ Rate-independent limit

e

Very slow dynamics: Rescale the time as t = ¢t (loading given /(t) = /(ct))
We consider now the problem (replace M by £2M)

Mg + Ag. + OR(4.) 3 I(t), q(0) = qo, M@.(0) = Mgo.  (17)

> Existence and uniqueness follows from Corrollary 1.

Zurich, 18 June 2007 20 / 23



jn;,»

Rate-independent limit

Very slow dynamics: Rescale the time as t = ¢t (loading given /(t) = /(ct))
We consider now the problem (replace M by £2M)

Mg + Ag. + OR(4.) 3 I(t), q(0) = qo, M@.(0) = Mgo.  (17)

> Existence and uniqueness follows from Corrollary 1.

> A priori estimates are also valid with

|l = IM2allu, laly = lalois = elal -
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4";}‘ Rate-independent limit

Theorem 2. Let the above assumptions on I\~ﬂ A, R hold. Assume

I € W?([0, T], V*) and Go € V with /(0) € OR(0) + AGo. Let g be the unique
solution (15), and g the unique solution of (17) for arbitrary gqo € V and iy € H,
satisfying /(0) € OR(0) + Aqo. Then

(21a(8) % + lla=(0)—-a()%)"* < (%]aol% + lldo—70]12) " + V/=CT(1),
with C(0=g*V2p [ i(s).as(1HO). + [ i(s)].ds). = sup o]

lvi=1
Idea of the proof.
> Introduce special dynamic solution G. defined by G.(0) = go. -(0) = 0.
> Use Proposition 3. to obtain the difference between g. and g..

> Use Proposition 2. to obtain the difference between g and g..
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Application: elastic-plastic systems with hardening

Notations and assumptions:
> Ce ]ngfnd and B € R, are a symmetric positive definite maps

> the dissipation R(z) := [, ¢(x,z(x)) dx with ¢ € C°(Q x R™) such that
Rilv] < p(x,v) < R2|v| for all (x,v) € Q x R™ with o(x,:) : R™ — [0,00) is
1-homogeneous and convex.

Very slow time (t = ct): the elastic-plastic system with hardening can be written
as

{€2m[l€ — div(C:(E(ue) = 2.)) = let(1), (18)
—C:(E(ue) — z:) + Bz. + 0R(2.) 3 0,
with the Dirichlet boundary conditions and initial conditions (ug, ig, o).
> For quasi-static problem take ¢ = 0.
> Existence and uniqueness (see Showalter and Shi '99).
> The Theorem 2. leads to (q:=(u,z))
(7120 + la-()=a()]1?) " < (il + la0—o]?) ' + VECT(E).
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