

On the convergence for kinetic variational inequality to quasi-static variational inequality with application to elastic-plastic systems with hardening

Adrien Petrov

Weierstraß-Institute für Angewandte Analysis und Stochastik Mohrenstrasse 39, 10117 Berlin, Germany

joint work with Alexander Mielke

DFG Research Center MATHEON Mathematics for key technologies

- Introduction
- Mathematical formulation
- 3 Existence and uniqueness results
- 4 A priori estimates for the dynamic problem
- Rate-independent limit
- 6 Application: elastic-plastic systems with hardening

Zurich, 18 June 2007

- Introduction
- Mathematical formulation
- Existence and uniqueness results
- 4 A priori estimates for the dynamic problem
- Rate-independent limit
- 6 Application: elastic-plastic systems with hardening

<ロ > < @ > < 重 > < 重 > のQ @

In this work: we consider the variational inclusion to which a standard theoritical results can be applied to prove existence and uniqueness of a solution and *a priori* estimates lead to the convergence result.

Previous works:

4□ > 4□ > 4□ > 4□ > 4□ > 4□

In this work: we consider the variational inclusion to which a standard theoritical results can be applied to prove existence and uniqueness of a solution and *a priori* estimates lead to the convergence result.

Previous works

▶ J.A.C. Martins, F.M.F. Simões, A. Pinto da Costa, I. Coelho '04

In this work: we consider the variational inclusion to which a standard theoritical results can be applied to prove existence and uniqueness of a solution and *a priori* estimates lead to the convergence result.

Previous works

- ▶ J.A.C. Martins, F.M.F. Simões, A. Pinto da Costa, I. Coelho '04
- ▶ R.E. Showalter, P. Shi '98

In this work: we consider the variational inclusion to which a standard theoritical results can be applied to prove existence and uniqueness of a solution and *a priori* estimates lead to the convergence result.

Previous works

- ▶ J.A.C. Martins, F.M.F. Simões, A. Pinto da Costa, I. Coelho '04
- ▷ R.E. Showalter, P. Shi '98
- ▶ J.A.C. Martins, M.D.P. Monteiro Margues, A.P. '05, '07

In this work: we consider the variational inclusion to which a standard theoritical results can be applied to prove existence and uniqueness of a solution and *a priori* estimates lead to the convergence result.

Previous works

- ▶ J.A.C. Martins, F.M.F. Simões, A. Pinto da Costa, I. Coelho '04
- ▷ R.E. Showalter, P. Shi '98
- ▶ J.A.C. Martins, M.D.P. Monteiro Marques, A.P. '05, '07
- ▶ A. Mielke, F. Theil '05

Zurich, 18 June 2007

In this work: we consider the variational inclusion to which a standard theoritical results can be applied to prove existence and uniqueness of a solution and *a priori* estimates lead to the convergence result.

Previous works

- ▶ J.A.C. Martins, F.M.F. Simões, A. Pinto da Costa, I. Coelho '04
- ▷ R.E. Showalter, P. Shi '98
- ▶ J.A.C. Martins, M.D.P. Monteiro Marques, A.P. '05, '07
- ▶ A. Mielke, F. Theil '05
- A Mielke '05

- Introduction
- Mathematical formulation
- Existence and uniqueness results
- A priori estimates for the dynamic problem
- Rate-independent limi:
- 6 Application: elastic-plastic systems with hardening

Zurich, 18 June 2007

$$M\ddot{q} + Aq + \partial \mathcal{R}(\dot{q}) \ni I(t),$$
 (1)

$$M\ddot{q} + Aq + \partial \mathcal{R}(\dot{q}) \ni I(t),$$
 (1)

$$M\ddot{q} + Aq + \partial \mathcal{R}(\dot{q}) \ni I(t),$$
 (1)

$$\triangleright q := (u,z) \in H = H_1 \times H_2$$

$$M\ddot{q} + Aq + \partial \mathcal{R}(\dot{q}) \ni I(t),$$
 (1)

- $\triangleright q := (u,z) \in H = H_1 \times H_2$
- $\triangleright \text{ Strictly positive operator } A := \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$

$$M\ddot{q} + Aq + \partial \mathcal{R}(\dot{q}) \ni I(t),$$
 (1)

- $\triangleright q := (u,z) \in H = H_1 \times H_2$
- $\triangleright \text{ Strictly positive operator } A := \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$
- $\triangleright \text{ Exterior loading } I(t) := \left(\begin{array}{c} f_u(t) \\ f_z(t) \end{array} \right)$

$$M\ddot{q} + Aq + \partial \mathcal{R}(\dot{q}) \ni I(t),$$
 (1)

- $\triangleright q := (u,z) \in H = H_1 \times H_2$
- $\triangleright \text{ Strictly positive operator } A := \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$
- $\triangleright \text{ Exterior loading } I(t) := \begin{pmatrix} f_u(t) \\ f_z(t) \end{pmatrix}$
- ightharpoonup Dissipation functional $\mathcal{R}: H
 ightharpoonup [0, \infty]$
 - convex, lower-semicontinuous, homogeneous of degree 1
 - ▶ the subdifferential is defined by $\partial \mathcal{R}(v) = \{ \sigma \in H^* \mid \forall w \in H : \mathcal{R}(w) \ge \mathcal{R}(v) + \langle \sigma, w v \rangle \}$
 - $\triangleright \mathcal{R}(\dot{q}) := \widetilde{\mathcal{R}}(\dot{z})$

◆ロト ◆昼 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q で

The variational inequality

$$\forall v \in H: \langle M\ddot{q} + Aq - I(t), v - \dot{q} \rangle + \mathcal{R}(v) - \mathcal{R}(\dot{q}) \geq 0. \tag{2}$$

The quasi-static (Q.S.) system (M = 0 in (1))

$$A\bar{q} + \partial \mathcal{R}(\dot{\bar{q}}) \ni I(t).$$
 (3)

The variational inequality

$$\forall \bar{v} \in H: \langle A\bar{q} - I, \bar{v} - \dot{\bar{q}} \rangle + \mathcal{R}(\bar{v}) - \mathcal{R}(\dot{\bar{q}}) \ge 0. \tag{4}$$

Energetic solution: $q = (u, z) : [0, T] \rightarrow V$

$$(S) \ \forall \widehat{q} \in H: \ \mathcal{E}(t, \overline{q}(t), \dot{\overline{q}}(t)) \leq \mathcal{E}(t, \widehat{q}, \dot{\widehat{q}}) + \mathcal{R}(\widehat{q} - \overline{q}(t)),$$

(E)
$$\mathcal{E}(t, \bar{q}, \dot{\bar{q}}) + \int_0^t \mathcal{R}(\dot{\bar{q}}(s)) ds = \mathcal{E}(0, \bar{q}_0, \dot{\bar{q}}_0) - \langle \dot{l}(s), \bar{q} \rangle.$$

The **governing dynamic** system

$$\begin{cases} m^{1/2}\dot{u} - v = 0, \\ m^{1/2}\dot{v} + a_{11}u + a_{12}z = f_u(t), \\ \dot{z} - \partial \mathcal{R}^*(-a_{21}u - a_{22}z) \in f_z(t), \end{cases}$$
 (5)

with initial conditions

$$(\dot{u}(0), q(0)) = (\dot{u}(0), u(0), z(0)) = (\dot{u}_0, u_0, z_0) = (\dot{u}_0, q_0) \in H_1 \times V.$$
 (6)

The quasi-static system

$$\begin{cases} a_{11}\bar{u} + a_{12}\bar{z} = f_u(t), \\ \dot{\bar{z}} - \partial \mathcal{R}^*(-a_{21}\bar{u} - a_{22}\bar{z}) \in f_z(t), \end{cases}$$
(7)

with initial conditions

$$\bar{q}(0) = (\bar{u}(0), \bar{z}(0)) = (\bar{u}_0, \bar{z}_0) = \bar{q}_0 \in V.$$
 (8)

Notations:

 $\triangleright \mathcal{R}^*(\cdot)$ is the **Legendre transform** of $\widetilde{\mathcal{R}}(\cdot)$

$$\triangleright V = V_1 \times V_2$$

40 40 40 40 40 000

- Introduction
- Mathematical formulation
- 3 Existence and uniqueness results
- 4 A priori estimates for the dynamic problem
- Rate-independent limit
- 6 Application: elastic-plastic systems with hardening

Zurich, 18 June 2007

$$\forall t \in [0, T] : w(t) \in \mathcal{D}(\mathbb{A}) := \{ w \in Y \mid \mathbb{A}w \neq \emptyset \}, \tag{9a}$$

$$\dot{w}(t) + \mathbb{A}w(t) \ni g(t), \ t > 0, \tag{9b}$$

$$w(0) = w_0. (9c)$$

comes from

Proposition 1. Assume that \mathbb{A} is a maximal monotone operator in the Hilbert space Y, $g \in W^{1,1}([0,T];Y)$ and $w_0 \in \mathcal{D}(\mathbb{A})$. Then there exists a unique solution $w \in W^{1,\infty}([0,T];Y)$ of (9).

$$\forall t \in [0, T] : w(t) \in \mathcal{D}(\mathbb{A}) := \{ w \in Y \mid \mathbb{A}w \neq \emptyset \}, \tag{9a}$$

$$\dot{w}(t) + \mathbb{A}w(t) \ni g(t), \ t > 0, \tag{9b}$$

$$w(0) = w_0. (9c)$$

comes from

Proposition 1. Assume that \mathbb{A} is a maximal monotone operator in the Hilbert space Y, $g \in W^{1,1}([0,T];Y)$ and $w_0 \in \mathcal{D}(\mathbb{A})$. Then there exists a unique solution $w \in W^{1,\infty}([0,T];Y)$ of (9).

$$\triangleright w := (\widetilde{a}^{1/2}u, v, a_{22}^{-1/2}e) \text{ with } \widetilde{a} := (a_{11} - a_{12}a_{22}^{-1}a_{21}), e := f_z - (a_{21}u + a_{22}z)$$

$$\forall t \in [0, T] : w(t) \in \mathcal{D}(\mathbb{A}) := \{ w \in Y \mid \mathbb{A}w \neq \emptyset \}, \tag{9a}$$

$$\dot{w}(t) + \mathbb{A}w(t) \ni g(t), \ t > 0, \tag{9b}$$

$$w(0) = w_0. (9c)$$

comes from

Proposition 1. Assume that \mathbb{A} is a maximal monotone operator in the Hilbert space Y, $g \in W^{1,1}([0,T];Y)$ and $w_0 \in \mathcal{D}(\mathbb{A})$. Then there exists a unique solution $w \in W^{1,\infty}([0,T];Y)$ of (9).

$$\triangleright w := (\widetilde{a}^{1/2}u, v, a_{22}^{-1/2}e) \text{ with } \widetilde{a} := (a_{11} - a_{12}a_{22}^{-1}a_{21}), e := f_z - (a_{21}u + a_{22}z)$$

$$\triangleright \mathbb{A} := \begin{pmatrix} 0 & -\widetilde{a}^{1/2}m^{-1/2} & 0 \\ m^{-1/2}\widetilde{a}^{1/2} & 0 & -m^{-1/2}a_{12}a_{22}^{-1/2} \\ 0 & a_{22}^{-1/2}a_{21}m^{-1/2} & a_{22}^{1/2}\partial \mathcal{R}^*(a_{22}^{1/2}(\cdot)) \end{pmatrix}$$

$$\forall t \in [0, T] : w(t) \in \mathcal{D}(\mathbb{A}) := \{ w \in Y \mid \mathbb{A}w \neq \emptyset \}, \tag{9a}$$

$$\dot{w}(t) + \mathbb{A}w(t) \ni g(t), \ t > 0, \tag{9b}$$

$$w(0) = w_0. (9c)$$

comes from

Proposition 1. Assume that \mathbb{A} is a maximal monotone operator in the Hilbert space Y, $g \in W^{1,1}([0,T];Y)$ and $w_0 \in \mathcal{D}(\mathbb{A})$. Then there exists a unique solution $w \in W^{1,\infty}([0,T];Y)$ of (9).

$$\triangleright w := (\widetilde{a}^{1/2}u, v, a_{22}^{-1/2}e) \text{ with } \widetilde{a} := (a_{11} - a_{12}a_{22}^{-1}a_{21}), e := f_z - (a_{21}u + a_{22}z)$$

$$\triangleright A := \begin{pmatrix} 0 & -\widetilde{a}^{1/2}m^{-1/2} & 0 \\ m^{-1/2}\widetilde{a}^{1/2} & 0 & -m^{-1/2}a_{12}a_{22}^{-1/2} \\ 0 & a_{22}^{-1/2}a_{21}m^{-1/2} & a_{22}^{1/2}\partial\mathcal{R}^*(a_{22}^{1/2}(\cdot)) \end{pmatrix}$$

$$\triangleright g := \begin{pmatrix} 0 \\ m^{-1/2}(f_u(t) + a_{12}a_{22}^{-1}f_z(t)) \\ a_{22}^{-1}\dot{f}_z(t) \end{pmatrix}$$

Corollary 1. Assume that $l \in W^{1,1}([0,T];H)$ and $(u_0,q_0) \in H_1 \times V$ satisfy $f_z(0) \in \partial \mathcal{R}(0) + a_{21}u_0 + a_{22}z_0$. Then there exists a unique solution $q \in W^{1,\infty}([0,T];V)$ that solves (5) and (6). This solution additionally satisfies $Mq \in W^{2,\infty}([0,T];H)$.

The **energy** associated to (3) (Q.S.) is given by

$$\mathcal{E}(t,\bar{q}) = \frac{1}{2} \langle A\bar{q}, \bar{q} \rangle - \langle I(t), \bar{q} \rangle. \tag{10}$$

Lemma 1. Assume that $l \in C^1([0,T];V^*)$ and $\bar{q}_0 \in V$ satisfying $\partial \mathcal{R}(0) \ni -A\bar{q}_0 + l(0)$. Then, the variational inequality (4) and hence also (7)-(8) have a unique solution $\bar{q} \in C^{\operatorname{Lip}}([0,T];V)$.

Idea of the proof.

- $\triangleright \mathcal{E}(t,\cdot) \in C^3(V)$ is uniformly convex
- \triangleright \mathcal{R} is convex, lower-semicontinuous, homogeneous of degree 1
- ▶ Use time dicretization and solve a vartiational inequality in each time step

- Introduction
- Mathematical formulation
- Existence and uniqueness results
- 4 A priori estimates for the dynamic problem
- Rate-independent limit
- Application: elastic-plastic systems with hardening

Notations:

$$||q|| := \sqrt{\langle Aq, q \rangle}, ||I||_* := \sqrt{\langle I, A^{-1}I \rangle}, |q|_M := ||M^{1/2}q||_H$$

 \triangleright The bilinear form $B:V\to H\to V^*\to \mathbb{R}$:

$$B[q, \dot{q}, I] := |\dot{q}|_{M}^{2} + ||q - A^{-1}I||^{2} + ||I||_{*}^{2}$$

which verifies that

►
$$B[q(t), \dot{q}(t), l(t)] = 2\mathcal{E}(t, q(t), \dot{q}(t)) + 2||l(t)||_*^2$$

$$\begin{array}{l} \blacktriangleright \ \frac{1}{g^2} \big(\|q\|^2 + |\dot{q}|_M^2 + \|I\|_*^2 \big) \leq B[q, \dot{q}, I] \leq g^2 \big(\|q\|^2 + |\dot{q}|_M^2 + \|I\|_*^2 \big) \\ \text{with } g := \frac{1+\sqrt{5}}{2} \approx 1.618 \text{ is the golden number.} \end{array}$$

Using $\langle \sigma, \dot{q} \rangle \geq 0$ for all $\sigma \in \partial \mathcal{R}(\dot{q})$

$$\frac{d}{dt}\mathcal{E}(t,q(t),\dot{q}(t)) \leq -\langle \dot{l}(t),q(t)\rangle.$$

Then, we deduce that

$$\frac{d}{dt}B[q(t), \dot{q}(t), l(t)] \leq ||\dot{l}(t)||_* 2g\sqrt{2}\sqrt{B[q(t), \dot{q}(t), l(t)]}.$$

Zurich, 18 June 2007 13 / 23

Dividing by $\sqrt{B[q(t),\dot{q}(t),l(t)]}$ and integrating both sides, for $0 \le s \le t \le T$:

$$\sqrt{B[q(t),\dot{q}(t),l(t)]} \leq \sqrt{B[q(s),\dot{q}(s),l(s)]} + g\sqrt{2}\int_{s}^{t} \|\dot{l}(\tau)\|_{*} d\tau,$$

which implies that

$$\left(\|q(t)\|^2+|\dot{q}(t)|_M^2\right)^{1/2}\leq g^2\left(\|q(0)\|^2+|\dot{q}(0)|_M^2+\|I(0)\|_*^2\right)^{1/2}+g^2\sqrt{2}\int_0^t\|\dot{I}(\tau)\|_*d\tau.$$

Similarly, using (13) we obtain a priori bounds on the energy, namely

$$\mathcal{E}(t,q(t),\dot{q}(t)) \leq \left(\sqrt{\mathcal{E}(0,q(0),\dot{q}(0)) + \|I(0)\|_*^2} + g\int_0^t \|\dot{I}(\tau)\|_* d\tau\right)^2 - \|I(t)\|_*^2.$$

Proposition 2. Let $l_1, l_2 \in W^{1,1}([0, T]; V^*)$ and q_1 and q_2 be solutions of (1) with right-hand sides l_1 and l_2 respectively, then $w = q_1 - q_2$ satisfies for all $t \in [0, T]$ the following estimate

$$B[w(t), \dot{w}(t), l_1(t) - l_2(t)]^{1/2} \le B[w(0), \dot{w}(0), l_1(0) - l_2(0)]^{1/2} + g\sqrt{2} \int_0^t ||\dot{l}_1(\tau) - \dot{l}_2(\tau)||_* d\tau.$$
(11)

For arbitrary functions $y \in L^{\infty}([0, T]; Y)$, h > 0, $t \in [0, T-h]$

$$\delta_h y(t) := \frac{1}{h} \big(y(t+h) - y(t) \big).$$

For all $p \in [1, \infty]$ and $y \in W^{1,p}([0, T]; Y)$ we have

$$\|\delta_h y\|_{L^p([0,T-h];Y)} \leq \|\dot{y}\|_{L^p([0,T];Y)}.$$

Taking $q_1(t) = q(t+h)$ and $q_2(t) = q(t)$ in Proposition 1, for all $0 \le s \le t$:

$$B[\delta_{h}q(t), \delta_{h}\dot{q}(t), \delta_{h}l(t)]^{1/2} \leq B[\delta_{h}q(s), \delta_{h}\dot{q}(s), \delta_{h}l(s)] + g\sqrt{2} \int_{s}^{t} \|\delta_{h}\dot{l}(\tau)\|_{*} d\tau.$$

$$(12)$$

For arbitrary functions $y \in L^{\infty}([0, T]; Y)$, h > 0, $t \in [0, T-h]$

$$\delta_h y(t) := \frac{1}{h} \big(y(t+h) - y(t) \big).$$

For all $p \in [1, \infty]$ and $y \in W^{1,p}([0, T]; Y)$ we have

$$\|\delta_h y\|_{L^p([0,T-h];Y)} \leq \|\dot{y}\|_{L^p([0,T];Y)}.$$

Taking $q_1(t) = q(t+h)$ and $q_2(t) = q(t)$ in Proposition 1, for all $0 \le s \le t$:

$$B[\delta_{h}q(t), \delta_{h}\dot{q}(t), \delta_{h}I(t)]^{1/2} \leq B[\delta_{h}q(s), \delta_{h}\dot{q}(s), \delta_{h}I(s)] + g\sqrt{2}\int_{s}^{t} \|\delta_{h}\dot{I}(\tau)\|_{*}d\tau.$$

$$(12)$$

▷ If $h \setminus 0$ on the right-hand side then $(q, M^{1/2}\dot{q}) \in W^{1,\infty}([0, T]; V \times H)$.

<ロ > ← □

For arbitrary functions $y \in L^{\infty}([0, T]; Y)$, h > 0, $t \in [0, T-h]$

$$\delta_h y(t) := \frac{1}{h} \big(y(t+h) - y(t) \big).$$

For all $p \in [1, \infty]$ and $y \in W^{1,p}([0, T]; Y)$ we have

$$\|\delta_h y\|_{L^p([0,T-h];Y)} \leq \|\dot{y}\|_{L^p([0,T];Y)}.$$

Taking $q_1(t) = q(t+h)$ and $q_2(t) = q(t)$ in Proposition 1, for all $0 \le s \le t$:

$$B[\delta_{h}q(t), \delta_{h}\dot{q}(t), \delta_{h}I(t)]^{1/2} \leq B[\delta_{h}q(s), \delta_{h}\dot{q}(s), \delta_{h}I(s)] + g\sqrt{2}\int_{s}^{t} \|\delta_{h}\dot{I}(\tau)\|_{*}d\tau.$$

$$(12)$$

- ▷ If $h \setminus 0$ on the right-hand side then $(q, M^{1/2}\dot{q}) \in W^{1,\infty}([0, T]; V \times H)$.
- ▷ In general $q(0) = q_0 \in V$ and $\dot{u}(0) = \dot{u}_0 \in H_1$ do not guarantee that $\limsup_{h \searrow 0} \left(\|\delta_h q(0)\| + |\delta_h \dot{q}(0)|_M \right) < \infty.$

4D + 4B + 4B + B + 990

For arbitrary functions $y \in L^{\infty}([0, T]; Y)$, h > 0, $t \in [0, T-h]$

$$\delta_h y(t) := \frac{1}{h} (y(t+h) - y(t)).$$

For all $p \in [1, \infty]$ and $y \in W^{1,p}([0, T]; Y)$ we have

$$\|\delta_h y\|_{L^p([0,T-h];Y)} \leq \|\dot{y}\|_{L^p([0,T];Y)}.$$

Taking $q_1(t) = q(t+h)$ and $q_2(t) = q(t)$ in Proposition 1, for all $0 \le s \le t$:

$$B[\delta_{h}q(t), \delta_{h}\dot{q}(t), \delta_{h}l(t)]^{1/2} \leq B[\delta_{h}q(s), \delta_{h}\dot{q}(s), \delta_{h}l(s)] + g\sqrt{2}\int_{s}^{t} \|\delta_{h}\dot{l}(\tau)\|_{*}d\tau.$$

$$(12)$$

- ▷ If $h \setminus 0$ on the right-hand side then $(q, M^{1/2}\dot{q}) \in W^{1,\infty}([0, T]; V \times H)$.
- ▶ In general $q(0) = q_0 \in V$ and $\dot{u}(0) = \dot{u}_0 \in H_1$ do not guarantee that $\limsup_{h \searrow 0} \left(\|\delta_h q(0)\| + |\delta_h \dot{q}(0)|_M \right) < \infty.$
- ightarrow The additional assumptions $\dot{u}_0 \in V_1$, $I(0) \in \partial R(0) + Aq(0)$ do not help.

Assumption:

$$\exists \rho > 0 \ \exists I \in W^{2,1}([-\rho,0];V^*) \ \exists q = (u,z) \in W^{1,\infty}([-\rho,0];V): u \in W^{2,\infty}([-\rho,0];H_1), \ (1) \text{ is satisfied}, \ q(0) = q_0, \dot{u}(0) = \dot{u}_0.$$
 (13)

- \Rightarrow The stability condition $I(0) \in \partial R(0) + Aq_0$ holds
- \Rightarrow The following limits for $h \searrow 0$ exist:

$$\delta_h q(-h) o \dot{Q}$$
 in V , $\delta_h \dot{u}(-h) o \ddot{U}$ in H_1 , $\delta_h l(-h) o \dot{L}$ in V^*

Remark 1. There are two cases where this condition can be easily satisfied. The first one will be essential in the next section.

◆ロト ◆部 → ◆注 > ◆注 > ・注 ・ かく(^)

Assumption:

$$\exists \rho > 0 \ \exists I \in W^{2,1}([-\rho, 0]; V^*) \ \exists q = (u, z) \in W^{1,\infty}([-\rho, 0]; V) : u \in W^{2,\infty}([-\rho, 0]; H_1), \ (1) \text{ is satisfied}, \ q(0) = q_0, \dot{u}(0) = \dot{u}_0.$$
 (13)

- \Rightarrow The stability condition $I(0) \in \partial R(0) + Aq_0$ holds
- \Rightarrow The following limits for $h \searrow 0$ exist:

$$\delta_h q(-h) o \dot{Q}$$
 in V , $\delta_h \dot{u}(-h) o \ddot{U}$ in H_1 , $\delta_h l(-h) o \dot{L}$ in V^*

Remark 1. There are two cases where this condition can be easily satisfied. The first one will be essential in the next section.

 \forall if $\dot{u}_0=0$, then we may choose $q(t)=q_0$ for all $t\in[-\rho,0]$ and let $l(t)=Aq_0$. Then $\dot{Q}=0$, $\ddot{U}=0$, $\dot{L}=0$.

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Assumption:

$$\exists \rho > 0 \ \exists I \in W^{2,1}([-\rho, 0]; V^*) \ \exists \ q = (u, z) \in W^{1,\infty}([-\rho, 0]; V) : u \in W^{2,\infty}([-\rho, 0]; H_1), \ (1) \text{ is satisfied}, \ q(0) = q_0, \dot{u}(0) = \dot{u}_0.$$
 (13)

- \Rightarrow The stability condition $I(0) \in \partial R(0) + Aq_0$ holds
- \Rightarrow The following limits for $h \searrow 0$ exist: $\delta_h a(-h) \rightarrow \dot{Q}$ in V, $\delta_h \dot{u}(-h) \rightarrow \ddot{U}$ in H_1 , $\delta_h l(-h) \rightarrow \dot{L}$ in V^*

Remark 1. There are two cases where this condition can be easily satisfied. The first one will be essential in the next section.

- \forall if $\dot{u}_0=0$, then we may choose $q(t)=q_0$ for all $t\in[-\rho,0]$ and let $l(t)=Aq_0$. Then $\dot{Q}=0$, $\ddot{U}=0$, $\dot{L}=0$.
- ▷ If $\dot{u}_0 \in V_1$ and if the block structure is present, we may choose $q(t) = q_0 + t(\dot{u}_0, 0)^T$ and let $I(t) = I(0) + tA(\dot{u}_0, 0)^T$. Then $\dot{Q} = (\dot{u}_0, 0)^T$, $\ddot{U} = 0$, and $\dot{L} = A(\dot{u}_0, 0)^T$.

4日 > 4日 > 4日 > 4日 > 年 990

Theorem 1. Let $l \in W^{2,1}([0,T];V^*)$ and $(q_0, u_0) \in V \times V_1$ be given such that condition (13) holds. Then, the unique solution q of (5) and (6) satisfies the a priori estimate

$$B[\dot{q}(t), (\ddot{u}(t), 0)^{T}, \dot{I}(t)]^{1/2}$$

$$\leq B[\dot{Q}, (\ddot{U}, 0)^{T}, \dot{L}]^{1/2} + g\sqrt{2} \Big(\|\dot{L} - \dot{I}(0)\|_{*} + \int_{0}^{t} \|\ddot{I}(\tau)\|_{*} d\tau \Big).$$
(14)

Idea of the proof. Concatenate the artifical solution $q \in W^{1,\infty}([-\rho,0];V)$ and the given solution $q \in W^{1,\infty}([0,T];V)$ as well as the loadings.

マロト 4 か 4 ま ト 4

- Introduction
- Mathematical formulation
- 3 Existence and uniqueness results
- 4 A priori estimates for the dynamic problem
- Rate-independent limit
- 6 Application: elastic-plastic systems with hardening

Goal: Compare the solution q of the kinetic equation

$$M\ddot{q} + \partial \mathcal{R}(\dot{q}) + Aq \ni I(t), \quad q(0) = q_0, \quad \dot{u}(0) = \dot{u}_0,$$

with the corresponding solution \bar{q} of the quasistatic equation

$$\partial \mathcal{R}(\dot{\bar{q}}) + A\bar{q} \ni I(t), \quad \bar{q}(0) = q_0.$$
 (15)

Proposition 3. Assume that $I \in W^{1,1}([0,T]; V^*)$, $(M\dot{q}_0, q_0) \in H \times V$, $\bar{q}_0 \in V$. Then we have

$$|\dot{q}(t)|_{M}^{2} + \|q(t) - \bar{q}(t)\|^{2} \leq |\dot{q}_{0}|_{M}^{2} + \|q_{0} - \bar{q}_{0}\|^{2} + 2 \underset{s \in [0,T]}{\operatorname{ess sup}} |\ddot{q}(s)|_{M} \int_{0}^{t} |\dot{\bar{q}}(s)|_{M} ds.$$
(16)

Idea of the proof.

- ightharpoonup Add variational inequalities ($v = \dot{\bar{q}}$ and $\bar{v} = \dot{q}$ resp. in (2) and (4))
- Use Cauchy-Schwarz's inequality.

◆ロト ◆問ト ◆ヨト ◆ヨト ヨ めなべ

Zurich, 18 June 2007 19 / 23

Very slow dynamics: Rescale the time as $\widetilde{t} = \varepsilon t$ (loading given $I(t) = \widetilde{I}(\varepsilon t)$) We consider now the problem (replace M by $\varepsilon^2 \widetilde{M}$)

$$\varepsilon^2 \widetilde{M} \ddot{q}_{\varepsilon} + A q_{\varepsilon} + \partial \mathcal{R} (\dot{q}_{\varepsilon}) \ni I(t), \quad q(0) = q_0, \quad M \dot{q}_{\varepsilon}(0) = M \dot{q}_0. \tag{17}$$

Zurich, 18 June 2007

Very slow dynamics: Rescale the time as $\widetilde{t} = \varepsilon t$ (loading given $I(t) = \widetilde{I}(\varepsilon t)$) We consider now the problem (replace M by $\varepsilon^2 \widetilde{M}$)

$$\varepsilon^2 \widetilde{M} \ddot{q}_{\varepsilon} + Aq_{\varepsilon} + \partial \mathcal{R}(\dot{q}_{\varepsilon}) \ni I(t), \quad q(0) = q_0, \quad M \dot{q}_{\varepsilon}(0) = M \dot{q}_0.$$
 (17)

Existence and uniqueness follows from Corrollary 1.

◆ロト ◆部 → ◆注 > ◆注 > ・注 ・ かく(^)

Very slow dynamics: Rescale the time as $\widetilde{t} = \varepsilon t$ (loading given $I(t) = \widetilde{I}(\varepsilon t)$) We consider now the problem (replace M by $\varepsilon^2 \widetilde{M}$)

$$\varepsilon^2 \widetilde{M} \ddot{q}_{\varepsilon} + A q_{\varepsilon} + \partial \mathcal{R}(\dot{q}_{\varepsilon}) \ni l(t), \quad q(0) = q_0, \quad M \dot{q}_{\varepsilon}(0) = M \dot{q}_0. \tag{17}$$

- Existence and uniqueness follows from Corrollary 1.
- ▶ A priori estimates are also valid with

$$|q|_{\widetilde{M}} := \|\widetilde{M}^{1/2}q\|_{H}, |q|_{M} = |q|_{\varepsilon^{2}\widetilde{M}} = \varepsilon |q|_{\widetilde{M}}.$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕久で

Theorem 2. Let the above assumptions on M, A, \mathcal{R} hold. Assume $I \in W^{2,1}([0,T],V^*)$ and $\bar{q}_0 \in V$ with $I(0) \in \partial \mathcal{R}(0) + A\bar{q}_0$. Let \bar{q} be the unique solution (15), and q the unique solution of (17) for arbitrary $q_0 \in V$ and $\dot{u}_0 \in H_1$ satisfying $I(0) \in \partial \mathcal{R}(0) + Aq_0$. Then

$$\left(\varepsilon^2|\dot{q}_\varepsilon(t)|_{\widetilde{M}}^2+\|q_\varepsilon(t)-\bar{q}(t)\|^2\right)^{1/2}\leq \left(\varepsilon^2|\dot{q}_0|_{\widetilde{M}}^2+\|q_0-\bar{q}_0\|^2\right)^{1/2}+\sqrt{\varepsilon C[I](t)},$$

with
$$C[I](t) := g^2 \sqrt{2} \mu \int_0^t \|\dot{I}(s)\|_* ds (\|\dot{I}(0)\|_* + \int_0^t \|\ddot{I}(s)\|_* ds), \ \mu := \sup_{\|v\|=1} |v|_{\widetilde{M}}.$$
 Idea of the proof.

- riangle Introduce special dynamic solution $\widehat{q}_arepsilon$ defined by $\widehat{q}_arepsilon(0)=ar{q}_0$, $\dot{u}_arepsilon(0)=0$.
- \triangleright Use Proposition 3. to obtain the difference between q_{ε} and $\widehat{q}_{\varepsilon}$.
- \triangleright Use Proposition 2. to obtain the difference between \bar{q} and \hat{q}_{ε} .

- Introduction
- 2 Mathematical formulation
- 3 Existence and uniqueness results
- 4 A priori estimates for the dynamic problem
- Rate-independent limit
- 6 Application: elastic-plastic systems with hardening

Zurich, 18 June 2007

Application: elastic-plastic systems with hardening

Notations and assumptions:

- $riangleright \mathbb{C} \in \mathbb{R}_{ ext{sym}}^{d imes d}$ and $B \in \mathbb{R}_{ ext{sym}}^m$ are a symmetric positive definite maps
- ▶ the dissipation $\mathcal{R}(z) := \int_{\Omega} \varphi(x, z(x)) \, \mathrm{d}x$ with $\varphi \in C^0(\bar{\Omega} \times \mathbb{R}^m)$ such that $R_1|v| \leq \varphi(x, v) \leq R_2|v|$ for all $(x, v) \in \bar{\Omega} \times \mathbb{R}^m$ with $\varphi(x, \cdot) : \mathbb{R}^m \to [0, \infty)$ is 1-homogeneous and convex.

Very slow time $(\tilde{t} = \varepsilon t)$: the elastic-plastic system with hardening can be written as

$$\begin{cases} \varepsilon^{2} m \ddot{u}_{\varepsilon} - \operatorname{div}(\mathbb{C}:(\mathcal{E}(u_{\varepsilon}) - z_{\varepsilon})) = I_{\text{ext}}(t), \\ -\mathbb{C}:(\mathcal{E}(u_{\varepsilon}) - z_{\varepsilon}) + B z_{\varepsilon} + \partial \mathcal{R}(\dot{z}_{\varepsilon}) \ni 0, \end{cases}$$
(18)

with the Dirichlet boundary conditions and initial conditions (u_0, \dot{u}_0, z_0) .

- \triangleright For quasi-static problem take $\varepsilon = 0$.
- Existence and uniqueness (see Showalter and Shi '99).
- \triangleright The Theorem 2. leads to (q:=(u,z))

$$\left(\varepsilon^2|\dot{u}_{\varepsilon}(t)|_{\widetilde{M}}^2+\|q_{\varepsilon}(t)-\bar{q}(t)\|^2\right)^{1/2}\leq \left(\varepsilon^2|\dot{u}_0|_{\widetilde{M}}^2+\|q_0-\bar{q}_0\|^2\right)^{1/2}+\sqrt{\varepsilon C[I](t)}.$$

Zurich, 18 June 2007 23 / 23