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Global existenceresult for rate-independent processesin viscous solids
with heat transfer
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This note deals with three-dimensional models for ratejmhdent processes describing materials undergoing plaase
formations with heat transfer. The problem is formulatethimithe framework of generalized standard solids by thetog

of the momentum equilibrium equation and the flow rule with Heat transfer equation. The existence of a global solution
for this thermodynamically consistent problem is obtaifgdusing a fixed-point argument combined with global energy
estimates.
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1 Themathematical formulation

We consider a reference configurat@nc R3. We assume thd? is a bounded domain such th2® is of classC?+7. We
def

will denote bngﬁ the space of symmetrigx3 tensors endowed with the natural scalar produet = tr(v"w) and the
corresponding normw|? = vw for all v,w € R3S, Given a functior? : 2x(0,7) — R?, we look for adisplacement
u: Qx(0,T) — R?, a matrix ofinternal variablesz : Qx(0,7) — R3X* and atemperatured : Qx(0,7) — R satisfying
the following system:

— div(E(e(u)—z)+abl+Le(u)) = ¢, (1.1a)
0V (z) + Mz — E(e(u)—z) + D, Hy(2) + 0D, Ha(z) — vAz 5 0, (1.1b)
c(0)8 — div(k(e(u), z,0)V0) = Le(i):e(a) + O(atr(e(w))+D, Ha(2):2) + U (2) + M2:2, (1.1c)

wherev > 0 is a coefficient that measures some nonlocal interactiatefbr the internal variable, « > 0 is the isotropic
thermal expansion coefficierif,denotes thelastic tensorH;, ¢ = 1, 2, are twohardening functionald. andM are two vis-
cosity tensors(u) = 2(Vu+VuT) is theinfinitesimal strain tensor:(6) is theheat capacityx(e(u), z, ) is theconductivity
and ¥ denotes the dissipation potential, which is assumed to biiyEly homogeneous of degree 1, i.&(yz) = v¥(z)
forall v > 0. Finally (") ando¥ denote the time derivativ% and the subdifferential o¥ in the sense of convex analysis
(see [1]), respectively. Observe that (1.1a), (1.1b) anticjlare usually called the momentum equilibrium equatioa flow
rule and the heat-transfer equation, respectively. Thelenois completed with boundary and initial conditions

Upy =0, Vzm,, =0, rVOn,, =0, u(,0)=u’ =z(-0=2° 6,0 =46 (1.2)

Heren denotes the outward normal to the bounda§yof 2. Note that the problem (1.1) is thermodynamically consiste
The original problem (1.1) can be rewritten in terms of etfgh@nstead of temperature by employing the so-called dpyha

transformationy(6) = ¥ = foe ¢(s) ds, which is a crucial ingredient to prove the existence resi¥ observe thaj is the
unique primitive of the function, which is supposed to be continuous, such giaj = 0. Furthermore, we assume that there
exists3; > 2 such that for alk > 0, c(s) > c¢(1+s)?1~1 > 0 wherec® is a positive constant. Hence we deduce thata

bijection from[0, co) into [0, 0o). We defineC (1) = ¢~ (9) if ¥ > 0 and((9) = 0 otherwiseg~! is the inverse of;, and
kC(e(u), z,0) = % For more details on the enthalpy transformation, the nesdeferred to [5]. Therefore the
system (1.1) is transformed into the following form

— div(E(e(u)—z)+af(9)I+Le(w)) = ¢, (1.3a)
0V (%) + Mz — E(e(u)—z) + D, Hi(z) + ((9)D, Ha(2) — vAz 3 0, (1.3b)
9 — div(k°(e(u), z,9) V) = Le():e(i) 4 ¢(9)(atr(e(w))+D, Ho(2):2) + U(2) + Mz:2, (1.3¢c)

with boundary and initial conditions
Uy =0, Vzm,, =0, &°VIn,, =0, u(,0)= u®,  2(-,0) =2 9(,0) =0 = g(6°). (1.4)
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2 Global existenceresult

As a first step we establish a local existence result for tiupleal problem (1.3)—(1.4) by using a fixed point argumentrévio
precisely, for any gived € LI(0,7;LP(Q)) with ¢ > 4 andp = 2, we defined e ¢(¢¥) and we solve first the system
composed by the momentum equilibrium equation and the fldev(dula)—(1.1b), then we solve the enthalpy equation §1.3c

def o

with k¢ = k°(e(u), z, ((1¥)). Since we have
0] = [C(D)] < (& max(0,9))7 ae.in Qx(0,7) 2.1)

for all 8 € [1, 6], we infer thatd = ¢(J) € LI(0,T;LP()) with ¢ = G andp € [4,min(6:p,6)]. This allows
us to define a mapping : ¥ — 9, which satisfies the assumptions of Schauder’s fixed poedr#m. Let us introduce

now some notations; let : H'(Q) — (H'(2))" be the linear continuous mapping defined Gy, v) (11 )y 11 (@) &
def

Jo VM Vu: Vo dz for all (u,v) € (H'(22))?. We denote byA, the realization of its generator il (€2) and byX, ,,(Q2) =
(LP(9), D(Ap))1_2 s N(LP2(Q), D(Ayg )1, (for further details see [2,4]), whe®(A, ) denotes the domain of,., r =

L.op. LetVE(Q) = {u € LP(Q) : Vu € LP(Q), u),,, = 0}. Therefore under the assumption théte V5(Q2), 2° € X, ,(Q)
and¥’ € L%(Q) we prove that the problem (1.3)—(1.4) possesses a local@olw, z, ) defined o0, 7] with 0 < 7 < T,
such thate € WH4(0, 75 VE(R)), 2 € L>(0, 7 H (92)) N H(0, 73 L2(22)) N CO([0, 7]; X, (22)) N LI(0, 7; HA(Q)), 2, Az €
L4/2(0, 7 LP(Q)) N LI(0, 75 LP/2(Q)) andd € W, £ {9 € L2(0,7; HY(Q)) NL>®(0, 73 L2(Q)) : 9 € L2(0,7; (H(Q))')}.
Then we assume that there exigts- 0 such that)’(z) > «J almost everywhere if. By using the Stampacchia’s truncation
method we obtain that the enthalpyemains positive almost everywherefinx (0, 7).

As a second step we establish some a priori estimates foothons of the problem (1.3)-(1.4), which are relied on
an energy balance combined with Gronwall's lemma and thergtbbal existence result follows by using a contradiction
argument. Indeed on the one hand, we multiply the momenturiilegum equation (1.1a) by: that we add to the heat
equation (1.1c), then we integrate this expression Bef0, 7) with 7 € [0, 7], on the other hand, using the definition of the
subdifferentiab ¥ (2), we may easily deduce the following proposition:

Proposition 2.1 Assume that® € V}(12), 2° € X, ,(2) and¥® € L?(Q) such that)® > 9 almost everywhere if2 with
7 > 0. Then, there exists a constafit> 0, depending only ofju° | (o), [|2°[|r: (@), [|9°]|L1 () and the data such that for
any solution(u, z, 9) of problem(1.3)-(1.4)defined orj0, 7], we have|u(-, 7)||F o) + [12(- D) IF o) + 19C, Dl 0) < C
forall 7 € [0, 7].

Note that (2.1) and Proposition 2.1 imply tHet[ 1, o -,1.51 ()) < (%6)% for any solution(u, z, #) of problem (1.1)—

_ B1— ~ 1
(1.2) defined or{0,7]. We assume now that, > 4 and we defineR? = T5|Q|41714(%C) 7. LetR% > 0 such that
max (||u’[lve(a). 12°x, @) < R". Moreover we may prove that there exigtsdepending only or|||co(jo,7};.2(02)).
R" and R? such that|LLe(i):e(i)+0(atr(e(i))+D. Hy(2):2)+W (£)+M2:2| La/a (0 r.1.2(0)) < R for any solution(w, z, §) of
problem (1.1)—(1.2) defined o, 7]. It follows that there exists a generic constaht> 0 such that|[d||; (o r.1.2(0)) <

R’ = C(T%RHWOHH(Q)). We defineR? & 73R’ + 1. Then we may infer by a contradiction argument that the
mappinge admits a fixed point in the closed baf_?Lq(oyT;Lz(Q)) (0, RY). For technical details, the reader is referred to [3].

Theorem 2.2 Let3; > 4. Under the assumptions of Proposition 2.1, the prob{&r8)(1.4) possesses a global solution
(u, z,9) such thaty € WH9(0,T; VH(Q2)), z € L>(0, T; HY(Q) N X, , () NH (0, T;L2(Q)), 2, Az € L¥2(0,T;LP(Q))N
L9(0, T; LP/2(Q)) and¥ € Wr. Moreover) remains strictly positive anfl, z, 0 = ¢(v9)) is a solution of problenl.1)(1.2)
on[0,T].
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