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Global existence result for rate-independent processes in viscous solids
with heat transfer
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This note deals with three-dimensional models for rate-independent processes describing materials undergoing phasetrans-
formations with heat transfer. The problem is formulated within the framework of generalized standard solids by the coupling
of the momentum equilibrium equation and the flow rule with the heat transfer equation. The existence of a global solution
for this thermodynamically consistent problem is obtainedby using a fixed-point argument combined with global energy
estimates.
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1 The mathematical formulation

We consider a reference configurationΩ ⊂ R
3. We assume thatΩ is a bounded domain such that∂Ω is of classC2+ρ. We

will denote byR
3×3
sym the space of symmetric3×3 tensors endowed with the natural scalar productv:w

def
= tr(vTw) and the

corresponding norm|v|2
def
= v:v for all v, w ∈ R

3×3
sym . Given a functionℓ : Ω×(0, T ) → R

3, we look for adisplacement
u : Ω×(0, T ) → R

3, a matrix ofinternal variablesz : Ω×(0, T ) → R
3×3
dev and atemperatureθ : Ω×(0, T ) → R satisfying

the following system:

− div(E(e(u)−z)+αθI+Le(u̇)) = ℓ, (1.1a)

∂Ψ(ż) + Mż − E(e(u)−z) + DzH1(z) + θDzH2(z) − ν∆z ∋ 0, (1.1b)

c(θ)θ̇ − div(κ(e(u), z, θ)∇θ) = Le(u̇):e(u̇) + θ(αtr(e(u̇))+DzH2(z):ż) + Ψ(ż) + Mż:ż, (1.1c)

whereν > 0 is a coefficient that measures some nonlocal interaction effect for the internal variablez, α ≥ 0 is the isotropic
thermal expansion coefficient,E denotes theelastic tensor, Hi, i = 1, 2, are twohardening functionals, L andM are two vis-
cosity tensors,e(u)

def
= 1

2 (∇u+∇uT) is theinfinitesimal strain tensor, c(θ) is theheat capacity, κ(e(u), z, θ) is theconductivity
andΨ denotes the dissipation potential, which is assumed to be positively homogeneous of degree 1, i.e.,Ψ(γz) = γΨ(z)
for all γ ≥ 0. Finally (˙) and∂Ψ denote the time derivative∂∂t and the subdifferential ofΨ in the sense of convex analysis
(see [1]), respectively. Observe that (1.1a), (1.1b) and (1.1c) are usually called the momentum equilibrium equation,the flow
rule and the heat-transfer equation, respectively. The problem is completed with boundary and initial conditions

u|∂Ω
= 0, ∇z·η|∂Ω

= 0, κ∇θ·η|∂Ω
= 0, u(·, 0) = u0, z(·, 0) = z0, θ(·, 0) = θ0. (1.2)

Hereη denotes the outward normal to the boundary∂Ω of Ω. Note that the problem (1.1) is thermodynamically consistent.
The original problem (1.1) can be rewritten in terms of enthalpy instead of temperature by employing the so-called enthalpy

transformationg(θ) = ϑ
def
=

∫ θ

0
c(s) ds, which is a crucial ingredient to prove the existence result. We observe thatg is the

unique primitive of the functionc, which is supposed to be continuous, such thatg(0) = 0. Furthermore, we assume that there
existsβ1 ≥ 2 such that for alls ≥ 0, c(s) ≥ cc(1+s)β1−1 > 0 wherecc is a positive constant. Hence we deduce thatg is a
bijection from[0,∞) into [0,∞). We defineζ(ϑ)

def
= g−1(ϑ) if ϑ ≥ 0 andζ(ϑ)

def
= 0 otherwise,g−1 is the inverse ofg, and

κc(e(u), z, ϑ)
def
= κ(e(u),z,ζ(ϑ))

c(ζ(ϑ)) . For more details on the enthalpy transformation, the reader is referred to [5]. Therefore the
system (1.1) is transformed into the following form

− div(E(e(u)−z)+αζ(ϑ)I+Le(u̇)) = ℓ, (1.3a)

∂Ψ(ż) + Mż − E(e(u)−z) + DzH1(z) + ζ(ϑ)DzH2(z) − ν∆z ∋ 0, (1.3b)

ϑ̇ − div(κc(e(u), z, ϑ)∇ϑ) = Le(u̇):e(u̇) + ζ(ϑ)(αtr(e(u̇))+DzH2(z):ż) + Ψ(ż) + Mż:ż, (1.3c)

with boundary and initial conditions

u|∂Ω
= 0, ∇z·η|∂Ω

= 0, κc∇ϑ·η|∂Ω
= 0, u(·, 0) = u0, z(·, 0) = z0, ϑ(·, 0) = ϑ0 = g(θ0). (1.4)
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2 Global existence result

As a first step we establish a local existence result for the coupled problem (1.3)–(1.4) by using a fixed point argument. More
precisely, for any giveñϑ ∈ Lq̄(0, T ; Lp̄(Ω)) with q̄ > 4 and p̄ = 2, we defineθ

def
= ζ(ϑ̃) and we solve first the system

composed by the momentum equilibrium equation and the flow rule (1.1a)–(1.1b), then we solve the enthalpy equation (1.3c)
with κc def

= κc(e(u), z, ζ(ϑ̃)). Since we have

|θ| = |ζ(ϑ̃)| ≤
(

β1

cc max(0, ϑ̃)
) 1

β a.e. in Ω × (0, T ) (2.1)

for all β ∈ [1, β1], we infer thatθ = ζ(ϑ̃) ∈ Lq(0, T ; Lp(Ω)) with q = β1q̄ and p ∈
[
4, min(β1p̄, 6)

]
. This allows

us to define a mappingφ : ϑ̃ 7→ ϑ, which satisfies the assumptions of Schauder’s fixed point theorem. Let us introduce
now some notations; letA : H1(Ω) → (H1(Ω))′ be the linear continuous mapping defined by〈Au, v〉(H1(Ω))′,H1(Ω)

def
=∫

Ω
νM

−1∇u:∇v dx for all (u, v) ∈ (H1(Ω))2. We denote byAr the realization of its generator inLr(Ω) and byXq,p(Ω)
def
=

(Lp(Ω),D(Ap))1− 2

q , q
2

∩ (Lp/2(Ω),D(A p
2
))1− 1

q ,q (for further details see [2,4]), whereD(Ar) denotes the domain ofAr, r =
p
2 , p. Let Vp

0(Ω)
def
= {u ∈ Lp(Ω) : ∇u ∈ Lp(Ω), u|∂Ω

= 0}. Therefore under the assumption thatu0 ∈ Vp
0(Ω), z0 ∈ Xq,p(Ω)

andϑ0 ∈ L2(Ω) we prove that the problem (1.3)–(1.4) possesses a local solution (u, z, ϑ) defined on[0, τ ] with 0 < τ ≤ T ,
such thatu ∈ W1,q(0, τ ; Vp

0(Ω)), z ∈ L∞(0, τ ; H1(Ω)) ∩ H1(0, τ ; L2(Ω)) ∩ C0([0, τ ]; Xq,p(Ω)) ∩ Lq(0, τ ; H2(Ω)), ż, ∆z ∈

Lq/2(0, τ ; Lp(Ω)) ∩ Lq(0, τ ; Lp/2(Ω)) andϑ ∈ Wτ
def
= {ϑ ∈ L2(0, τ ; H1(Ω)) ∩ L∞(0, τ ; L2(Ω)) : ϑ̇ ∈ L2(0, τ ; (H1(Ω))′)}.

Then we assume that there existsϑ̄ > 0 such thatϑ0(x) ≥ ϑ̄ almost everywhere inΩ. By using the Stampacchia’s truncation
method we obtain that the enthalpyϑ remains positive almost everywhere inΩ × (0, τ).

As a second step we establish some a priori estimates for the solutions of the problem (1.3)–(1.4), which are relied on
an energy balance combined with Grönwall’s lemma and then the global existence result follows by using a contradiction
argument. Indeed on the one hand, we multiply the momentum equilibrium equation (1.1a) bẏu that we add to the heat
equation (1.1c), then we integrate this expression overΩ×(0, τ̃) with τ̃ ∈ [0, τ ], on the other hand, using the definition of the
subdifferential∂Ψ(ż), we may easily deduce the following proposition:

Proposition 2.1 Assume thatu0 ∈ Vp
0(Ω), z0 ∈ Xq,p(Ω) andϑ0 ∈ L2(Ω) such thatϑ0 ≥ ϑ̄ almost everywhere inΩ with

ϑ̄ > 0. Then, there exists a constantC̃ > 0, depending only on‖u0‖H1(Ω), ‖z0‖H1(Ω), ‖ϑ0‖L1(Ω) and the data such that for

any solution(u, z, ϑ) of problem(1.3)–(1.4)defined on[0, τ ], we have‖u(·, τ̃)‖2
H1(Ω) + ‖z(·, τ̃)‖2

H1(Ω) + ‖ϑ(·, τ̃)‖L1(Ω) ≤ C̃

for all τ̃ ∈ [0, τ ].

Note that (2.1) and Proposition 2.1 imply that‖θ‖L∞(0,τ ;Lβ1(Ω)) ≤
(

β1

cc C̃
) 1

β1 for any solution(u, z, θ) of problem (1.1)–

(1.2) defined on[0, τ ]. We assume now thatβ1 ≥ 4 and we defineR̄θ def
= T

1

q |Ω|
β1−4

4β1

(
β1

cc C̃
) 1

β1 . Let R0 > 0 such that
max

(
‖u0‖Vp(Ω), ‖z

0‖Xq,p(Ω)

)
≤ R0. Moreover we may prove that there existsR̄ depending only on‖ℓ‖C0([0,T ];L2(Ω)),

R0 andR̄θ such that‖Le(u̇):e(u̇)+θ(αtr(e(u̇))+DzH2(z):ż)+Ψ(ż)+Mż:ż‖Lq/4(0,τ ;L2(Ω)) ≤ R̄ for any solution(u, z, θ) of
problem (1.1)–(1.2) defined on[0, τ ]. It follows that there exists a generic constantC > 0 such that‖ϑ‖L∞(0,τ ;L2(Ω)) ≤

R̄ϑ
∞

def
= C

(
T

q−8

2q R̄+‖ϑ0‖L2(Ω)

)
. We defineR̄ϑ def

= T
1

q̄ R̄ϑ
∞ + 1. Then we may infer by a contradiction argument that the

mappingφ admits a fixed point in the closed ballB̄Lq̄(0,T ;L2(Ω))(0, R̄ϑ). For technical details, the reader is referred to [3].

Theorem 2.2 Let β1 ≥ 4. Under the assumptions of Proposition 2.1, the problem(1.3)–(1.4)possesses a global solution
(u, z, ϑ) such thatu ∈ W1,q(0, T ; Vp

0(Ω)), z ∈ L∞(0, T ; H1(Ω)∩Xq,p(Ω))∩H1(0, T ; L2(Ω)), ż, ∆z ∈ Lq/2(0, T ; Lp(Ω))∩

Lq(0, T ; Lp/2(Ω)) andϑ ∈ WT . Moreoverϑ remains strictly positive and(u, z, θ = ζ(ϑ)) is a solution of problem(1.1)–(1.2)
on [0, T ].
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