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Abstract This paper deals with error estimates for space-time discretizations of
a three-dimensional model for isothermal stress-induced transformations in shape-
memory materials. After recalling existence and uniqueness results, a fully-discrete
approximation is presented and an explicit space-time convergence rate of order
hα/2 + τ1/2 for someα ∈ (0,1] is derived, which is valid uniformly on the whole
continuous time interval.

1 Introduction

This note is concerned with error control for fully-discrete approximations in the
context of solids undergoing martensitic transformations. More specifically, we ad-
dress the description of the isothermal 3D quasistatic evolution of shape-memory
alloys (SMAs). The latter are metallic alloys showing some surprising thermo-
mechanical behavior, namely, strongly deformed specimensregain their original
shape after a thermal cycle (shape-memory effect). Moreover, within some specific
(suitably high) temperature range, SMAs aresuperelastic, meaning that they fully
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recover comparably large deformations. These features arenot present (at least to
this extent) in most materials traditionally used in Engineering and, thus, are at the
basis of innovative and commercially valuable applications. Nowadays, SMAs are
successfully used in many applications among which biomedical devices (vascu-
lar stents, archwires, endo-guidewires) and MEMS (actuators, valves, mini-grippers
and positioners).

We will focus on a phenomenological, small-deformation model for polycrys-
talline materials describing both the shape memory and the superelastic effect. (In
the present isothermal reduction shape-memory effect is actually not reproduced,
and we refer to [Mie07, MPP08] for models driven by temperature changes.) The
model has been originally advanced by SOUZA, MAMIYA , & Z OUAIN [SMZ98]
and then combined with finite elements by AURICCHIO and collaborators [AuS01,
AuP04]. The state of the material is determined by its displacementuuu : Ω → R

d

with respect to the reference configurationΩ ⊂ R
d (d = 2,3) and by a tensorial

internal variablez : Ω → R
d×d
dev (deviatoricd-tensors) which represent the inelastic

part of the deformationε, namelyz= ε −Cσ whereC is the elasticity tensor andσ
is the stress. In fact,z corresponds to a sort of anorientedproportion of detwinned
martensites (product phase) with respect to twinned martensites and austenite (par-
ent phase).

Our interest in this model is mainly motivated by its abilityto describe (at least
to a qualitative extent) the thermomechanical behavior of SMAs by means of a
small number of easily fitted material parameters (7 material constants in 3D). An-
other interesting feature of the Souza-Auricchio model is that it turns out to be
quite naturally posed in the frame of the variational theoryof rate-independent sys-
tems [Mie05]. This feature was indeed exploited in [AMS08],where wellposedness
issues for continuous problems (constitutive relation andquasistatic evolution) as
well as the convergence of discretizations and regularizations has been discussed.
In particular some fully-discrete approximations(uuuτ,h,zτ,h) obtained by implicit Eu-
ler discretization in time (τ is the fineness of the time-partition) and piecewise linear
finite elements in space (h is the mesh size) are proved in [AMS08, Theorem 7.1] to
converge to the unique solution of the time-continuous quasistatic evolution prob-
lem.

The focus of this note is to provide explicit convergence rates in space and time
for these fully-discrete approximations. In particular, we check that

∃α ∈ (0,1] : ‖uuu−uuuτ,h‖H1(Ω ;Rd)+‖z−zτ,h‖H1(Ω ;Rd×d) ≤ O(hα/2+τ1/2).

In the special case of a convex polyhedronΩ and homogeneous Dirichlet conditions
for the displacement the parameterα can be chosen to beα = 1. A more elaborate
and general theory will be developed in [MP∗08].

The above quantitative control is, to our knowledge, the first result in this direc-
tion in the context of the mechanics of solid-solid phase transformations. Note that
our error estimate is derived under natural regularity requirements. Namely, it de-
pends solely on data and no extra-smoothness of the solution(uuu,z) is assumed. This
specific feature sets this result apart from the existing literature on error control for
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time- or space-time discretizations of variational evolution problems (inequalities)
arising in elasto-plasticity (see [ACZ99, HaR99]).

Related numerical approaches to rate-independent models for SMA are given in
[KMR05, MiR08, MPP08]. However, there the method ofΓ -convergence is em-
ployed, which guarantees the convergence of subsequences only and provides no
quantitative error estimates.

2 The mechanical model

We briefly review the mechanical model, the interested reader being referred to
the original papers [SMZ98, AuP02, AuP04, ARS07] for additional details. Let the
reference configurationΩ be a non-empty, bounded, and connected polyhedron in
R

d (d = 2,3). We assume the boundary∂Ω to be partitioned in two disjoint open
setsΓNeu and ΓDir with ∂ΓNeu = ∂ΓDir (in ∂Ω ) such thatΓDir has positive surface
measure.

Moving into the frame of Generalized Standard Materials (see e.g., [Mie06] and
within the small-strain regime), we additively decompose the linearized deformation
ε = ε(uuu) = 1

2(∇uuu+∇uuuT), whereuuu is the displacement, into the elastic partεel ∈

R
d×d
sym and the inelastic (or transformation) partz∈ R

d×d
dev . The free energy density of

the material depends onε only viaεel = ε−z:

W(ε,z) =
1
2

C(ε−z):(ε−z)+H(z)+
ν
2
|∇z|2. (1)

Here,C is a positive definite elasticity tensor (for isotropic materials, for simplicity),
ν > 0 is expected to measure some nonlocal interaction effect for the internal vari-
ablez, and∇zstands for the usual gradient with respect to spatial variables. Indeed,
gradients of inelastic strains have already been considered in the frame of shape-
memory materials by FRÉMOND [Fré02] and the reader is referred also to ARNDT

ET AL . [AGR03], FRIED & GURTIN [FrG94], MIELKE & ROUBÍČEK [MiR03] for
examples and discussions on nonlocal energy contributions. Finally, thehardening
function H: R

d×d
dev → R is given by

H(z) = c1

√
ρ2+|z|2 +

c2

2
|z|2 +

(|z|−c3)
4
+

ρ(1+|z|2)
(2)

where the user-defined parameterρ > 0 is small andc1, c2, andc3 are given and
represent a superelastic-transformation stress-activation level, a hardening modulus
with respect to the internal variablez, and the maximum modulus of transformation
strain that can be obtained by alignment (detwinning) of themartensitic variants, re-
spectively. One has to mention that this specific form ofW can be much generalized
and is here fixed for definiteness only. In particular,W is aρ-approximation of the
original choice of [SMZ98] which in turn corresponds to the limit (ρ ,ν) → (0,0)
(see [AMS08]).
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The constitutive relations are given in the form

σ = ∂W/∂ε = C(ε−z), (3a)

ξ = −δW/δz= C(ε−z)−DzH(z)+ ν∆z, (3b)

whereξ denotes the thermodynamic force associated withz. The evolution of the
material will be described by the following classical relations:

ξ ∈ R∂ |ż|, (3c)

divσ + fff = 000 in Ω , σnnn = TTT in ΓNeu, uuu = 000 in ΓDir , (3d)

The latter equation gives the equilibrium equations, wherefff andTTT are a given body
force and a surface tension, respectively. The flow rule (3c)corresponds to the clas-
sicalgeneralized normality assumption(R> 0 is the fixedtransformation radius),
and the symbol∂ stands for the subdifferential in the sense of convex analysis, viz.,

ξ ∈ R∂ |ż| if and only if ξ :(w−ż)+R|w|−R|ż| ≤ 0 for all w∈ R
d×d
dev .

3 The variational formulation

For the admissible displacementsuuu and the internal statesz we choose the natural
function spaces

U
def
=

{
uuu∈ H1(Ω ;Rd)

∣∣uuu = 000 onΓDir
}
, Z

def
= H1(Ω ;Rd×d

dev ), Q
def
= U ×Z .

Later we will also need the larger spaceX
def
= L2(Ω ,Rd ×R

d×d
dev ). The symbol〈·, ·〉

denotes the duality pairing betweenQ′ andQ. For the loadingsfff andTTT in (3d) we
require thatℓℓℓ defined via

〈ℓℓℓ(t),q〉
def
=

∫

Ω
fff (t) ·uuudx+

∫

ΓNeu

TTT(t) ·uuudx,

satisfiesℓℓℓ∈C1([0,T];X ′). Furthermore, we choose an initial datumq0 = (uuu0,z0)∈
S (0) where the setS (t) of stable states at time t∈ [0,T] is defined as the set of all
q = (uuu,z) ∈ Q satisfying the condition

∫

Ω
W(uuu,z)dx−〈ℓℓℓ(t),q〉 ≤

∫

Ω
W(uuu,z)dx−〈ℓℓℓ(t),q〉+

∫

Ω
R|ẑ−z|dx (4)

for all q̂ = (ûuu, ẑ) ∈ Q.
The variational formulation of (3) consists in findingq : [0,T] → Q such that
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q(0) = q0, (5a)
∫

Ω
C(ε(uuu)−z):ε(vvv)dx = 〈ℓℓℓ,vvv〉 for all vvv∈ U , (5b)

∫

Ω

(
(C(z−ε(uuu))+DzH(z)):(w−ż)+ ν∇z:∇(w−ż)

)
dx

+

∫

Ω
R|w|dx−

∫

Ω
R|ż|dx≥ 0 for all w∈ Z , (5c)

almost everywhere in time. The following wellposedness theorem is proved in
[AMS08], see also [Mie06, Sec. 5.3].

Theorem 1 (Wellposedness). For each q0 ∈ S (0) problem (5) admits a unique
solution q: [0,T] → Q, which even lies inCLip([0,T];Q).

4 Space-time discretization: main result

Let us now introduce our space-time discretization of (5). To this aim, we choose
a sequence(Πτ )τ>0 of partitions{0 = t0

τ < t1
τ < · · · < tkτ

τ = T } of the time in-
terval [0,T] with max{ tk

τ − tk−1
τ : k = 1, ...,kτ } ≤ τ and a sequence(Qh)h>0 of

finite-dimensional spaces exhaustingQ. In particular, assume to be given a regu-
lar triangulation{Tk} of Ω [QuV94] and chooseUh andZh to be the subspaces
of continuous, piecewise polynomials of fixed degreem≥ 1 on {Tk}. Finally, let
Qh

def
= Uh×Zh. As for the initial value, we shall ask forq0,h ∈ Sh(0) where the set

of approximate stable statesis defined as in (4) by replacingQ by Qh.
Our space-time discretization of (5) consists in findingqi

τ,h = (uuui
τ,h,z

i
τ,h) ∈ Qh

for i = 0,1, . . . ,kτ such that

q0
τ,h = q0,h, (6a)

∫

Ω
C(ε(uuui

τ,h)−zi
τ,h):ε(vvvh)dx = 〈ℓℓℓ(t i

τ),vvvh〉 for all vvvh ∈ Uh, (6b)
∫

Ω

(
C(zi

τ,h−ε(uuui
τ,h))+DzH(zi

τ,h):(wh−δzi
τ,h)+ ν∇zi

τ,h:∇(wh−δzi
τ,h)

)
dx

+

∫

Ω
R|wh|dx−

∫

Ω
R|δzi

τ,h|dx≥ 0 for all wh ∈ Zh (6c)

for i = 1, . . . ,kτ . Here we used the short-hand notation

δzi
τ,h

def
= 1

t iτ−t i−1
τ

(zi
τ,h−zi−1

τ,h ),

which will also be used forqi
τ,h later on. Because of convexity the conditions (6b)-

(6c) are equivalent to solving incremental minimization problems, see [Mie05].
We shall denote byqτ,h = (uuuτ,h,zτ,h) : [0,T] → Qh ⊂ Q the piecewise-constant-

in-time interpolants of the above fully-discrete solutions. In particular,
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qτ,h(t)
def
= qk−1

τ,h for tk−1
τ ≤ t < tk

τ , k = 1, . . . ,kτ and qτ,h(T)
def
= qkτ

τ,h.

The above scheme has been proved to be wellposed and convergent in [AMS08]
(but see also [MiT04] and the detailed analysis of [MP∗08, Appendix]).

Theorem 2 (Wellposedness, stability, and convergence). For all q0,h ∈ Sh(0),
there exists a unique qi

τ,h solving(6). Moreover, there exists Cstab> 0 such that

‖qi
τ,h‖Q +

∥∥δqi
τ,h

∥∥
Q
≤Cstab for all i = 1, . . . ,kτ and all h> 0.

If additionally q0,h → q0 in Q, then max
t∈[0,T ]

‖qτ,h(t)−q(t)‖Q converges to0 asτ +

h→ 0, where q: [0,T] → Q is the unique solution of Theorem 1.

The purpose of this work is to establish a quantitative convergence result giving
explicit convergence rates with respect to the mesh sizeh of the spatial discretization
and the timestepτ. Our main result reads as follows:

Theorem 3 (Space-time convergence rates). There existα ∈ (0,1] and Cerr > 0
(all independent fromτ and h) such that the following holds. For each q0 ∈ S (0)
there exists a sequence q0,h ∈ Sh(0) of approximating initial data, such that

max
t∈[0,T ]

‖q(t)−qτ,h(t)‖Q ≤Cerr(h
α/2+τ1/2)

where q and qτ,h are the unique solutions of(5) and (6), respectively. In caseΩ is
convex andΓNeu = /0, one can chooseα = 1.

A proof of this error estimate has been obtained in [MP∗08] in the more general
setting of an abstract evolutionary inequality. In the present concrete situation of
SMAs the error-control argument is somehow simpler. Hence we are able to provide
a full proof below.

5 Proof of the error estimate

Define the functionalsE : [0,T]×Q → R, H : Q → R, andΨ : Q → [0,∞] via

E (t,q)
def
=

∫

Ω
W(uuu,z)dx−〈ℓℓℓ(t),q〉 ,

H (q)
def
=

∫

Ω

(
H(z)−

c2

2
|z|2

)
dx, Ψ(q)

def
=

∫

Ω
R|z|dx.

In particular, note that there existsCΨ > 0 such that, for allq ∈ Q, we have that
Ψ(q) ≤CΨ‖q‖X . Let A ∈ Lin(Q,Q′) be defined by

Aq
def
= DqE (t,q)−DqH (q)+ ℓℓℓ(t),
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that is, for all(vvv,w) ∈ Q,

〈A(uuu,z),(vvv,w)〉
def
=

∫

Ω

(
C(ε(uuu)−z):(ε(vvv)−w)+c2z:w+ ν∇z:∇w

)
dx.

Note thatA is symmetric and coercive, namely there existsκ > 0 such that〈Aq,q〉≥
κ‖q‖2

Q
for all q∈Q. Finally, letPh : Q→Qh be the Galerkin projector viaA, which

is defined such thatPhq is the unique solution of

〈APhq, ph〉 = 〈Aq, ph〉 for all ph ∈ Qh. (7)

The Galerkin projectorsPh are uniformly bounded with respect toh and commute
with A, i.e.,P∗

hA = APh.
The next lemma provides a useful approximation property of the Galerkin pro-

jectors. Note that this lemma crucially relies on the H1+s-regularity of the associated
linearized stationary problem for (5). LetI be the identity onQ.

Lemma 1 (Approximation property). There existα ∈ (0,1] and CP > 0 such that

‖(Ph−I)q‖X ≤CPhα‖q‖Q for all h > 0 and all q∈ Q. (8)

If Ω is convex andΓNeu = /0 thenα can be chosen asα = 1.

Proof. Within this proof, the symbolC stands for a generic positive constant, pos-
sibly depending on data only. Let us start by recalling that,in the present setting,
given fff ∈ L2(Ω ;Rd), the unique solutionuuu∈ U of the boundary value problem of
linearized elastostatics

∫

Ω
Cε(vvv):ε(uuu)dx =

∫

Ω
fff ·vvvdx for all vvv∈ U

belongs to H1+s(Ω ;Rd) for somes∈ (0,1] ands= 1 for Ω convex andΓNeu = /0
[Gri92, Section 4.6, p. 148]. At the same time, giveng∈ L2(Ω ;Rd×d

dev ), the unique
solutionz∈ Z of the elliptic system

∫

Ω

(
Cw:z+ ν∇w:∇z+c2w:z

)
dx =

∫

Ω
g:wdx for all w∈ Z

is such thatz∈ H1+r(Ω ;Rd×d
dev ) for somer ∈ (0,1] with r = 1 if Ω is convex [Gri92,

Corollary 2.6.7, p. 79].
Let nowη = ( fff ,g) ∈ X ′ be given andϕ = (uuu,z) ∈ Q be the unique solution of

A∗ϕ = η . By the very definition ofA we get that
∫

Ω
Cε(vvv):ε(uuu)dx =

∫

Ω
( fff−div(Cz))·vvvdx for all v∈ U ,

∫

Ω
(Cw:z+ν∇w:∇z+c2w:z)dx =

∫

Ω
(g+Cε(uuu)):wdx for all w∈ Z .
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Owing to the above-recalled regularity theory we have thatα def
= min{s, r} ∈ (0,1] is

such that

‖ϕ‖H1+α (Ω ;Rd×R
d×d
dev )

≤C‖( fff−div(Cz),g+Cε(uuu))‖X ′ ≤C(‖η‖X ′+‖ϕ‖Q)

whereα = 1 for Ω convex andΓNeu = /0. In particular, as clearly‖ϕ‖Q ≤C‖η‖X ′ ,
we have proved the regularity

‖ϕ‖H1+α (Ω ;Rd×R
d×d
dev )

≤C‖η‖X ′ . (9)

Next, we exploit the classical duality technique by Aubin and Nitsche [Aub67,
Nit68]. Assume to be given a (linear) projectorΠΠΠh : Q → Qh fulfilling

for all σ ∈ (0,1] ∃C > 0 for all ϕ̂ ∈ Q :

‖ϕ̂−ΠΠΠhϕ̂‖Q ≤Chσ‖ϕ̂‖H1+σ (Ω ;Rd×R
d×d
dev )

.
(10)

The latter can be realized, for instance, by taking L2-projections and the interpola-
tion error control of (10) follows from [HP∗05, Lemma 5.6]. Letq∈Q be fixed and
defineϕ ∈ Q as the unique solution ofA∗ϕ = (Ph−I)q∈ X ′. We have that, for all
ϕh ∈ Qh,

‖(Ph−I)q‖2
X = 〈A∗ϕ ,(Ph−I)q〉 = 〈A(Ph−I)q,ϕ〉 (7)

= 〈A(Ph−I)q,ϕ−ϕh〉

≤ ‖A‖Lin(Q,Q′)‖(Ph−I)q‖Q‖ϕ−ϕh‖Q ≤C‖q‖Q‖ϕ−ϕh‖Q.

By choosingϕh
def
= ΠΠΠhϕ we get that

‖(Ph−I)q‖2
X ≤C‖q‖Q‖ϕ−ΠΠΠhϕ‖Q

(10)
≤ C‖q‖Q hα‖ϕ‖H1+α (Ω ;Rd×R

d×d
dev )

(9)
≤ C‖q‖Q hα‖(Ph−I)q‖X

and the assertion follows.

The core of the proof of Theorem 3 is contained in the following proposition.

Proposition 1 (Key estimate). There existα ∈ (0,1] and Ckey > 0 independent ofτ
and h such that

max
t∈[0,T ]

‖q(t)−qτ,h(t)‖Q ≤Ckey
(
‖q0−q0,h‖Q+hα/2+τ1/2).

Moreover, ifΩ is convex andΓNeu = /0 thenα can be chosen asα = 1.

Proof. We clearly have that, for allt ∈ [0,T],

‖qτ,h(t)−q(t)‖Q ≤ ‖qτ,h(t)−qh(t)‖Q +‖qh(t)−q(t)‖Q. (11)

The first term in the above right-hand side can be estimated byusing the same
ideas of [MiT04, Prop. 7.2, Theorem 7.3]. Namely, there existsC1 > 0 such that
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‖qτ,h(t)−qh(t)‖Q ≤C1τ1/2. (12)

We estimate now the second term on the right hand side of (11).Sinceq andqh

solve(Q,E ,Ψ ,q0) and(Qh,E ,Ψ ,q0,h), respectively, we have

〈DqE (t,qh(t)),vh−q̇h(t)〉+Ψ(vh)−Ψ(q̇h(t)) ≥ 0 for all vh ∈ Qh, (13)

〈DqE (t,q(t)),v−q̇(t)〉+Ψ(v)−Ψ(q̇(t)) ≥ 0 for all v∈ Q, (14)

which hold a.e. in[0,T]. Choosingv = q̇h(t) in (14) and adding it to (13) we obtain

〈DqE (t,qh(t)),vh−q̇h(t)〉+ 〈DqE (t,q(t)), q̇h(t)−q̇(t)〉+Ψ(vh)−Ψ(q̇(t)) ≥ 0,

for all vh ∈ Qh. Using the triangle inequality this implies

〈DqE (t,qh(t))−DqE (t,q(t)), q̇h(t)−q̇(t)〉

≤ 〈DqE (t,qh(t)),vh−q̇(t)〉+Ψ(vh−q̇(t)) for all vh ∈ Qh.
(15)

Let us now evaluate the right-hand side of (15) by computing,for all vh ∈ Qh,

〈DqE (t,qh(t)),vh−q̇(t)〉+Ψ(vh−q̇(t))

≤ 〈Aqh(t),vh−q̇(t)〉+
(
‖DqH (qh(t))‖X ′ +‖ℓℓℓ(t)‖X ′ +CΨ

)
‖vh−q̇(t)‖X .

Using DqH ∈ CLip(Q,X ′) and lettingvh = Phq̇(t), we findC2 > 0 such that

〈Aqh(t)+DqH (qh(t))−ℓℓℓ(t),vh−q̇(t)〉+Ψ(vh−q̇(t))

≤ 〈Aqh(t),(Ph−I)q̇(t)〉+C2
(
1+‖qh(t)‖Q+‖q(t)‖Q

)
‖(Ph−I)q̇(t)‖X .

Theorems 1 and 2 give‖qh(t)‖Q ≤ Cstab, ‖q(t)‖Q ≤ Cstab and ‖q̇(t)‖Q ≤ CLip .

Hence, using (7)-(8) and settingC3
def
=

(
0+C2CP(1+2Cstab)

)
CLip we infer from (15)

that
〈DqE (t,qh(t))−DqE (t,q(t)), q̇h(t)−q̇(t)〉 ≤C3hα‖q̇(t)‖Q. (16)

Defineγ(t)
def
= 〈DqE (t,qh(t))−DqE (t,q(t)),qh(t)−q(t)〉 ≥ κ‖qh(t)−q(t)‖2

Q
where

the lower bound stems from the coercivity ofA and the convexity ofH . We have

γ̇(t) = 2〈DqE (t,qh)−DqE (t,q), q̇h−q̇〉+ 〈∂tDqE (t,qh)−∂tDqE (t,q),qh−q〉

+ 〈DqE (t,q)−DqE (t,qh)+D2
qE (t,qh)[qh−q], q̇h〉

+ 〈DqE (t,qh)−DqE (t,q)+D2
qE (t,q)[q−qh], q̇〉.

Exploiting DqH ∈ C1,Lip(Q,Q′) and estimate (16) providesC4 > 0 such that

γ̇ ≤ 2C3hα‖q̇‖Q +C4
(
0+‖q̇‖Q+‖q̇h‖Q

)
‖qh−q‖2

Q. (17)

Setting C5
def
= max(2C3,C4(0+2CLip)), we deduce from the definition ofγ and

(17) that we havėγ(t) ≤ C5
(
hα+γ(t)/κ

)
. Hence Gronwall’s lemma yieldsγ(t) ≤
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(
eC5t/κ−1

)
κhα +eC5t/κ γ(0). As we readily infer thatγ(0)≤C6‖q0,h−q0‖

2
Q

/κ with

C6
def
= ‖A‖Lin(Q,Q′) +CH for CH

def
= ‖DqH ‖Lip, we have obtained that

‖qh(t)−q(t)‖2
Q ≤

(
eC5t/κ−1

)
hα +C6eC5t/κ‖q0,h−q0‖

2
Q/κ . (18)

Carrying (12) and (18) into (11) we obtain the desired result.

Once Proposition 1 is established, the proof of Theorem 3 is concluded by the
following approximation result for initial data.

Lemma 2 (Approximation of initial data). There exists C0 > 0 and a choice of
approximated initial conditions q0,h ∈ Sh(0) such that, for h small,

‖q0−q0,h‖Q ≤C0hα/2 whereα ∈ (0,1] is the same as in(8).

Proof. The approximationsq0,h may be obtained by solving the following problem
q0,h = Argminq̂h∈Qh

{E (0, q̂h)+Ψ(q̂h−Phq0)}. By the triangle inequality, we find

E (0,q0,h) ≤ E (0, q̂h)+Ψ(q̂h−Phq0)−Ψ(q0,h−Phq0)

≤ E (0, q̂h)+Ψ(q̂h−q0,h), (19)

for all q̂h ∈ Qh. Namely, we have proved thatq0,h ∈ Sh(0). Sinceq0 ∈ S (0), we
haveE (0,q0)+ κ

2‖q̂−q0‖
2
Q
≤ E (0, q̂) +Ψ(q̂−q0) for all q̂ ∈ Q. Letting q̂ = q0,h

and using the triangle inequality and the minimality ofq0,h we obtain

κ
2
‖q0,h−q0‖

2
Q ≤ E (0,q0,h)−E (0,q0)+Ψ(q0,h−Phq0)+Ψ((Ph−I)q0)

(19)
≤ E (0, q̂h)−E (0,q0)+Ψ(q̂h−Phq0)+Ψ((Ph−I)q0)

for all q̂h ∈ Qh. When choosinĝqh = Phq0 we find

κ
2
‖q0,h−q0‖

2
Q ≤ E (0,Phq0)−E (0,q0)+Ψ((Ph−I)q0). (20)

Next, we evaluate the right hand side of (20) as follows

κ
2
‖q0,h−q0‖

2
Q ≤ E (0,Phq0)−E (0,q0)+Ψ((Ph−I)q0)

= 〈APhq0,(Ph−I)q0〉−
1
2
〈A(Ph−I)q0,(Ph−I)q0〉

+H (Phq0)−H (q0)−〈ℓℓℓ(0),(Ph−I)q0〉+Ψ((Ph−I)q0)

(7)
= −

1
2
〈A(Ph−I)q0,(Ph−I)q0〉−〈ℓℓℓ(0),(Ph−I)q0〉+Ψ((Ph−I)q0)

+

∫ 1

0
〈DqH (q0+s(Ph−I)q0),(Ph−I)q0〉ds. (21)

The integral term in the above right-hand side can be estimated as follows
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∫ 1

0
〈DqH (q0+s(Ph−I)q0),(Ph−I)q0〉ds

=

∫ 1

0
〈DqH (q0+s(Ph−I)q0)−DqH (q0),(Ph−I)q0〉ds

+

∫ 1

0
〈DqH (q0),(Ph−I)q0〉ds

≤

∫ 1

0
sCH ‖(Ph−I)q0‖Q‖(Ph−I)q0‖X ds+‖DqH (q0)‖X ′‖(Ph−I)q0‖X .

Hence, using (8) and (21), we find

κ
2
‖q0,h−q0‖

2
Q +

κ
2
‖(Ph−I)q0‖

2
Q

(21)
≤ CPhα‖q0‖Q

(
‖ℓℓℓ(0)‖X ′+CΨ +

CH

2
‖(Ph−I)q0‖Q+‖DqH (q0)‖X ′

)
.

The assertion follows by takingh small.
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