Error bounds for space-time discretizations of a
3D model for shape-memory materials
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Abstract This paper deals with error estimates for space-time diget®ns of
a three-dimensional model for isothermal stress-inducgtsformations in shape-
memory materials. After recalling existence and uniqusmesults, a fully-discrete
approximation is presented and an explicit space-time exgance rate of order
ha/2 4 t1/2 for somea < (0,1] is derived, which is valid uniformly on the whole
continuous time interval.

1 Introduction

This note is concerned with error control for fully-dis@etpproximations in the
context of solids undergoing martensitic transformatidnare specifically, we ad-
dress the description of the isothermal 3D quasistaticutisl of shape-memory
alloys (SMAs). The latter are metallic alloys showing sonuepsising thermo-

mechanical behavior, namely, strongly deformed specimegain their original

shape after a thermal cyclshape-memory efféctMoreover, within some specific
(suitably high) temperature range, SMAs argerelasticmeaning that they fully
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recover comparably large deformations. These featuresarpresent (at least to
this extent) in most materials traditionally used in Engirieg and, thus, are at the
basis of innovative and commercially valuable applicatiddowadays, SMAs are
successfully used in many applications among which bioozdlevices (vascu-
lar stents, archwires, endo-guidewires) and MEMS (actsat@lves, mini-grippers
and positioners).

We will focus on a phenomenological, small-deformation elddr polycrys-
talline materials describing both the shape memory anduperslastic effect. (In
the present isothermal reduction shape-memory effecttisatig not reproduced,
and we refer to [Mie07, MPPO8] for models driven by tempemtthanges.) The
model has been originally advanced b &A, MAMIYA , & ZOUAIN [SMZ98]
and then combined with finite elements by ccHio and collaborators [AuS01,
AuP04]. The state of the material is determined by its disgiaentu : Q — R
with respect to the reference configurationc RY (d = 2,3) and by a tensorial
internal variablez : Q — R3x¥ (deviatoricd-tensors) which represent the inelastic
part of the deformation, namelyz= € — Co whereC is the elasticity tensor anal
is the stress. In fac, corresponds to a sort of amientedproportion of detwinned
martensitesgroduct phasgwith respect to twinned martensites and austeipide-(
ent phasg

Our interest in this model is mainly motivated by its abilitydescribe (at least
to a qualitative extent) the thermomechanical behavior dAS by means of a
small number of easily fitted material parameters (7 mdteoastants in 3D). An-
other interesting feature of the Souza-Auricchio modelhst tit turns out to be
quite naturally posed in the frame of the variational theafrsate-independent sys-
tems [Mie05]. This feature was indeed exploited in [AMSO8here wellposedness
issues for continuous problems (constitutive relation qudsistatic evolution) as
well as the convergence of discretizations and regulaoizathas been discussed.
In particular some fully-discrete approximatiaig , z; ,) obtained by implicit Eu-
ler discretization in time1(is the fineness of the time-partition) and piecewise linear
finite elements in spacé (s the mesh size) are proved in [AMS08, Theorem 7.1] to
converge to the unique solution of the time-continuous gtettc evolution prob-
lem.

The focus of this note is to provide explicit convergencesan space and time
for these fully-discrete approximations. In particulag sheck that

S0 € (0,1] ¢ Ju—tr it gz 1220l aggupna, < O(MT/2472).

In the special case of a convex polyhedf@mand homogeneous Dirichlet conditions
for the displacement the parametecan be chosen to bee = 1. A more elaborate
and general theory will be developed in [MI].

The above quantitative control is, to our knowledge, the fesult in this direc-
tion in the context of the mechanics of solid-solid phasedfarmations. Note that
our error estimate is derived under natural regularity iregoients. Namely, it de-
pends solely on data and no extra-smoothness of the solutianis assumed. This
specific feature sets this result apart from the existimgdiure on error control for
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time- or space-time discretizations of variational eviolufproblems (inequalities)
arising in elasto-plasticity (see [ACZ99, HaR99]).

Related numerical approaches to rate-independent manteé®\A are given in
[KMRO5, MiR08, MPPO08]. However, there the method lofconvergence is em-
ployed, which guarantees the convergence of subsequenbeara provides no
quantitative error estimates.

2 The mechanical model

We briefly review the mechanical model, the interested neaéeng referred to
the original papers [SMZ98, AuP02, AuP04, ARSO07] for additil details. Let the
reference configuratiof® be a non-empty, bounded, and connected polyhedron in
RY (d = 2,3). We assume the boundady? to be partitioned in two disjoint open
setsveu and Ipjr With dMveu = dMpir (in 0Q) such thatlpir has positive surface
measure.

Moving into the frame of Generalized Standard Materiale @&g., [Mie06] and
within the small-strain regime), we additively decompdeelinearized deformation
€ = €(u) = 1(Ou+0u"), whereu is the displacement, into the elastic pagte
ngxrﬁ and the inelastic (or transformation) past Rggvd. The free energy density of
the material depends @only via g = €—z

W(e,2) = %C(e—z):(e—z)JrH(z)Jr%|Dz|2. (1)

Here,C is a positive definite elasticity tensor (for isotropic m&ks, for simplicity),
v > 0 is expected to measure some nonlocal interaction effethéinternal vari-
ablez, andz stands for the usual gradient with respect to spatial veegalindeed,
gradients of inelastic strains have already been considarthe frame of shape-
memory materials by REMOND [Fré02] and the reader is referred also taMDT
ET AL. [AGRO03], FRIED & GURTIN [FrG94], MIELKE & ROUBICEK [MiR03] for
examples and discussions on nonlocal energy contributitinally, thehardening
function H: R9x9 — R is given by

dev
22, (4-ca)t
H(z) = c1\/p2+|Z2 + = — 2
(2) = c14/p2%+]|7 +2|z| +p(1+|z|2) 2

where the user-defined parameger- 0 is small andc,, ¢y, andcs are given and
represent a superelastic-transformation stress-activigvel, a hardening modulus
with respect to the internal varial#eand the maximum modulus of transformation
strain that can be obtained by alignment (detwinning) oftlagtensitic variants, re-
spectively. One has to mention that this specific foriModan be much generalized
and is here fixed for definiteness only. In particul&ris a p-approximation of the
original choice of [SMZ98] which in turn corresponds to tirit (p,v) — (0,0)
(see [AMS08]).
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The constitutive relations are given in the form

0=0W/de =C(e-2), (3a)
& =-0W/dz=C(e—2z)—D;H(2) + vAz, (3b)

whereé denotes the thermodynamic force associated wiffhe evolution of the
material will be described by the following classical relat:

¢ eRO|Z, (3c)
divo+f=0inQ, on=T in ey, U=0in pj, (3d)

The latter equation gives the equilibrium equations, wHeaadT are a given body
force and a surface tension, respectively. The flow rule¢8mesponds to the clas-
sical generalized normality assumpti@gR > 0O is the fixedtransformation radiujs
and the symbaod stands for the subdifferential in the sense of convex aiglyg.,

& cRAlzl ifandonlyif &:(w—2) +Rw —R/Z <0 forallwe Ry

dev

3 Thevariational formulation

For the admissible displacementsind the internal stateswe choose the natural
function spaces

7% 2 {ueH(QRY) [u=0onlor }. 7 “HYQREY), 227 x 2.

dev

def

Later we will also need the larger spagé = L2(Q,RY x R9:Y). The symbo-, -)

denotes the duality pairing betweel and 2. For the loadingd andT in (3d) we
require tha¥ defined via

/ f(t)-udx+ [ T(t)-udx,

I'Neu

satisfies € C1([0,T]; 27). Furthermore, we choose an initial datag= (Uo, o) €
.7 (0) where the set”(t) of stable states at timed [0, T] is defined as the set of alll
g= (u,2) € 2 satisfying the condition

/Wuzdx @) /Wuzdx () +/R|z Zdx  (4)

forallg= (u,2) € 2.
The variational formulation of (3) consists in findigg [0, T| — 2 such that
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= o, (5a)
e(vydx=(¢,v) forallve %, (5b)

0
b\b\g

u)) + DzH(2)):(w—2) + vOzO(w—2)) dx
+/ R|w|dx—/ RZdx>0 forallwe %, (50)
Q Q

almost everywhere in time. The following wellposednesothm is proved in
[AMSO08], see also [Mie06, Sec.5.3].

Theorem 1 (Wellposedness). For each ¢ € .»#(0) problem(5) admits a unique
solution g: [0, T] — 2, which even lies ii€-P ([0, T]; 2).

4 Space-time discretization: main result

Let us now introduce our space-time discretization of (B)Iﬁ‘s aim, we choose
a sequencéll;);-o of partitions{0 =1t < t! < ... <t = T} of the time in-
terval [0, T] with max{tk —tk-1 : k= 1,...,kr} g T and a sequenceZp)p-o of
finite-dimensional spaces exhaustigy In particular, assume to be given a regu-
lar triangulation{ %} of Q [QuV94] and choos&, and %, to be the subspaces
of continuous, piecewise polynomials of fixed degnee 1 on { %}. Finally, let
D0 E 9, x Z. As for the initial value, we shall ask foph € #h(0) where the set
of approximate stable statés defined as in (4) by replacing by 2;,.

Our space-time discretization of (5) consists in findiig, = (U, .2 ) € 2;
fori=0,1,...,k; such that ' -

d2h = Gon, (62)

/ C(e(Uy ) —2 ):e(Vh) dx = (£(t}),vn)  for all vy € %, (6b)

/Q( (Z n—&(Up ) +DZH(Z ): (W07 ) + VOZ y:0(Wh— 37 1)) d
+/QR|wh|dx_/QR|5z;,h|dxzo for allwh € (6¢)

fori=1,... ,k;. Here we used the short-hand notation
5£r,h < ﬁr—l (ir,h—irfhl)

which will also be used foqir‘h later on. Because of convexity the conditions (6b)-
(6¢) are equivalent to solving incremental minimizationlgems, see [Mie05].

We shall denote by; h = (Urn,zn) - [0, T] — 2h C 2 the piecewise-constant-
in-time interpolants of the above fully-discrete solusom particular,
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def k—1 k—1 k def K
Orn(t) =0ry for tr - <t<t;, k=1....k and qrn(T) =07,

The above scheme has been proved to be wellposed and camvierg@MS08]
(but see also [MiT04] and the detailed analysis of [®, Appendix]).

Theorem 2 (Wellposedness, stability, and convergence). For all gon € #(0),
there exists a unique'Lq solving(6). Moreover, there existsdp > 0 such that

Ide nll 2+ |00 p|| , < Cstan  foralli =1,....k andallh> 0.

If additionally qp, — qo in 2, then rrec?ﬁ llar n(t)—q(t)
telo, ’

g convergest® ast+

h— 0, where g [0, T] — 2 is the unique solution of Theorem 1.

The purpose of this work is to establish a quantitative caysece result giving
explicit convergence rates with respect to the meshhsifehe spatial discretization
and the timestep. Our main result reads as follows:

Theorem 3 (Space-time convergence rates). There existo € (0,1] and G > 0
(all independent front and h) such that the following holds. For each€.~(0)
there exists a sequencge -#1(0) of approximating initial data, such that

max Hq(t)_qr,h(t)nﬂ < Cerr(ha/z—i—'l'l/z)
te[0,T]

where g and ¢ are the unique solutions db) and (6), respectively. In cas is
convex and ey = 0, one can choose = 1.

A proof of this error estimate has been obtained in [I#] in the more general
setting of an abstract evolutionary inequality. In the prgsconcrete situation of
SMAs the error-control argument is somehow simpler. Heneare able to provide
a full proof below.

5 Proof of theerror estimate
Define the functionalg’: [0,T| x 2 - R, 2 : 2 - R, and¥ : 2 — [0, ] via

£(ta)® [ Wu2o (€(0).9).
#@2 [ (H@-F22)d  w@2 [ Rzjox

In particular, note that there exisBy > 0 such that, for alf € 2, we have that
W(q) <Cyllql| 2. LetA € Lin(2,2') be defined by

def

AQ=Dqe'(t,q) — Dg’(q) + £(1),
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that is, for all(v,w) € 2,
(A(u,2), (v,w)) = /Q (C(s(u)—z):(s(v)—w) + CozW+ VDZZDW) dx.

Note thatA is symmetric and coercive, namely there exists 0 such thatAq, q) >
k||q||%, for all g€ 2. Finally, letP, : 2 — 2;, be the Galerkin projector vi&, which
is defined such th@,q is the unique solution of

(APha, pn) = (Aq,pn)  forall ph € 2. (7)

The Galerkin projectorBy, are uniformly bounded with respect hoand commute
with A, i.e.,P{A = APy,

The next lemma provides a useful approximation propertyhefGalerkin pro-
jectors. Note that this lemma crucially relies on thié-FHregularity of the associated
linearized stationary problem for (5). Lebe the identity on2.

Lemma 1 (Approximation property). There existr € (0,1] and G > 0 such that
[(Ph—=1)dll2 < Cph%[|q

If Q is convex andney = 0 thena can be chosen as = 1.

o forallh>0andallqe 2. (8)

Proof. Within this proof, the symbdC stands for a generic positive constant, pos-
sibly depending on data only. Let us start by recalling thathe present setting,
given f € L?(Q;RY), the unique solutiom € % of the boundary value problem of
linearized elastostatics

/ Ce(v):e(u)dx = / f-vdx forallve %
Q JQ

belongs to H*S(Q;RY) for somes € (0,1] ands = 1 for Q convex andyey = 0
[Gri92, Section 4.6, p. 148]. At the same time, givga L?(Q;RJ:Y), the unique
solutionze Z of the elliptic system

/(CWZZ—!—VDWZDZ—!—CZWZZ) dx:/ gwdx forallwe 2
Q Q

is such thag € H*" (Q; R$xY) for somer € (0,1] with r = 1 if Q is convex [Gri92,
Corollary 2.6.7, p. 79].

Letnown = (f,g) € 2”7 be given andh = (u,z) € 2 be the unique solution of
A*¢ = n. By the very definition oA we get that

/ Ce(v):e(u)dx = / (f—div(Cz))-vdx forallve 7,
JQ JQ

/(Cw:z+va:Dz+czw:z)dx=/ (g+Ce(u)):wdx forallwe Z.
Q Q
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Owing to the above-recalled regularity theory we have th& min{s,r} € (0,1] is
such that

10 hase s g, < CI(E~dV(C2), 0+ Ce(W) 0 < (Il 1+]8]1 2)

wherea = 1 for Q convex and'ney = 0. In particular, as clearlif¢|| 2 <C|[n|l 2,
we have proved the regularity

19l 1400 o cmtze) < ClInll. )

Next, we exploit the classical duality technique by Aubirdaxitsche [Aub67,
Nit68]. Assume to be given a (linear) projecf@y, : 2 — 2y fulfilling

forallo € (0,1] 3C>O0forall$ € 2 :

10
1$=TTh8ll2 < Ch7[I$ ]l 1100 pa e -

The latter can be realized, for instance, by takifgpkojections and the interpola-
tion error control of (10) follows from [HRO5, Lemma 5.6]. Let| € 2 be fixed and
defineg € 2 as the unique solution &*¢ = (P,—1)g e 2. We have that, for all
dn € D,

1(Ph—1)all%- = (A*$, (Pa—1)a) = (A(Ph—1)a, 8) L (A(Ph—1)a, d—br)
< [|AllLin(2,2) |(Ph=1)dl 2/|¢ —¢nll 2 < Cl|al| 2/|¢ —¢nl| 2

By choosingpn < IM,¢ we get that

I(Ph—1)all% <Cllall2ll¢—Mh¢

(10)
< Clq

2 2

2h|(Ph—)all 2

9)
2 h(I ||¢ HH1+G(_Q;RdXRg;<Vd) S C”q

and the assertion follows.

The core of the proof of Theorem 3 is contained in the follaypmoposition.
Proposition 1 (Key estimate). There existr € (0,1] and Gey > 0 independent of
and h such that

[max [at)—dea(t)lle < Ciey(/|do—Con| 2+h/?+1%?).

Moreover, ifQ is convex andiney = 0 thena can be chosen as = 1.
Proof. We clearly have that, for alle [0, T],
[[arn(t)—a(t) 2. (11)

The first term in the above right-hand side can be estimateashng the same
ideas of [MiT04, Prop. 7.2, Theorem 7.3]. Namely, theretsxis > 0 such that

2 < [|Gra(t)—an()] 2 + llan(t)—a(t)
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0z h(t)—0n(t)] 2 < CrT%2. (12)

We estimate now the second term on the right hand side of §id¢eq andgy
solve(2,&,W,qo) and(Zh, &, W, o), respectively, we have

(Dg€'(t,ahn(t)), Va—Gn(t)) + ¥(vn) — W(Gn(t)) >0 forallva € Zn,  (13)

(Dgé(t,q(t)),v=a(t)) + ¥(v) —¥(q(t)) =0 forallve 2, (14)

which hold a.e. irff0, T]. Choosingv = @x(t) in (14) and adding it to (13) we obtain

(Dgé (L, an(t)); Va—=an(t)) + (Da&'(t, A(t)), Ga(t) —q(t)) + ¥ (vn) — ¥(4(t)) = O,
for all vy € 2). Using the triangle inequality this implies

{Dgé (t, an(t))—Daé (t,q(t)), n(t) —a(t)

< (Daf(t, an(t)). - (1)) + P(u—4(t) forallvye 2, )

Let us now evaluate the right-hand side of (15) by compufimgall v, € 2y,

(Dg&(t,an(t)), va—q(t)) + ¥ (vh—q(t))
< (AGh(t),vn—0(t)) + (IDg2 (an(t))[| 27 + [1€) || 27 + Cuw) [[Va—G(t) || 2--

Using D7 € CHP(2, 27') and lettingv, = Prq(t), we findC, > 0 such that

{Aah(t)+Dg2 (an(t)) —£(t), va—q(t)) + ¥ (vn—q(t))
< (Adn(t), (Ph—=1)q(t)) +Co(1+]|an(t) | 2 +lat)[.2) [ (Pa—=1)G(t)]|2-

Theorems 1 and 2 givédh(t)| 2 < Cstab [|d(t)]l.2 < Cstap and [|g(t)[| 2 < Crip.

Hence, using (7)-(8) and settiiy < (0—|—C2Cp(1+2cstab))(:|_ip we infer from (15)

that
(Dgé'(t,an(t))—Dqé (L, q(t)), an(t) —4(t)) < C3h[|a(t)]| 2- (16)
Definey(t) £ (Do (t, Gn(t))—Daé (t. (1)), an(t)—a(t)) > l|an(t)—q(t)||% where
the lower bound stems from the coercivitydfand the convexity of#’. We have
y(t) = 2(Dgé (t, 0n) —Dgé (t, ), Gh—0) + (& Dgé (t, dh) — 4 Deé'(t, 4), Gr—0)
Dqé(t,d) ~Dqé (¢, 6h) +DZE (¢, tn) [ah—cl, )
Dqé (t,6h) —Dq (t, A)+DEE (¢, A) [a—ahn], )

Exploiting Dg# € CLHP (2, 2') and estimate (16) provid€ > 0 such that

+
+

y < 2C3h?)|d| 2 +Ca(0+]|G]l 2+ |Ghl 2) lan—al|%- (17)

Setting Cs « max(2Cs3,C4(0+2C.ip)), we deduce from the definition of and
(17) that we have/(t) < Cs(h“+y(t)/k). Hence Gronwall's lemma yieldg(t) <
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(e%t/K —1) kK + €551/ y(0). As we readily infer thay(0) < Cg||don—0o||%/K with
Cs = ||AllLin(2,2/) + C for Cyr = ||Dg. ||Lip, We have obtained that

llan(®)—a(t) % < (€= ~1)h + Cee™/ | don—ol|%/ . (18)
Carrying (12) and (18) into (11) we obtain the desired result

Once Proposition 1 is established, the proof of Theorem ®mladed by the
following approximation result for initial data.

Lemma 2 (Approximation of initial data). There exists &> 0 and a choice of
approximated initial conditionsgh, € .#4(0) such that, for h small,

|qo—Gonl| 2 < Coh®/2 wherea € (0,1] is the same as i(B).

Proof. The approximationgp, may be obtained by solving the following problem
oh = Argming, c 9, {&'(0,Gn)+%(Gh—Pndo) }- By the triangle inequality, we find

&(0,00,n) < £(0,Gh) + ¥(Gh—Pndo) — ¥(do.n—Pndo)
< &(0,0n) + W(Gh—don), (19)

for all G, € 2. Namely, we have proved thag, € .#1(0). Sinceqg € (0), we
haveé& (0,0o) + §(|G—do[|%, < £(0,0) + W(G—qp) for all G € 2. Letting § = qop
and using the triangle inequality and the minimalityogf, we obtain

gHQO,h_QO”f@ < &(0,90h) — &'(0,00) + ¥(don—Pno) + ¥ ((Ph—1)do)
(1§9) &(0,8h) — &(0,0o) + ¥ (Gh—Pndo) + ¥((Pn—1)00)
for all §,, € 2. When choosingj, = Phqgo we find
5lcon—tol% < £(0.Phgo) = £(0.00) + W(Pr—N)a).  (20)
Next, we evaluate the right hand side of (20) as follows

K
5 1d0n—oll% < &(0,Pnao) — £(0,00) + ¥((Ph—1)do)

= (APy, (Pr—1)do)— 5 (A (Py—1)do, (P 1))

+ (Pdo) — 7 (qo) — (£(0), (Ph—1)qo) + ¥((Ph—1)do)

@ (AP0, (Ph—1)00) ~(£(0), (Ph—1)do) + W((Pr—1)co)

—i-'/()'l(Dqﬁf(QO-i-S(Ph—l )%o), (Ph—1)qo) ds. 1)

The integral term in the above right-hand side can be estidnas follows
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1
| (ot (a0 s(Pr1)co). (P~ o) s
1
— [ (D4t (ao+5(Pr—1)d0)~Da (o). (Pr—1 i) ds

1
+ [ (gt (q0). (Pr-1)co) ds

1
S/O SCr ||(Pn—1)dol| 2[|(Ph—1)dol| 2 ds+ [[Dq 2 (o) [| 2 | (Pn—1) ol -

Hence, using (8) and (21), we find

K
~|[(Ph—1)0ll%

2
C,
o (11€00)17+Co+ =2 | (Ph—1)do

o+

EH _
2 Co.n—0o

(21) a
< Cph®|qo

2+(Dg (o) 5 ).

The assertion follows by takingsmall.
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