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On the existence for viscoelastodynamic problems with uralteral bound-
ary conditions
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This note deals with a damped wave equation and the evolafiarKelvin—\oigt viscoelastic material, both problemsrigei
subject to unilateral boundary conditions. The functigmalperties of all the traces are precisely identified thhoEgurier
analysis, which implies the existence of a solution saitigfyalmost everywhere the unilateral boundary conditions.
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1 The damped wave equation with unilateral boundary conditons

We consider a damped wave equation taking place in a hatfespéth an obstacle at the boundary. Lét, ¢) denote the
displacement at time of the material point of spatial coordinate= (x1,2’) € [0,00) x R4~! at rest withd > 2. We will
agree that if we write a function of space and time as a funaifdhree variables, then the first variable is the normatspa
variablex;, the second variable is the tangential space variahland the last variable is time. L¢{x,t) be a density of
forces, depending on space and time. The mathematicalgnablformulated as follows:

up(,t) — Au(z, t) — Aug(z,t) = f(2,t), 2 € (—00,0] x R >0, (1)
with Signorini boundary conditions

w(0,+,+) >0,  ug, (0, )+ug,e(0,+,-) >0,  w(0,-,)(ug (0, )+uz,(0,--)) =0, ()
and Cauchy initial data

u(-,0) =ug and wuy(-,0) = uy, 3)

where( ) = &0 5 () and(:),, e 61 (). The existence result for (1)—(3) is proved by the penaltshoe. More precisely, let
u® be a solutlon of (1) and (3) with the rigid constraint (2) whis now replaced by a very stiff response, i.e.

ugl(oa'a')—i_u;]t(oa'a') = %(ué(ov'v'))ia (4)
where(u<(0,-,-))~ = min(u(0, -, -),0). A priori estimates on the penalized problem allow to pasiédimit with respect
to the penalty parameterand to deduce the existence of a weak solution to (1)—(3).r&aeéer can find the detailed proof
in[2,3].

The trace space is characterized by using Fourier analysislo so, we introduce® £ e "(u*—u), v > 0, which is a
solution of

(v40,)2v (, 1) — (14v+0,) AvS(z,t) =0, € (—00,0] x R¥™1 ¢ >0, (5a)
(1+V+at) ( L) ) =—¢ Ut(uwl (0 .)+a$1t(07 ) )) - %(U€(Ov ) ')+e_yt’ﬁ(0v ) '))_7 (Sb)
ve(-,00=0 and v;(-,0)=0. (5¢)

Hereu is the solution of (1) with Dirichlet data and initial datg (3Ve define\; as the inverse Fourier transform of the causal

determination of 1+v+iw) |E|2+§’j:_fw where¢ andw denote, respectively, the dual variablest@ndt. Then (5) can
be written as follows

Ak 06(0, ) = —e V(g (0, -, ) H+1g, ¢ (0, -, ) + 2(v(0, -, ) +e a0, -, ), (6)

€

wherev®(0, -, -) vanishes for alt < 0. Recall that(0, 2’, t) belongs to the Sobolev spaHéc;fj(Rd—lx[O, )), (a,b) € R?,
iff |&|*u(0, 5, ) and |w|’%(0, ¢, w) belong toL?(R9). Here(0, ¢, w) denotes the Fourier transform af0, 2/, ¢). If g
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belongs td1%/?((—oc, 0] x R4~1), u; belongs td1! ((—oo, 0] x R?~1), andf belongs td.2 ([0, 00); L2((—oc, 0] x R4~1)),
then the tracei,, (0, -, -)+.,¢(0, -, -) increases at most polynomially with respect to timé.#{[0, co); L2(R4~1)). Hence
multiplying (6) by (14+v)v<(0, -, -) + v£(0, -, -) and estimating the pseudodifferential term in the Fouraiable, we obtain
the following lemma

Lemma 1.1 Letu® be the solution o{1), (3) and(4). Then we may extract a subsequence, still denoted Isyich that

u¢(0, -, -) converges weakly to(0, -, -) in Hllo/f’5/4((—oo, 0] x R?~1). Moreoveru is a strong solution of1)~(3).

2 The evolution of a Kelvin—Voigt material with unilateral b oundary conditions

We treat now the evolution of a Kelvin—\oigt material occiupya three dimensional half-space, satisfying unilateoaindary
conditions and Cauchy datatat 0. We make the assumptions of small deformations and we canis@te a homogeneous

der

and isotropic material. Let;;(u) = 3(uj..,+ui ;) be the strain tensor, and let there be given two Hooke terkinsed

by using Lamé constants® and u™, aiip « A"036k1 + 26051, n = 0,1, whered is the Kronecker symbol. Using the
summation convention on repeated indices, we define thettessstensors;’; corresponding, respectively, to the elastic and

the viscous parts of the stresg (u) = atiri(u). The displacement field satisfies the system

pui (@, t) — oy, (u(z, 1) — o, (w2, ) = fi(z,t), i=1,2,3, ze[0,00) xR >0. (7)
The boundary conditions of0} x R? x [0, o) are

ur <0, ofy(u) + oty (u) <0, w0 (u) + oy (ur)) =0, (8a)

oy (u) +aiy(us) =0 and 0% (u) + oi5(us) =0, (8b)
and the initial data are given by

u(,0) =vg and wu(-,0) = ;. 9)

As for the damped wave equation with unilateral boundand@@ns, the existence result is obtained by the penaltyhoukt
We introduce the penalized problem, namely;lebe a solution of (7), (8b), (9) and

ot (u) + o1y (u) = —¢(uf) ™ on {0} x R? x [0, 00), (10)

where (u$)™ = max(u$,0). A priori estimates on the penalized problem and care watiie to the unboundedness of
[0,00) x R? allow to pass to the limit in the penalized variational fotation and to infer the existence of a solution to
(7)—(9), for the detailed proof the reader is referred to [8dte that the Korn’s inequality plays a crucial role to abthese
a priori estimates. A much more general and complicatedisaseated in [1], since it allows for contact, a given frictiat
the boundary, a nonlinear constitutive law for viscoetatsti and a general geometry.

We characterize now the trace spaces. &k the solution of (7), (8b), (9) with Dirichlet boundary dattxz; = 0. If
vo belongs to(H>/2([0, 00) x R?))3, v; belongs to(H! ([0, 0o) x R?))?3, andf belongs ta(L2 ([0, 00); L2([0, 00) x R?)))3,
then the trace- (a9, ;61 (@) + alyem () 0N {0} x R? x [0, 00) increases exponentially with respect to timé.f). ({0} x
R? x [0, c0)) and not polynomially as in the case of the damped wave equaiit Dirichlet boundary. The trace spaces are
determined by using analogous techniques already dewtfopéhe damped wave equation, but here a Fourier transform i
the tangential variableg:s, 23, t) and a Laplace transform iry lead to the following lemma:

Lemma 2.1 Letu® = (u§,u$,us)" be the solution o{7), (8a) (9) and (10). Then we may extract a subsequence, still
denoted by:§, such that$ (0, -, -) converges weakly te, (0, -, -) in H,lo/f"r’/‘l(R2 x [0,00)). Moreoveru is a strong solution
of (7)~9).

Remark 2.2 Nothing is known about the uniqueness for the damped wavatiegquas well as for the evolution of Kelvin—
\Voigt material in the case where both problems are subjdotadilateral boundary conditions.
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