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On the existence for viscoelastodynamic problems with unilateral bound-
ary conditions
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This note deals with a damped wave equation and the evolutionof a Kelvin–Voigt viscoelastic material, both problems being
subject to unilateral boundary conditions. The functionalproperties of all the traces are precisely identified through Fourier
analysis, which implies the existence of a solution satisfying almost everywhere the unilateral boundary conditions.
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1 The damped wave equation with unilateral boundary conditions

We consider a damped wave equation taking place in a half-space, with an obstacle at the boundary. Letu(x, t) denote the
displacement at timet of the material point of spatial coordinatex = (x1, x

′) ∈ [0,∞) × R
d−1 at rest withd ≥ 2. We will

agree that if we write a function of space and time as a function of three variables, then the first variable is the normal space
variablex1, the second variable is the tangential space variablex′, and the last variable is time. Letf(x, t) be a density of
forces, depending on space and time. The mathematical problem is formulated as follows:

utt(x, t) − ∆u(x, t) − ∆ut(x, t) = f(x, t), x ∈ (−∞, 0] × R
d−1, t > 0, (1)

with Signorini boundary conditions

u(0, ·, ·) ≥ 0, ux1
(0, ·, ·)+ux1t(0, ·, ·) ≥ 0, u(0, ·, ·)(ux1

(0, ·, ·)+ux1t(0, ·, ·)) = 0, (2)

and Cauchy initial data

u(·, 0) = u0 and ut(·, 0) = u1, (3)

where(·)t
def
= ∂

∂t (·) and(·)x1

def
= ∂

∂x1

(·). The existence result for (1)–(3) is proved by the penalty method. More precisely, let
uǫ be a solution of (1) and (3) with the rigid constraint (2) which is now replaced by a very stiff response, i.e.

uǫ
x1

(0, ·, ·) + uǫ
x1t(0, ·, ·) = 1

ǫ (uǫ(0, ·, ·))−, (4)

where(uǫ(0, ·, ·))−
def
= min(uǫ(0, ·, ·), 0). A priori estimates on the penalized problem allow to pass tothe limit with respect

to the penalty parameterǫ and to deduce the existence of a weak solution to (1)–(3). Thereader can find the detailed proof
in [2,3].

The trace space is characterized by using Fourier analysis.To do so, we introducevǫ def
= e−νt(uǫ−ū), ν > 0, which is a

solution of

(ν+∂t)
2vǫ(x, t) − (1+ν+∂t)∆vǫ(x, t) = 0, x ∈ (−∞, 0] × R

d−1, t > 0, (5a)

(1+ν+∂t)v
ǫ
x1

(0, ·, ·) = −e−νt(ūx1
(0, ·, ·)+ūx1t(0, ·, ·)) − 1

ǫ (vǫ(0, ·, ·)+e−νtū(0, ·, ·))−, (5b)

vǫ(·, 0) = 0 and vǫ
t (·, 0) = 0. (5c)

Hereū is the solution of (1) with Dirichlet data and initial data (3). We defineλ1 as the inverse Fourier transform of the causal

determination of(1+ν+iω)
√
|ξ|2+ (ν+iω)2

1+ν+iω whereξ andω denote, respectively, the dual variables tox′ andt. Then (5) can
be written as follows

λ1 ∗ vǫ(0, ·, ·) = −e−νt(ūx1
(0, ·, ·)+ūx1t(0, ·, ·)) + 1

ǫ (vǫ(0, ·, ·)+e−νtū(0, ·, ·))−, (6)

wherevǫ(0, ·, ·) vanishes for allt ≤ 0. Recall thatu(0, x′, t) belongs to the Sobolev spaceHa,b
loc(R

d−1×[0,∞)), (a, b) ∈ R
2,

iff |ξ|aû(0, ξ, ω) and |ω|bû(0, ξ, ω) belong toL2(Rd). Here û(0, ξ, ω) denotes the Fourier transform ofu(0, x′, t). If u0

∗ E-mail: petrov@wias-berlin.de, Phone: +49 302 037 2460, Fax: +49 302 044 975
∗∗ E-mail: schatz@math.univ-lyon1.fr, Phone: +33 472 448 526, Fax: +33 472 431 687

Copyright line will be provided by the publisher



2 PAMM header will be provided by the publisher

belongs toH5/2((−∞, 0]×R
d−1), u1 belongs toH1((−∞, 0]×R

d−1), andf belongs toL2
loc([0,∞); L2((−∞, 0]×R

d−1)),
then the tracēux1

(0, ·, ·)+ūx1t(0, ·, ·) increases at most polynomially with respect to time inL2([0,∞); L2(Rd−1)). Hence
multiplying (6) by(1+ν)vǫ(0, ·, ·) + vǫ

t (0, ·, ·) and estimating the pseudodifferential term in the Fourier variable, we obtain
the following lemma:

Lemma 1.1 Let uǫ be the solution of(1), (3) and (4). Then we may extract a subsequence, still denoted byuǫ such that
uǫ(0, ·, ·) converges weakly tou(0, ·, ·) in H

1/2,5/4
loc ((−∞, 0] × R

d−1). Moreoveru is a strong solution of(1)–(3).

2 The evolution of a Kelvin–Voigt material with unilateral b oundary conditions

We treat now the evolution of a Kelvin–Voigt material occupying a three dimensional half-space, satisfying unilateralboundary
conditions and Cauchy data att = 0. We make the assumptions of small deformations and we consider here a homogeneous
and isotropic material. Letεij(u)

def
= 1

2 (uj,xi
+ui,xj

) be the strain tensor, and let there be given two Hooke tensorsdefined

by using Lamé constantsλn andµn, an
ijkl

def
= λnδijδkl + 2µnδikδjl, n = 0, 1, whereδ is the Kronecker symbol. Using the

summation convention on repeated indices, we define the two stress tensorsσn
ij corresponding, respectively, to the elastic and

the viscous parts of the stressσn
ij(u)

def
= an

ijklεkl(u). The displacement fieldu satisfies the system

ρui,tt(x, t) − σ0
ij,xj

(u(x, t)) − σ1
ij,xj

(ut(x, t)) = fi(x, t), i = 1, 2, 3, x ∈ [0,∞) × R
2, t > 0. (7)

The boundary conditions on{0} × R
2 × [0,∞) are

u1 ≤ 0, σ0
11(u) + σ1

11(ut) ≤ 0, u1(σ
0
11(u) + σ1

11(ut)) = 0, (8a)

σ0
12(u) + σ1

12(ut) = 0 and σ0
13(u) + σ1

13(ut) = 0, (8b)

and the initial data are given by

u(·, 0) = v0 and ut(·, 0) = v1. (9)

As for the damped wave equation with unilateral boundary conditions, the existence result is obtained by the penalty method.
We introduce the penalized problem, namely, letuǫ be a solution of (7), (8b), (9) and

σ0
11(u) + σ1

11(ut) = − 1
ǫ (uǫ

1)
+ on {0} × R

2 × [0,∞), (10)

where(uǫ
1)

+ def
= max(uǫ

1, 0). A priori estimates on the penalized problem and care relative due to the unboundedness of
[0,∞) × R

2 allow to pass to the limit in the penalized variational formulation and to infer the existence of a solution to
(7)–(9), for the detailed proof the reader is referred to [3]. Note that the Korn’s inequality plays a crucial role to obtain these
a priori estimates. A much more general and complicated caseis treated in [1], since it allows for contact, a given friction at
the boundary, a nonlinear constitutive law for viscoelasticity, and a general geometry.

We characterize now the trace spaces. Letū be the solution of (7), (8b), (9) with Dirichlet boundary data atx1 = 0. If
v0 belongs to(H5/2([0,∞) × R

2))3, v1 belongs to(H1([0,∞) × R
2))3, andf belongs to(L2

loc([0,∞); L2([0,∞) × R
2)))3,

then the trace−(a0
11klεkl(ū)+a1

11klεkl(ūt)) on{0}×R
2× [0,∞) increases exponentially with respect to time inL2

loc({0}×
R

2 × [0,∞)) and not polynomially as in the case of the damped wave equation with Dirichlet boundary. The trace spaces are
determined by using analogous techniques already developed for the damped wave equation, but here a Fourier transform in
the tangential variables(x2, x3, t) and a Laplace transform inx1 lead to the following lemma:

Lemma 2.1 Let uǫ = (uǫ
1, u

ǫ
2, u

ǫ
3)

T be the solution of(7), (8a), (9) and (10). Then we may extract a subsequence, still

denoted byuǫ
1, such thatuǫ

1(0, ·, ·) converges weakly tou1(0, ·, ·) in H
1/2,5/4
loc (R2 × [0,∞)). Moreoveru is a strong solution

of (7)–(9).

Remark 2.2 Nothing is known about the uniqueness for the damped wave equation as well as for the evolution of Kelvin–
Voigt material in the case where both problems are subjectedto unilateral boundary conditions.
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