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Existence and approximation for a 3D model of thermally-induced phase
transformations in shape-memory alloys
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This note deals with a three-dimensional model for thermal stress-induced transformations in shape-memory materials. Mi-
crostructure, like twined martensites, is described mesoscopically by a vector of internal variables containing the volume frac-
tions of each phase. The problem is formulated mathematically within the energetic framework of rate-independent processes.
An existence result is proved and we study space-time discretizations and establish convergence of these approximations.
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1 Mathematical formulation

We consider a material with a reference configurationΩ ⊂ R
d with d ∈ {2, 3}. This body may undergo displacements

u : Ω → R
d and phase transformations. The latter will be characterized by a mesoscopic internal variablez : Ω → Z

whereZ is the Gibbs simplex, associated with theN pure phaseŝe1, . . . êN ∈ R
N , whereêj is the jth unit vector, i.e.,

Z
def
= conv{ê1, . . . , êN}. The set of admissible displacementsF is chosen as a suitable subspace ofH1(Ω; Rd) by prescribing

Dirichlet data on the subsetΓDir of ∂Ω. The physical displacement isu+uDir, whereuDir : [0, T ] → H1(Ω; Rd) is prescribed
a priori. We consider here the extension ofuDir(t) to Ω, but actually only the trace onΓDir would be needed. The internal
variablez lives inZ

def
=

{
z ∈ H1(Ω; RN ) | z(x) ∈ Z a.e.x ∈ Ω

}
. We assume also that the material behavior depends on the

temperatureθ, which will be considered as a time dependent given parameter. Therefore we will not solve an associated heat
equation but we will treatθ as an applied load and we denote it byθappl : [0, T ] × Ω → [θmin, θmax]. This approximation for
the temperature is used in engineering models and is justified when the changes of the loading are slow and the body is small
in at least one direction: in such a case, excess of heat can betransported very fast to the surface of the body and then radiated
into the environment. The linearized strain tensor is givenby e(u)

def
= 1

2
(∇u+∇uT). Thestored-energy potential takes the

following form

E(t, u, z)
def
=

∫

Ω

(
W (e(u+uDir(t)), z, θappl(t)) +

σ

2
|∇z|2

)
dx − 〈l(t), u〉, (1.1)

where the stored-energy densityW (e(u+uDir(t)), z, θappl(t)) describes the material behavior. Hereσ is a positive coefficient
that is expected to measure some nonlocal interaction effect for the internal variablez andl(t) denotes an applied mechanical
loading. The total dissipation distance between two internal statesz0, z1 ∈ Z is defined via

D(z0, z1)
def
=

∫

Ω

D(z0−z1)dx, (1.2)

whereD is a quasi-distance, namely

D(z0, z1) = 0 ⇐⇒ z0 = z1 and ∀ z1, z2, z3 ∈ Z : D(z1, z3) ≤ D(z1, z2) + D(z2, z3). (1.3)

Finally our problem is assumed to be governed by theenergetic formulation of rate independent processes as introduced
in [1, 2, 4, 5]. A function(u, z) : [0, T ] → F × Z is called anenergetic solution of the rate-independent problem associated
with E andD if for all t ∈ [0, T ], theglobal stability condition (S) and theglobal energy balance (E) are satisfied, i.e.

(S) ∀(ū, z̄) ∈ F × Z : E(t, u(t), z(t)) ≤ E(t, ū, z̄) + D(z(t), z̄),

(E) E(t, u(t), z(t)) + VarD(z; [0, t]) = E(0, u(0), z(0)) +

∫ t

0

∂sE(s, u(s), z(s))ds,

whereVarD(z; [0, t])
def
= sup

{∑n

1 D(z(tj−1), z(tj))
∣∣ n ∈ N, 0 ≤ t0 < t1 < . . . < tn ≤ t

}
for all t ∈ [0, T ].
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2 Existence result and convergence of the space-time discretization

We assume thatθappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax])), l ∈ C1([0, T ]; (H1(Ω; Rd))′) anduDir ∈ C1([0, T ]; H1(Ω; Rd)).
Moreover, we impose thatW (·, z, θ) is strictly convex,W, ∂θW and∂eW are continuous functions and that there existC, c,
CW

0 , CW
1 , Cθ, C0, C1, Ce, c1, c2 > 0, p̂ ∈ (0, 2), and a nondecreasing functionω : [0,∞) → [0,∞) with limτ→0+ ω(τ) = 0

such that we have

c
(
|e|2+|z|2

)
− C ≤ W (e, z, θ) ≤ C

(
|e|2+|z|2

)
+ C,

|∂eW (e, z, θ)|2 + |∂θW (e, z, θ)| ≤ CW
1

(
W (e, z, θ)+CW

0

)
,

∣∣∂eW (e, z, θ1)−∂eW (e, z, θ2)
∣∣2 +

∣∣∂θW (e, z, θ1)−∂θW (e, z, θ2)
∣∣ ≤ C1

(
W (e, z, θ1)+C0

)
ω(|θ1−θ2|),

∣∣∂θW (e1, z1, θ)−∂θW (e2, z2, θ)
∣∣ ≤ Cθ(|e1−e2|+|z1−z2|)(1+|e1+e2|+|z1+z2|),∣∣∂eW (e1, z1, θ)−∂eW (e2, z2, θ)
∣∣ ≤ Ce(|e1−e2|+|z1−z2|),

|W (e, z1, θ)−W (e, z2, θ)| ≤ C(1+|e|)bpω(|z1−z2|),

c1|z1−z2| ≤ D(z1, z2) ≤ c2|z1−z2|.

We use the abstract result of [1] to prove the existence result given in the following Theorem.

Theorem 2.1 Assume that W , D, uDir, l, θappl satisfy the assumptions from above and let (u0, z0) ∈ F × Z be stable
for t = 0. Then there exists an energetic solution (u, z) : [0, T ] → F × Z such that (u0, z0) = (u(0), z(0)) and u ∈
L∞([0, T ]; H1(Ω; Rd)) and z ∈ L∞([0, T ]; H1(Ω; Z)) ∩ BV([0, T ]; L1(Ω; Z)).

Notice that we do not have uniqueness of solutions for the full problem. Hence we cannot expect convergence of the
whole approximation sequence, but we can obtain convergence of subsequences to solutions of the full problem. For the time
discretization we considerτ ∈ (0, T ) and a partitionΠτ = {0 = tτ0 < tτ1 < . . . < tτkτ = T } with tτk − tτk−1 ≤ τ for k =
1, . . . , kτ . For the spatial discretization we choose a set of length parametersh > 0 accumulating ath = 0 and letFh andVh

be closed subspaces ofF andH1(Ω; RN ), respectively and letZh = {zh ∈ Vh | zh(x) ∈ Z a.e. inΩ}. We assume that the
setsFh ×Zh satisfy thestandard density assumption, namely for all(u, z) ∈ F × Z, there exists(uh, zh) such that

(uh, zh) ∈ Fh ×Zh and (uh, zh) → (u, z) strongly in F × Z. (2.1)

We approximate the initial condition(u0, z0) by [(u0, z0)]
h ∈ Fh ×Zh and we consider the following incremental problems:

(IP)τ,h

{
for k = 1, . . . , kτ find

(uτ,h
k , z

τ,h
k ) ∈ Argmin

{
E(tτk, ûh, ẑh) + D(zτ,h

k−1, ẑ
h) | (ûh, ẑh) ∈ Fh ×Zh

}
.

The approximate solution(ūτ,h, z̄τ,h) : [0, T ] → F×Z is defined as the right-continuous piecewise constant (cf. [3]) and has
the desirable properties, namely, the sequence of approximants is precompact (which can be understood as the “stability of the
numerical algorithm”) and any limit point of the sequence ofapproximants is an energetic solution for the rate-independent
system (which can be understood as “consistency of the numerical algorithm”).

Theorem 2.2 (Convergence of the approximate solution). Assume that (2.1) and the assumptions of Theorem 2.1 hold
and let [(u0, z0)]

h ∈ F ×Z be such that [(u0, z0)]
h → (u0, z0) in F ×Z . Then, there exists a subsequence (ūτn,hn , z̄τn,hn)

which converges to a solution (u, z) of (S) and (E) with (u(0), z(0)) = (u0, z0) such that for all t ∈ [0, T ], we have

(ūτn,hn(t), z̄τn,hn(t)) → (u(t), z(t)) strongly in F × Z,

E(t, ūτn,hn(t), z̄τn,hn(t)) → E(t, u(t), z(t)), VarD(z̄τn,hn ; [0, t]) → VarD(z; [0, t]).
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