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This note deals with a three-dimensional model for therrtraks-induced transformations in shape-memory mateifidils
crostructure, like twined martensites, is described nmesgmsally by a vector of internal variables containing tiewne frac-
tions of each phase. The problem is formulated mathemBtioéhin the energetic framework of rate-independent psses.
An existence result is proved and we study space-time digations and establish convergence of these approxingtio
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1 Mathematical formulation

We consider a material with a reference configuratibrc R¢ with d € {2,3}. This body may undergo displacements
u : Q — R? and phase transformations. The latter will be charactérimea mesoscopic internal variable: Q — Z
where Z is the Gibbs simplex, associated with thepure phasegi,...ey € RY, whereg; is the jth unit vector, i.e.,
zZ convey, ..., en}. The set of admissible displacemerftss chosen as a suitable subspac&lbfQ2; R?) by prescribing
Dirichlet data on the subsEb;; of 9Q. The physical displacementist up;,, whereup;, : [0, 7] — H*(Q; R4) is prescribed

a priori. We consider here the extensionu$;, (¢) to €2, but actually only the trace ofip;; would be needed. The internal
variablez lives in 2 £ {z e H'(Q;RY) | 2(z) € Z a.e.x € Q}. We assume also that the material behavior depends on the
temperaturd, which will be considered as a time dependent given parameterefore we will not solve an associated heat
equation but we will trea as an applied load and we denote ity : [0,7] X Q — [fmin, Omax]. This approximation for

the temperature is used in engineering models and is juktifieen the changes of the loading are slow and the body is small
in at least one direction: in such a case, excess of heat caartsported very fast to the surface of the body and the atedli
into the environment. The linearized strain tensor is giver(u) = %(Vu—I—VuT). The stored-energy potential takes the
following form

E(tu, 2) def/Q(W(e(u—i—upir(t)),z,Happl(t)) + 21927 dar — (1(0), ), (1.1)

where the stored-energy densit(e(u+upir(t)), 2, fappi(t)) describes the material behavior. Heres a positive coefficient
that is expected to measure some nonlocal interactiontééfethe internal variable andl(¢) denotes an applied mechanical
loading. The total dissipation distance between two irgkstates:y, z; € Z is defined via

D(20,21) £ | D(z20—21)dz, (1.2)
Q

whereD is a quasi-distance, namely
D(z0,21) =0 <= 20=21 and Vzi,29,23 € Z: D(21,23) < D(21,22) + D(z22, 23). (1.3)

Finally our problem is assumed to be governed by déhergetic formulation of rate independent processes as introduced
in[1,2,4,5]. Afunction(u, z) : [0,7] — F x Z is called arenergetic solution of the rate-independent problem associated
with £ andD if for all ¢ € [0, T, theglobal stability condition (S) and theglobal energy balance (E) are satisfied, i.e.

(S) V(u,z) e Fx Z: E(t,u(t),z(t)) < E(t,u,z)+ D(2(t), 2),

(E) E(t,u(t),z(t)) + Varp(z; [0,t]) = £(0, u( / 0sE(s,u(s), z(s))ds,

whereVarp (z; Zsup{>] D 2(t) [neN,0<ty <ty <...<t, <t}forallte0,T].

* E-mail: mielke@wias-berlin.de, Phone: +49 302 037 2563, Fax: +49 302 044 975
** E-mail: laetitia.paoli@univ-st-etienne.fr, Phone: +33477 485112, Fax: +33477 485153
***+ E-mail: petrov@wias-berlin.de, Phone: +49 302 037 2460, Fax: +49 302 044 975

Copyright line will be provided by the publisher



2 PAMM header will be provided by the publisher

2 Existenceresult and convergence of the space-time discretization

We assume that.,,1 € CL([0, T]; L(€2; [Omin, Omax))), | € CH[0,T]; (HY(Q;RY))) andupy, € CH([0,T]; HL(;RY)).
Moreover, we impose tha¥ (-, z, 0) is strictly convexW, 9, W andd. W are continuous functions and that there e&ist,
CcW,ol, 0% Cy, Cy,C¢ c1,c0 > 0,p € (0,2), and a nondecreasing function [0, c0) — [0, 0o) with lim, _+ w(7) =0
such that we have

c(lelP+|z?) — C < W(e, 2,0) < C(le]*+]2|°) + C

0. W (€,2,0)|” + |06 W (e, 2,0)| < CY (W (e, z,0)+C3"),

|0 W (e, 2,01)—0.W (e, 2, 02) | + |0gW (e, 2,01)—0gW (e, 2, 02)| < C1(W (e, z,01)+Co) w(|01—02]),
|89W(e 21,0 69W(62,z2,9)| < CG(|€1—€2|+|21—22|)(1+|€1+€2|+|Z1+22|),

laeW(e 21,0 66W(62,z2,9)’ < C%(|ler—ea|+|z1—22]),

W (e, 21,0)=W (e, 22,0)| < C(1+]e])Pw (|21 —22]),

ci|z1—22| < D(z1, 22) < ca|z1—22].

We use the abstract result of [1] to prove the existencetrgian in the following Theorem.

Theorem 2.1 Assume that W, D, upir, [, fapp1 Satisfy the assumptions from above and let (ug, z0) € F x Z be stable
for t = 0. Then there exists an energetic solution (u,z) : [0,7] — F x Z such that (ug, z0) = (u(0),2(0)) and u €
L>([0, T); HY(Q;R?)) and z € L>°([0, T]; HY(Q; Z2)) N BV([0, T]; LY(Q; 2)).

Notice that we do not have uniqueness of solutions for thiepiblem. Hence we cannot expect convergence of the
whole approximation sequence, but we can obtain conveegefirsubsequences to solutions of the full problem. For the ti
discretization we consider € (0,7') and a partitiodl” = {0 =t < t] < ... < t, =T} with¢] —t]_, <7 for k =

., k7. For the spatial discretization we choose a set of lengthmpaters: > 0 accumulating ab = 0 and letF;, andV,
be closed subspaces gfandH! (Q; RY), respectively and e, = {z;, € Vj, | zx(z) € Z a.e. inQ}. We assume that the
setsF), x Z;, satisfy thestandard density assumption, namely for all(u, z) € F x Z, there existguy, z;,) such that

(up,zn) € Fn x 2, and  (up,zn) — (u,2z) strongly in Fx Z. (2.1)

We approximate the initial conditiofuo, zo) by [(uo, 20)]" € Fr x Z;, and we consider the following incremental problems:

1Py fork=1,...,k" find
(up”, Th) € Argmln{E tr, a2 + D", 2 | @, 2 € Fi < 2 ).

The approximate solutiofu™", 2™") : [0, T] — F x Z is defined as the right-continuous piecewise constant3pfahd has
the desirable properties, namely, the sequence of appamtis precompact (which can be understood as the “statilihe

numerical algorithm”) and any limit point of the sequenceapproximants is an energetic solution for the rate-inddpan
system (which can be understood as “consistency of the ncahatgorithm”).

Theorem 2.2 (Convergence of the approximate solution). Assume that ) and the assumptions of TheoremZ1l hold
and let [(uo, 20)]" € F x Z besuchthat [(uo, 20)]" — (uo, 20) in F x Z. Then, there exists a subsequence (a™"n | 27/ )
which convergesto a solution (u, z) of (S) and (E) with (u(0), 2(0)) = (u, z0) such that for all ¢ € [0, T'], we have

(@™ " (1), 2R (1) — (u(t), 2(t)) drongly in F x Z,
E(t,a™ hn (1), ZTnohn () — E(t,ul(t), 2(1)), VarD(ET"’h"; [0,t]) — Varp(z;[0,¢]).
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