
Thermally driven phase transformation in shape-memory alloysAdrien Petrov(joint work with Alexander Mielke)1. Mathematial formulationWe onsider a body with referene on�guration Ω ⊂ Rd. This body may undergophase transformation and deformations u : Ω → Rd. The phase transformation willbe haraterized by the internal variable z : Ω → R
d×ddev denoting the mesosopitransformation strain where R

d×ddev is the spae of symmetri d × d tensors suhthat the trae of z vanishes. The set of admissible deformations F is hosen as asuitable subspae of W 1,2(Ω; Rd) by desribing Dirihlet data at the part ΓDir of
∂Ω and the internal variable z lives in Z = L1(Ω; Rd×ddev ). We assume also that thematerial behavior depends on the temperature θ, whih will be onsidered as a timedependent given parameter. Then we will not solve an assoiated heat equationbut we will treat θ as an applied load and we denote it by θappl : [0, T ] × Ω →
[θmin, θmax]. This approximation for the temperature is used in engineering modelsand we may justify it in the ase where the hanges of the loading are slow and thebody is small in at least one diretion suh that exess of heat an be transportedvery fast to the surfae and then radiated into the environmenent. We denote by
e(u) := 1

2 (∇u + ∇uT ) and C(θ) respetively the linearized strain tensor and theelastiity tensor that depends on the temperature θ. The potential energy takesthen the following form(1) E(t, u, z) :=

∫

Ω

W (e(u), z, θ) +
σ

2
|∇z|2 dx − 〈l(t), u〉,where W (e(u), z, θ) := 1

2 (e(u) − z) : C(θ) : (e(u) − z) + h(z, θ). Here σ is positiveoe�ient that is expeted to measure some nonloal interation e�et for the in-ternal variable z and l(t) denotes the applied mehanial loading. In this work,we assume that h(z, θ) := c1(θ)|z|
2 + c2(θ)

√
δ2 + |z|2 + 1

δ

(
|z|2 − c3(θ)

)3

+
, where

ci(θ) > 0, i = 1, 2, 3, are given and depending on the temperature θ. Observethat c1(θ) measures the ourene of some hardening phenomenon with respet tothe internal variable z, c2(θ) is an ativation threshold for initiation of martensitiphase transformations and c3(θ) represents the maximum modulus of transforma-tion strain that an be obtained by alignment of martensiti variants. We de�nethe dissipation potential by(2) R(ż) :=

∫

Ω

ρ|ż| dx = ρ‖ż‖L1(Ω), ρ > 0.This model was initiated in [8℄ and further developed in [1, 2℄. The original modelis obtained in the limit δ → 0 and σ → 0. For mathematial purposes we need tokeep δ, σ > 0 �xed. Finally our problem is assumed to be governed by the energetiformulation of rate-independent problems, for the details the reader is referred to[5, 6, 4, 3, 7℄. A funtion (u, z) : [0, T ] → F × Z is alled an energeti solution1



of the rate-independent problem assoiated with E and R if for all t ∈ [0, T ], theglobal stability ondition (S) and the global energy onservation (E) are satis�ed,i.e.
(S) ∀(u, z) ∈ F × Z : E(t, u(t), z(t)) ≤ E(t, ū, z̄) + R(z̄ − z(t)),

(E) E(t, u(t), z(t)) +

∫ t

0

R(ż(s))ds = E(0, u0, z0) +

∫ t

0

∂sE(s, u(s), z(s))ds.Here we assume to be given initial data (u(0), z(0)) = (u0, z0) ∈ F × Z.2. Existene resultWe larify now the assumptions. The applied temperature θappl will extrat orinsert energy thanks to ∂θW (e(u), z, θappl)θ̇appl. One an prove that the derivatives
∂

j
θW (e(u), z, θappl) exist for j = 1, 2 and using Young's inequality that there exist

cW
0 , cW

1 > 0 suh that(3) |∂j
θW (e(u), z, θ)| ≤ cW

1 (W (e(u), z, θ) + cW
0 ).Then ∂

j
θW (e(u), z, θappl)θ̇appl is ontroled if we assume that θappl is smooth enough.Aording to (3) with j = 1 and Gronwall's lemma, we have the following lemma.Lemma 2.1. If (3) holds, for all θ1 ∈ [θmin, θmax], we have(4) W (e(u), z, θ1) + cW

0 ≤ exp(cW
1 |θ1 − θ|)(W (e(u), z, θ) + cW

0 ).For a given temperature pro�le θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax])) and a givenexternal loading l ∈ C1([0, T ]; W 1,2(Ω; Rd)∗), we will study the potential energy Eas de�ned in (1).Proposition 2.2. Under the above assumptions the following holds:app(i) If for some (t∗, u, z) ∈ [0, T ] × F × Z we have E(t∗, u, z) < +∞, then
E(·, u, z) ∈ C1([0, T ]) and ∂tE(t, u, z) =

∫
Ω ∂θW (e(u), z, θappl(t))θ̇appl(t) dx−

〈l̇(t), u〉.(ii) There exist cE
0 , cE

1 > 0 suh that E(t, u, z) < +∞ implies |∂tE(t, u, z)| ≤
cE
1 (E(t, u, z) + cE

0 ).(iii) For eah ε > 0 and E ∈ R there exists δ > 0 suh that E(t1, u, z) ≤ E and
|t1 − t2| < δ imply |∂tE(t1, u, z)− ∂tE(t2, u, z)| ≤ ε.We prove now that the energeti formulation (S) and (E) has at least one solution

(u, z) : [0, T ] → F×Z for a given stable initial datum (u0, z0) ∈ F×Z, i.e. (u0, z0)satis�es the global stability ondition (S) at t = 0. The existene theory for (S)and (E) was developed [2, 1, 5℄ and it is based on the inremental minimizationproblem. More preisely, for a given partition Π = {0 = t < t1 < . . . < tN = T },we de�ne the inremental problem as follows:
(IP )Π

{ for k = 1, . . . , d �nd
(uk, zk) ∈ Argmin{E(tk, ũ, z̃) + R(z̃ − zk) : (ũ, z̃) ∈ F × Z}.One an observe that (IP )Π has always solutions. We de�ne the pieewise onstantinterpolant (uΠ, zΠ) : [0, T ] → F×Z with (uΠ(t), zΠ(t)) = (uj , zj) for t ∈ [tj−1, tj)2



for j = 0, . . . , N . Then we show that the limit funtion satis�es the energetiformulation (S) and (E) using Lemma 2.1, whih gives the following Theorem:Theorem 2.3. Assume that E, R and (u0, z0) satisfy the assumptions from above.Then there exists an energeti solution (u, z) : [0, T ] → F×Z suh that (u(0), z(0))
= (u0, z0) and

u ∈ L∞([0, T ]; W 1,2(Ω; Rd)),

z ∈ L∞([0, T ]; W 1,2(Ω; Rd×d
dev )) ∩ BV ([0, T ]; L1(Ω; Rd×d

dev )).In futur work we will investigate the question of uniqueness by using the theorydeveloped in [5℄. For this it is neessary to establish smoothness of E as a funtionof (u, z) ∈ F × H1(Ω; Rd×d
dev ). Referenes[1℄ F. Aurihio, A. Mielke, U. Stefanelli, A rate-independent model for theisothermal quasi-stati evolution of shape-memory materials, M3AS Math.Models Meth. Appl. Si., (2006), to appear.[2℄ F. Aurihio, L. Petrini, A three-dimensional model desribing stress-temperature indued solid phase transformations. Part II: thermomehanialoupling and hybrid omposite appliations, Int. J. Numer. Meth. Engrg., 61(2004), 716�737.[3℄ G. Franfort, A. Mielke, Existene results for a lass of rate-independent ma-terial models with nononvex elasti energies, J. reine angew. Math., 595(2006), 55�91.[4℄ A. Mainik, A. Mielke, Existene results for energeti models for rate�independent systems, Cal. Var. PDEs, 22 (2005), 73�99.[5℄ A. Mielke, F. Theil, On rate�independent hysteresis models, Nonl. Di�. Eqns.Appl. (NoDEA), 11 (2004), 151�189.[6℄ A. Mielke, F. Theil, V.I. Levitas, A variational formulation of rate�independent phase transformations using an extremum priniple, Arh. Ra-tional Meh. Anal., 162 (2002), 137�177.[7℄ A. Mielke, Evolution in rate-independent systems (Ch. 6), In C.M. Dafer-mos and E. Feireisl, editors Handbook of Di�erential Equations, EvolutionaryEquations, vol. 2, Elsevier B.V., Amsterdam (2005), 461�559.[8℄ A. Souza, E. Mamiya, N. Zouain, Three-dimensional model for solids under-going stress-indued phase transformations, Europ. J. Meh., A/Solids, 17(1998), 789�806.
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