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1. MATHEMATICAL FORMULATION

We consider a body with reference configuration Q ¢ R?. This body may undergo
phase transformation and deformations v : © — R?. The phase transformation will
be characterized by the internal variable z : Q — Rg:vd denoting the mesoscopic
transformation strain where Rg:vd is the space of symmetric d x d tensors such
that the trace of z vanishes. The set of admissible deformations F is chosen as a
suitable subspace of W2(Q;R?) by describing Dirichlet data at the part I'p; of
9Q and the internal variable z lives in Z = L'(Q;R2%?). We assume also that the
material behavior depends on the temperature 6, which will be considered as a time
dependent given parameter. Then we will not solve an associated heat equation
but we will treat 6 as an applied load and we denote it by Gapp : [0,7] X @ —
[Omin;s Omax]. This approximation for the temperature is used in engineering models
and we may justify it in the case where the changes of the loading are slow and the
body is small in at least one direction such that excess of heat can be transported
very fast to the surface and then radiated into the environmenent. We denote by
e(u) :== &(Vu+ VuT) and C(0) respectively the linearized strain tensor and the
elasticity tensor that depends on the temperature 6. The potential energy takes
then the following form

(1) Et,u,z) == | W(e(u),z0)+ %|Vz|2d;v —((t),u),
Q

where W (e(u), z,0) := 1(e(u) — z) : C(0) : (e(u) — z) + h(z,0). Here o is positive
coefficient that is expected to measure some nonlocal interaction effect for the in-
ternal variable z and [(¢) denotes the applied mechanical loading. In this work,
we assume that h(z,0) = c1(0)|2]? + c2(0)1/6% + |22 + £(|2]* — 03(9))1, where
ci(0) > 0,4 = 1,2,3, are given and depending on the temperature 6. Observe
that ¢q(6) measures the occurence of some hardening phenomenon with respect to
the internal variable z, c2(f) is an activation threshold for initiation of martensitic
phase transformations and c¢3(6) represents the maximum modulus of transforma-
tion strain that can be obtained by alignment of martensitic variants. We define
the dissipation potential by

2) R(:) = [ ol do = plllzaeye p > 0.

This model was initiated in [8] and further developed in [1, 2]. The original model

is obtained in the limit § — 0 and o0 — 0. For mathematical purposes we need to

keep §,0 > 0 fixed. Finally our problem is assumed to be governed by the energetic

formulation of rate-independent problems, for the details the reader is referred to

[5, 6, 4, 3, 7]. A function (u,z) : [0,T] — F x Z is called an energetic solution
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of the rate-independent problem associated with £ and R if for all ¢ € [0,T7], the
global stability condition (S) and the global energy conservation (E) are satisfied,
ie.

(S) Y(u,2) € Fx Z: E(,u(t),2(t) <E(t,u,z) +R(z— 2(t)),

(E) E(t,u / R(2(s))ds = £(0, ug, 20) / 0sE(s,u(s), z(s)) ds.
Here we assume to be given initial data (u(0), 2(0)) = (uo, 20) € F x Z.

2. EXISTENCE RESULT

We clarify now the assumptions. The applied temperature f,,,1 will extract or
insert energy thanks to dgW(e(u), z, Happl)éappl. One can prove that the derivatives
8jW( (u), 2, Bapp1) exist for j = 1,2 and using Young’s inequality that there exist
e/, cfV > 0 such that

(3) |5 (e(u), 2,0)| < et (W(e(u), 2,0) + ).

Then 8 W (e(u), 2, fappi)fappl is controled if we assume that @,,p1 is smooth enough.
According to (3) with j = 1 and Gronwall’s lemma, we have the following lemma.

Lemma 2.1. If (3) holds, for all 01 € [Omin, Omax|, we have
(4) W(e(u), z,61) + g < exp(er” |61 — ) (W (e(w), z,0) + ).

For a given temperature profile f,pp1 € C([0,T7; L°°(2; [Omin, Omax])) and a given
external loading [ € C'([0, T]; W2(Q; R%)*), we will study the potential energy £
as defined in (1).

Proposition 2.2. Under the above assumptions the following holds:app
(i) If for some (ti,u,z) € [0,T] x F x Z we have E(ts,u,z) < +oo, then
5’(-, u,z) € CH([0,T]) and OE(t,u, z) = [, 0eW (e(u), 2, Oappl(t))Oappi (t) da —
(U(t), u).
(ii) There exist c¥,cf > 0 such that E(t,u,z) < +oo implies |OE(t,u,2)| <
P (E(tu, 2) + ).
(i1i) For each € > 0 and E € R there exists 6 > 0 such that E(t1,u,z) < E and
|t1 - t2| < 5 Zmply |at5(t17uaz) - 8t5(t2,u,2)| S €.

We prove now that the energetic formulation (S) and (E) has at least one solution
(u, z) : [0, T] — F x Z for a given stable initial datum (ug, z0) € F x Z, i.e. (uo, 20)
satisfies the global stability condition (S) at t = 0. The existence theory for (5)
and (F) was developed |2, 1, 5] and it is based on the incremental minimization
problem. More precisely, for a given partition I ={0=t <t <... <ty =T},
we define the incremental problem as follows:

(IP) fork=1,...,d find
" (up, 2) € Argmin{€(te, @, %) + R(Z — 2z) : (@,%) € F x Z}.

One can observe that (I P)r has always solutions. We define the piecewise constant
interpolant (ull, 211) : [0, 7] — F x Z with (u'(t), 2"(2)) = (uy, 2;) for t € [t;_1,t;)
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for j = 0,...,N. Then we show that the limit function satisfies the energetic
formulation (S) and (F) using Lemma 2.1, which gives the following Theorem:

Theorem 2.3. Assume that £, R and (uo, 20) satisfy the assumptions from above.
Then there exists an energetic solution (u,z) : [0,T] — F x Z such that (u(0), z(0))
= (ug, 20) and

u e L=([0,T); Wh2(Q; RY)),
z € L*=([0,T); WH2(Q; R4y 0 BV ([0, TT; L' (Q; R9XH).

dev dev

In futur work we will investigate the question of uniqueness by using the theory
developed in [5]. For this it is necessary to establish smoothness of £ as a function
of (u,2) € F x H'(Q;RI*9),

dev
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