
Thermally driven phase transformation in shape-memory alloysAdrien Petrov(joint work with Alexander Mielke)1. Mathemati
al formulationWe 
onsider a body with referen
e 
on�guration Ω ⊂ Rd. This body may undergophase transformation and deformations u : Ω → Rd. The phase transformation willbe 
hara
terized by the internal variable z : Ω → R
d×ddev denoting the mesos
opi
transformation strain where R

d×ddev is the spa
e of symmetri
 d × d tensors su
hthat the tra
e of z vanishes. The set of admissible deformations F is 
hosen as asuitable subspa
e of W 1,2(Ω; Rd) by des
ribing Diri
hlet data at the part ΓDir of
∂Ω and the internal variable z lives in Z = L1(Ω; Rd×ddev ). We assume also that thematerial behavior depends on the temperature θ, whi
h will be 
onsidered as a timedependent given parameter. Then we will not solve an asso
iated heat equationbut we will treat θ as an applied load and we denote it by θappl : [0, T ] × Ω →
[θmin, θmax]. This approximation for the temperature is used in engineering modelsand we may justify it in the 
ase where the 
hanges of the loading are slow and thebody is small in at least one dire
tion su
h that ex
ess of heat 
an be transportedvery fast to the surfa
e and then radiated into the environmenent. We denote by
e(u) := 1

2 (∇u + ∇uT ) and C(θ) respe
tively the linearized strain tensor and theelasti
ity tensor that depends on the temperature θ. The potential energy takesthen the following form(1) E(t, u, z) :=

∫

Ω

W (e(u), z, θ) +
σ

2
|∇z|2 dx − 〈l(t), u〉,where W (e(u), z, θ) := 1

2 (e(u) − z) : C(θ) : (e(u) − z) + h(z, θ). Here σ is positive
oe�
ient that is expe
ted to measure some nonlo
al intera
tion e�e
t for the in-ternal variable z and l(t) denotes the applied me
hani
al loading. In this work,we assume that h(z, θ) := c1(θ)|z|
2 + c2(θ)

√
δ2 + |z|2 + 1

δ

(
|z|2 − c3(θ)

)3

+
, where

ci(θ) > 0, i = 1, 2, 3, are given and depending on the temperature θ. Observethat c1(θ) measures the o

uren
e of some hardening phenomenon with respe
t tothe internal variable z, c2(θ) is an a
tivation threshold for initiation of martensiti
phase transformations and c3(θ) represents the maximum modulus of transforma-tion strain that 
an be obtained by alignment of martensiti
 variants. We de�nethe dissipation potential by(2) R(ż) :=

∫

Ω

ρ|ż| dx = ρ‖ż‖L1(Ω), ρ > 0.This model was initiated in [8℄ and further developed in [1, 2℄. The original modelis obtained in the limit δ → 0 and σ → 0. For mathemati
al purposes we need tokeep δ, σ > 0 �xed. Finally our problem is assumed to be governed by the energeti
formulation of rate-independent problems, for the details the reader is referred to[5, 6, 4, 3, 7℄. A fun
tion (u, z) : [0, T ] → F × Z is 
alled an energeti
 solution1



of the rate-independent problem asso
iated with E and R if for all t ∈ [0, T ], theglobal stability 
ondition (S) and the global energy 
onservation (E) are satis�ed,i.e.
(S) ∀(u, z) ∈ F × Z : E(t, u(t), z(t)) ≤ E(t, ū, z̄) + R(z̄ − z(t)),

(E) E(t, u(t), z(t)) +

∫ t

0

R(ż(s))ds = E(0, u0, z0) +

∫ t

0

∂sE(s, u(s), z(s))ds.Here we assume to be given initial data (u(0), z(0)) = (u0, z0) ∈ F × Z.2. Existen
e resultWe 
larify now the assumptions. The applied temperature θappl will extra
t orinsert energy thanks to ∂θW (e(u), z, θappl)θ̇appl. One 
an prove that the derivatives
∂

j
θW (e(u), z, θappl) exist for j = 1, 2 and using Young's inequality that there exist

cW
0 , cW

1 > 0 su
h that(3) |∂j
θW (e(u), z, θ)| ≤ cW

1 (W (e(u), z, θ) + cW
0 ).Then ∂

j
θW (e(u), z, θappl)θ̇appl is 
ontroled if we assume that θappl is smooth enough.A

ording to (3) with j = 1 and Gronwall's lemma, we have the following lemma.Lemma 2.1. If (3) holds, for all θ1 ∈ [θmin, θmax], we have(4) W (e(u), z, θ1) + cW

0 ≤ exp(cW
1 |θ1 − θ|)(W (e(u), z, θ) + cW

0 ).For a given temperature pro�le θappl ∈ C1([0, T ]; L∞(Ω; [θmin, θmax])) and a givenexternal loading l ∈ C1([0, T ]; W 1,2(Ω; Rd)∗), we will study the potential energy Eas de�ned in (1).Proposition 2.2. Under the above assumptions the following holds:app(i) If for some (t∗, u, z) ∈ [0, T ] × F × Z we have E(t∗, u, z) < +∞, then
E(·, u, z) ∈ C1([0, T ]) and ∂tE(t, u, z) =

∫
Ω ∂θW (e(u), z, θappl(t))θ̇appl(t) dx−

〈l̇(t), u〉.(ii) There exist cE
0 , cE

1 > 0 su
h that E(t, u, z) < +∞ implies |∂tE(t, u, z)| ≤
cE
1 (E(t, u, z) + cE

0 ).(iii) For ea
h ε > 0 and E ∈ R there exists δ > 0 su
h that E(t1, u, z) ≤ E and
|t1 − t2| < δ imply |∂tE(t1, u, z)− ∂tE(t2, u, z)| ≤ ε.We prove now that the energeti
 formulation (S) and (E) has at least one solution

(u, z) : [0, T ] → F×Z for a given stable initial datum (u0, z0) ∈ F×Z, i.e. (u0, z0)satis�es the global stability 
ondition (S) at t = 0. The existen
e theory for (S)and (E) was developed [2, 1, 5℄ and it is based on the in
remental minimizationproblem. More pre
isely, for a given partition Π = {0 = t < t1 < . . . < tN = T },we de�ne the in
remental problem as follows:
(IP )Π

{ for k = 1, . . . , d �nd
(uk, zk) ∈ Argmin{E(tk, ũ, z̃) + R(z̃ − zk) : (ũ, z̃) ∈ F × Z}.One 
an observe that (IP )Π has always solutions. We de�ne the pie
ewise 
onstantinterpolant (uΠ, zΠ) : [0, T ] → F×Z with (uΠ(t), zΠ(t)) = (uj , zj) for t ∈ [tj−1, tj)2



for j = 0, . . . , N . Then we show that the limit fun
tion satis�es the energeti
formulation (S) and (E) using Lemma 2.1, whi
h gives the following Theorem:Theorem 2.3. Assume that E, R and (u0, z0) satisfy the assumptions from above.Then there exists an energeti
 solution (u, z) : [0, T ] → F×Z su
h that (u(0), z(0))
= (u0, z0) and

u ∈ L∞([0, T ]; W 1,2(Ω; Rd)),

z ∈ L∞([0, T ]; W 1,2(Ω; Rd×d
dev )) ∩ BV ([0, T ]; L1(Ω; Rd×d

dev )).In futur work we will investigate the question of uniqueness by using the theorydeveloped in [5℄. For this it is ne
essary to establish smoothness of E as a fun
tionof (u, z) ∈ F × H1(Ω; Rd×d
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