
APPROXIMATING DYNAMIC PHASE-FIELD FRACTURE IN VISCOELASTIC MATERIALS

WITH A FIRST-ORDER FORMULATION FOR VELOCITY AND STRESS
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Abstract. We investigate a model for dynamic fracture in viscoelastic materials at small strains. The sharp
crack interface is regularized with a phase-field approximation, and for the phase-field variable a viscous evolu-
tion with a quadratic dissipation potential is employed. A non-smooth penalization prevents material healing.
The viscoelastic momentum balance is formulated as a first order system and coupled in a nonlinear way to
the non-smooth evolution equation of the phase field. We give a full discretization in time and space, using
a discontinuous Galerkin method for the first-order system. Based on this, existence of discrete solutions is
shown and, as the step size in space and time tends to zero, their convergence to a suitable notion of weak
solution of the system is discussed.

2020 Mathematics Subject Classification 65N30

October 7, 2022.

1. Introduction

...

Keywords and phrases: phase-field fractue, first-order systems, weak solutions

1 FU Berlin, Germany. Email: marita.thomas@fu-berlin.de
2 FU Berlin, Germany. Email: sven.tornquist@fu-berlin.de
3 Institute of Applied and Numerical Mathematics, KIT, Karlsruhe, Germany. Email: christian.wieners@kit.edu



2 Dynamic phase-field fracture with a DG method for elastic waves

2. An energetic small strain elastic and visco-elastic phase-field fracture model

Let Ω ⊂ Rd for d = 2 or d = 3 be a bounded Lipschitz domain with boundary ∂Ω = Ω \ Ω.
We want to determine the displacement vector u, the velocity v = ∂tu, the (linearized) strain ε = sym(Du) and strain
rate ε̇ = ∂tε = sym(Dv), and the phase field z such that in Ω for all t ∈ (0, T )

0 = ϱ0∂tv − divσ − f , (1a)

0 ∈ τr∂tz + ∂χ(−∞,0](∂tz) +
1

2
g′(z)Cε : ε−Gc

(
1− z + l2c∆z

)
(1b)

is satisfied in weak form with degradated visco-elastic stress response given by

σ = g(z)Cε+Dε̇ = σE + σD , σE = g(z)Cε , σD = Dε̇ . (1c)

The elastodynamics is determined by the mass density ϱ0 > 0 and the applied volume force density f , C is the Hookean
elasticity tensor, damping is described by the tensor D with Cε : ε > 0 for ε ̸= 0 and Dε̇ : ε̇ ≤ 0 for ε̇ ̸= 0. Here we
use Cε = 2µε+ λ trace(ε)I with Lamé constants µ, λ > 0 and Dε̇ = ηε̇ with η ≥ 0. For simplicity, we assume that the
material is homogeneous, i.e., all material parameters are constant in Ω. The analysis includes the case D = 0 without
viscosity, but then the regulatity of the solution is reduced.

The crack evolution is driven by the elastic driving force Y = −g′(z)Cε : ε and the geometric regularization decribed
by Gc

(
1 − z + l2c∆z). It depends on a retardation time τr > 0, and length scale lc > 0, and a scaling factor Gc > 0

which is a material parameter which encodes the energy release rate by crack opening1. The material degradation is
encoded in the degradation function g ∈ C1(R) with g′ ≥ 0, g(0) = g∗ > 0, g(1) = 1, g′(1) > 0, and g′(z) = 0 for
z ≤ 0 and z ≥ 2. Then, 0 < g∗ < g∗ and g∗∗ > 0 exists such that 0 < g∗ ≤ g(z) ≤ g∗ and 0 ≤ g′(z) ≤ g∗∗, so that
g(z), g(z)−1 ∈ L∞(Ω) for z ∈ H1(Ω).

For the elasticity system the corresponding first-order system for (v, ε,σ) is given by

ϱ0∂tv − divσ = f , (2a)

∂tε− sym(Dv) = 0 , (2b)

σ − g(z)Cε−D∂tε = 0 . (2c)

The wave propagation is complemented by initial and boundary conditions on ∂Ω = ∂NΩ ∪ ∂DΩ together with free
Neumann boundary conditions for the phase field, i.e.,

v(0) = v0 in Ω , ε(0) = ε0 in Ω , z(0) = 1 in Ω , (3a)

σn = gN on (0, T )× ∂NΩ , v = vD on (0, T )× ∂DΩ , ∇z · n = 0 on (0, T )× ∂Ω . (3b)

The configuration depends on initial data v0 and ε0, volume forces f , and boundary data gN and vD.

Depending on u0 with ε0 = sym(Du0), we obtain u(t) = u0 +

∫ t

0

v(s) ds.

The energetic framework relies on the energetic potentials

Eel(z, ε) =
1

2

∫
Ω

g(z)Cε : ε dx , Epf(z) =
Gc

2

∫
Ω

(
(1− z)2 + l2c |∇z|2

)
dx , (4)

the kinetic energy and the external energy

Ekin(v) =
1

2

∫
Ω

ϱ0|v|2 dx , Eext(t,u) =

∫
Ω

f(t) · udx+

∫
∂NΩ

gN(t) · udx (5a)

and the elastic dissipation potential and the viscous dissipation potential for the phase field

Rel(z, ε̇) =
1

2

∫
Ω

Dε̇ : ε̇ dx , Rpf(ż) =
1

2

∫
Ω

(
τr|ż|2 + ∂χ(−∞,0](ż)

)
dx . (5b)

1Here, Gc depends on the Griffits constant but by the phase-field approach an additional scaling with respect to the length scale lc is

required, see [Marigo et al., 2016, Sect. 3.3.2].
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Kerstin Weinberg and Christian Wieners 3

In our model, the elastic driving force is conjugated to the stress response, i.e., σE = ∂εEel(z, ε) and Y = −∂zEel(z, ε).
This is essential for the following analysis.
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4 Dynamic phase-field fracture with a DG method for elastic waves

3. A weak formulation in space and time

In the time-space cylinder Q = (0, T )× Ω we define smooth test spaces

V = C1(Q;Rd) , VT,D =
{
w ∈ V : w(T ) = 0 in Ω , w = 0 on (0, T )× ΓD

}
, (6a)

W = C1(Q;Rd×d
sym) , WT =

{
Φ ∈ W : Φ(T ) = 0 in Ω

}
, WT,N =

{
Ψ ∈ WT : Ψn = 0 on (0, T )× ΓN

}
, (6b)

Z =
{
φ ∈ C1(Q) : φ ≤ 0 a.e. in Q

}
. (6c)

If (v, ε,σ) is sufficiently smooth solving (2a), (2b), and (2c), testing with (w,Φ,Ψ) ∈ VT,D ×WT,N ×WT yields the
variational characterization

0 =
(
ϱ0∂tv − divσ − f ,w

)
Q
+
(
∂tε− sym(Dv),Φ

)
Q
+
(
σ − g(z)Cε−D∂tε,Ψ

)
Q

=
(
ϱ0∂tv,w

)
Q
+
(
∂tε,Φ−DΨ

)
Q
−
(
divσ,w

)
Q
−
(
sym(Dv),Φ

)
Q
+
(
σ − g(z)Cε,Ψ

)
Q
−
(
f ,w

)
Q

= −
(
ϱ0v, ∂tw

)
Q
+
(
ϱ0v(T ),w(T )

)
Ω
−
(
ϱ0v(0),w(0)

)
Ω

−
(
ε, ∂tΦ−D∂tΨ

)
Q
+
(
ε(T ),Φ(T )−DΨ(T )

)
Ω
−
(
ε(0),Φ(0)−DΨ(0)

)
Ω

+
(
σ, sym(Dw)

)
Q
−
(
σn,w

)
0,T×∂Ω

+
(
v,divΦ

)
Q
−
(
v,Φn

)
0,T×∂Ω

+
(
σ − g(z)Cε,Ψ

)
Q
−
(
f ,w

)
Q

= −
(
ϱ0v, ∂tw

)
Q
−
(
ϱ0v0,w(0)

)
Ω
−
(
ε, ∂tΦ−D∂tΨ

)
Q
−
(
ε0,Φ(0)−DΨ(0)

)
Ω

+
(
σ, sym(Dw)

)
Q
−
(
gN,w

)
0,T×ΓN

+
(
v,divΦ

)
Q
−
(
vD,Φn

)
0,T×ΓD

+
(
σ − g(z)Cε,Ψ

)
Q
−
(
f ,w

)
Q

using the initial and boundary conditions of ansatz and test functions. Here, the L2 inner product is denoted by (·, ·)Q.
This is now used to derive a weak formulation in space and time. Therefore, we introduce the bilinear forms

mQ

(
(v, ε), (w,η)

)
=
(
ϱ0v,w

)
Q
+
(
ε,η

)
Q
,

aQ
(
(v,σ), (w,Φ)

)
=
(
σ, sym(Dw)

)
Q
+
(
v,divΦ

)
Q
,

rQ
(
z; (ε,σ),Ψ

)
=
(
σ − g(z)Cε,Ψ

)
Q
,

bQ(z, φ) = −Gc

(
1− z, φ

)
Q
+Gcl

2
c

(
∇z,∇φ

)
Q

and, depending on the data f , v0, ε0, vD, and gN, the linear form

ℓQ(w,Φ,Ψ) =
(
f ,w

)
Q
+
(
ϱ0v0,w(0)

)
Ω
+
(
ε0,Φ(0)−DΨ(0)

)
Ω
+
(
vD,Φn

)
(0,T )×ΓD

+
(
gN,w

)
(0,T )×ΓN

.

Then, a weak solution of the model described by (2) is defined as follows: Find

(v, ε,σ) ∈ L2(Q;Rd × Rd×d
sym × Rd×d

sym) , z ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H
1(Ω)) with z(0) = 1 in Ω (7)

satisfying for all smooth test functions (w,Φ,Ψ) ∈ VT,D ×WT,N ×WT and φ ∈ Z

−mQ

(
(v, ε), (∂tw, ∂tΦ−D∂tΨ)

)
+ aQ

(
(v,σ), (w,Φ)

)
+ rQ

(
z; (ε,σ),Ψ

)
− ℓQ(w,Φ,Ψ) = 0 , (8a)

τr
(
∂tz, φ

)
Q
+

1

2

(
g′(z)Cε : ε, φ

)
Q
+ bQ(z, φ) ≥ 0 . (8b)

Note that (7) implies z(t) ∈ L2(Ω) for all t ∈ [0, T ] and thus g
(
z(t)

)
, g′
(
z(t)

)
∈ L∞(Ω) with g(z(t,x)) ∈ [g∗, g

∗] and

g′(z(t,x)) ≥ 0 for a.a. x ∈ Ω, so that g′
(
z(t)

)
Cε : ε ∈ L2(Ω) is well-defined and g′

(
z(t)

)
Cε : ε ≥ 0 a.e. in Ω.

For the elasticity system (v, ε,σ) the initial and boundary values are included in the right-hand side ℓQ, and the for
the weak solution the initial and boundary conditions are satisfied only weakly. If the weak solution is also a strong
solution, additional regularity

(
v(0), ε(0),σ(0)

)
∈ L2(Ω;Rd × Rd×d

sym × Rd×d
sym), v|(0,T )×ΓD

∈ L2((0, T ) × ΓD;Rd), and

σn|(0,T )×ΓD
∈ L2((0, T )× ΓN;Rd) is required to obtain the initial and boundary conditions (3a) also strongly.

Our aim is to show that a fully discrete approximation in space and time of this problem is uniformly bounded and that
a weak limit is a weak solution satisfying (8). This proves in case of homogeneous boundary data the following result.

Theorem 1. A weak solution (v, ε,σ, z) of the dynamic phase field fracture model satifying (7) and (8) exists.
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Kerstin Weinberg and Christian Wieners 5

Therefore, we reformulate the result [Thomas and Tornquist, 2021] for the second-order formulation of the wave equation
to the weak first-order setting.
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6 Dynamic phase-field fracture with a DG method for elastic waves

4. Approximation in space

The visco-elastic wave equation is approximated with a discontinuous Galerkin (DG) method, the phase field with
lowest order conforming finite elements.

On a mesh Ωh =
⋃

K∈Kh
K with elements K, let V dg

h =
∏

K∈Kh
Pk(K;Rd) and W dg

h =
∏

K∈Kh
Pk(K;Rd×d

sym) be the

discontinuous finite element space of polynomial degree k ≥ 1, and let V cf
h ⊂ P(Ωh) ∩ C0(Ω) be the lowest order

conforming finite elements, so that φh ∈ V cf
h is uniquely defined by the values

(
φh(x)

)
x∈Nh

at the element vertices

Nh =
⋃

K∈Kh
NK ⊂ Ω. Then, we have

min
x∈NK

φh(x) = min
x∈K

φh(x) and max
x∈NK

φh(x) = max
x∈K

φh(x) , K ∈ Kh .

We assume that the mesh is shape regular and that diam(K) ≤ h for K ∈ Kh.

For the discontinuous functions, we define jump terms on the faces Fh =
⋃

K FK , where FK are the faces on every

element K. For inner faces f ∈ Fh ∩ Ω, let Kf be the neighboring cell such that f = ∂K ∩ ∂Kf . On boundary faces
f ∈ Fh∩∂Ω we setKf = K. Let nK be the outer unit normal vector on ∂K. We define the jump [vh]K,f = vh,Kf

−vh,K

on inner faces, where vh,K denotes the continuous extension of vh|K to K. In the same way, the jump for the stress
tensor is defined. On Dirichlet boundary faces, we set [vh]K,f = −2vh and [σh]K,fn = 0. On Neumann boundaries,
set [vh]K,f = 0 and [σh]K,fn = −2σhn.

The defines the DG approximation [Hochbruck et al., 2015,Dörfler and Wieners, 2019,Weinberg and Wieners, 2021] for

the discontinuous functions (vh,σh), (wh,Φh) ∈ V dg
h ×W dg

h depending on the phase field zh ∈ V cf
h by

adgh
(
zh; (vh,σh),(wh,Φh)

)
=
(
σh, sym(Dwh)

)
Ωh

+
(
vh,divΦh

)
Ωh

− 1

2

∑
K∈Kh

∑
f∈FK

(
nK ·

(
σh,KnK − ZP(zh)vh,K

)
,nK ·

(
ZP(zh)

−1[Φh]K,fnK − [wh]K,f

))
f

− 1

2

∑
K∈Kh

∑
f∈FK

(
nK ×

(
σh,KnK − ZP(zh)vh,K

)
,nK ×

(
ZP(zh)

−1[Φh]K,fnK − [wh]K,f

))
f

and the right-hand side

ℓdgh
(
t, zh; (wh,Φh)

)
=
(
f(t),wh

)
Ω
+
(
vD(t),Φhn

)
ΓD

+
(
gN(t),wh

)
ΓN

−
(
vD(t), ZP(zh)(n ·wh)n+ ZS(zh)(n×wh)

)
ΓD

−
(
gN(t), ZP(zh)(n ·Φhn)n+ ZS(zh)n× (Φhn)

)
ΓN

depending on the impedances ZP(zh) =
√
g(zh)ϱ0(2µ+ λ) and ZS(zh) =

√
g(zh)ϱ0µ of compressional waves and shear

waves, respectively. Note that this depends on the degraded material parameters.

The DG approximation is monotone satisfying

adgh
(
zh; (vh,σh), (vh,σh)

)
=

1

4

∑
K∈Kh

∑
f∈FK

(∥∥ZP(zh)
−1/2nK · [σh]K,fnK∥2f +

∥∥ZP(zh)
1/2nK [̇vh]K,f∥2f (9)

+
∥∥ZS(zh)

−1/2nK × [σh]K,fnK∥2f +
∥∥ZS(zh)

1/2nK × [vh]K,f∥2f

)
≥ 0 ,

and is consistent satisfying for smooth test functions (w,Φ) ∈ VT,D ×WN and t ∈ (0, T )

adgh
(
zh; (vh,σh), (w,Φ)(t)

)
=
(
σh, sym(Dw)(t)

)
Ω
+
(
vh,divΦ(t)

)
Ω
, (10a)

ℓdgh
(
t, zh; (w,Φ)(t)

)
=
(
f(t),w

)
Ω
+
(
vD(t),Φ(t)n

)
ΓD

+
(
gN(t),w(t)

)
ΓN
. (10b)

Remark 2. The method can be simplified by using fixed impedances ZP =
√
ϱ0(2µ+ λ) and ZS =

√
ϱ0µ independently

of the degradation; the following arguments only rely on the properties (9) and (10).
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5. Approximation in time

In the discrete formulation, the condition ∂tz ≤ 0 is approximated using a Yosida regularization θhM
2
+(ż) defined by

M2
+(ż) =

1
2 max{ż, 0}2 and a penalty parameter θh > 0. Note that ∂M2

+(ż) = ż for ż > 0 and ∂M2
+(ż) = 0 for ż ≤ 0.

For the limit analysis, we use the penalty parameter θh = θ0
h and the regularization of the viscous dissipation potential

for the phase field

Rpf
h (ż) =

∫
Ω

(τr
2
|ż|2 + θhM

2
+(ż)

)
dx . (11)

In Ω, we define

mΩ

(
(v, ε), (w,η)

)
=
(
ϱ0v,w

)
Ω
+
(
ε,η

)
Ω
, v,w ∈ L2(Ω;Rd) , ε,η ∈ L2(Ω;Rd×d

sym) ,

rΩ
(
z; (ε,σ),Ψ

)
=
(
σ − g(z)Cε,Ψ

)
Ω
, z ∈ L∞(Ω) , σ, ε,Ψ ∈ L2(Ω;Rd×d

sym) ,

bΩ(z, φ) = −Gc

(
(1− z), φ

)
Ω
+Gcl

2
c

(
∇z,∇φ

)
Ω
, z, φ ∈ H1(Ω) ,

and, depending on zn−1
h ∈ V cf

h and εn−1
h , the coercive functional

Gn
h (zh) =

1

△tnh
Rpf

h (zh − zn−1
h ) + Eel(zh, ε

n−1
h ) + Epf(zh)

=

∫
Ω

( τr
2△tnh

(
zh − zn−1

h

)2
+

θh
△tnh

M2
+

(
zh − zn−1

h

)
+

1

2
g(zh)Cεn−1

h : εn−1
h +

Gc

2

(
(1− zh)

2 + l2c |∇zh|2
))

dx

≥ 1

△tnh
Rpf

h (zh − zn−1
h ) ≥ τr

2△tnh

∥∥zh − zn−1
h

∥∥2
Ω
, zh ∈ V cf

h . (12)

We assume that the loading is much slower than the wave speed. Thus we start with large time steps △tqs > 0 for
quasi-static increments. If waves are initiated by crack opening, the time step is decreased to △tpf ∈ (0,△tqs) such that

cP△tpf ≈ h with wave speed cP =
√
(2µ+ λ)/ρ).

We start with initial values (v0
h, ε

0
h,σ

0
h) ∈ V dg

h ×W dg
h ×W dg

h and z0h ∈ V cf
h in the material without fracture, i.e., z0h = 1.

We set t0h = 0, t1h = △tqs, and △t1h = t1h − t0h.

In every time step n = 1, 2, 3, . . . we proceed as follows:

(S1) Depending on (εn−1
h , zn−1

h ), we approximate the phase field znh ∈ V cf
h by the implicit Euler method, i.e., by

computing a critical point of Gn
h (·) by solving the nonlinear equation

τr
△tnh

(
znh − zn−1

h , φh

)
Ω
+

θh
△tnh

(
∂M2

+(z
n
h − zn−1

h ), φh

)
Ω
+

1

2

(
g′(znh )Cεn−1

h : εn−1
h , φh

)
Ω
+ bΩ(z

n
h , φh) = 0 , φh ∈ V cf

h

such that Gn
h (z

n
h ) ≤ Gn

h (z
n−1
h ); this can be achieved by starting the iterative solution method with zn−1

h .

(S2) Depending on (vn−1
h , εn−1

h ,σn−1
h ) ∈ V dg

h ×W dg
h ×W dg

h and znh ∈ V cf
h we compute the solution for the next time

step (vn
h, ε

n
h,σ

n
h) ∈ V dg

h ×W dg
h ×W dg

h by the implicit Euler method, i.e., by solving the linear equation

mΩ

(
(vn

h, ε
n
h), (wh,Φh −DΨh)

)
+ △tnha

dg
h

(
znh ; (v

n
h,σ

n
h), (wh,Φh)

)
+ △tnhrΩ

(
znh ; (ε

n
h,σ

n
h),Ψh

)
= mΩ

(
vn−1
h , εn−1

h ), (wh,Φh)
)
+ △tnhℓ

dg
h

(
tnh, z

n
h ; (wh,Φh)

)
, (wh,Φh,Ψh) ∈ V dg

h ×W dg
h ×W dg

h .

(S3) If the relaxed energy is small and znh ≈ zn−1
h , we expect that the next time step will also be quasi-static, and

we set △tn+1
h = △tqs; otherwise, we set △tn+1

h = △tpf.
Then, we set tn+1

h = tnh + △tn+1
h , and we continue with the next time step n := n+ 1 proceeding with (S1).

For simplicity of the presentation, we consider in the following only the case of homogeneous boundary data vD = 0

and gN = 0, and the volume forces are approximated by the L2 projection fnh ∈ V dg
h in (tn−1

h , tnh)× Ω, i.e.,(
fnh,wh

)
(tn−1

h ,tnh)×Ω
=
(
f ,wh

)
(tn−1

h ,tnh)×Ω
, wh ∈ V dg

h , (13)
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8 Dynamic phase-field fracture with a DG method for elastic waves

and we use for the following analysis the discrete right-hand side

ℓdgh
(
tnh, z

n
h ; (wh,Φh)

)
=
(
fnh,w

n
h

)
Ω
. (14)

We also assume that (v0
h, ε

0
h) are the L2 projections of the initial values (v0, ε0).
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6. Well-posedness and stability in space and time of the discrete solution

We show that the discrete problems in the staggered scheme has a solution and we provide bounds for (vn
h, ε

n
h,σ

n
h, z

n
h ).

Therefore, we set △εnh = εnh−εn−1
h and △znh = znh−z

n−1
h for n = 1, . . . , N , and the projection Πdg

h : L1(Ω;Rd×d
sym) −→W dg

h

is defined by (
Πdg

h Φ,Ψh

)
Ω
=
(
Φ,Ψh

)
Ω
, Φ ∈ L1(Ω;Rd×d

sym) , Ψh ∈W dg
h .

Lemma 3. For n = 1, . . . , N a solution znh ∈ V cf
h in (S1) and a unique solution (vn

h, ε
n
h,σ

n
h) ∈ V dg

h ×W dg
h ×W dg

h

in (S2) exists satisfying σn
h = Πdg

h

(
g(znh )Cεnh

)
+ 1

△tnh
D△εnh. In case of homogeneous boundary data vD = 0, gN = 0,

the discrete solution is bounded by the discrete energy-dissipation inequality

Ekin(vn
h) + Eel(znh , ε

n
h) + Epf(znh ) +

n∑
k=1

(
2

△tk
Rel(△εkh) +

1

△tk
Rpf

h (△zkh)

)

≤ Ekin(v0
h) + Eel(z0h, ε

0
h) + Epf(z0h) +

n∑
k=1

△tk
(
fkh,v

k
h

)
Ω
. (15)

Proof. Since the coercive functional Gn
h is bounded from below by a quadratic functional and V cf

h is discrete, in (S1) a
minimizer znh exists, and the minimizer is a critical point of Gn

h solving the nonlinear equation in (S1).

Next we show that the discrete linear system in (S2) has a unique solution. Therefore, we show that the homogeneous

problem only admits the trivial solution: assume that (w0
h,Φ

0
h,Ψ

0
h) ∈ V dg

h ×W dg
h ×W dg

h solves

mΩ

(
(w0

h,Φ
0
h), (wh,Φh −DΨh)

)
+ △tnha

dg
h

(
znh ; (w

0
h,Ψ

0
h), (wh,Φh)

)
+ △tnhrΩ

(
znh ; (Φ

0
h,Ψ

0
h),Ψh

)
= 0

for all (wh,Φh,Ψh) ∈ V dg
h ×W dg

h ×W dg
h . Testing with (0,0,Ψh) yields

0 = −
(
Φ0

h,DΨh

)
Ω
+ △tnh

(
Ψh − g(znh )CΦh,Ψh

)
Ω

(16)

= −
(
DΦ0

h,Ψh

)
Ω
+ △tnh

(
Ψh −Πdg

h (g(znh )CΦh),Ψh

)
Ω
, Ψ ∈W dg

h ,

i.e., Ψ0
h = Πdg

h (g(znh )CΦ0
h) + (△tnh)

−1DΦ0
h. Now testing with (w0

h,Ψ
0
h,0) yields, using (9),

0 = mΩ

(
(w0

h,Φ
0
h), (w

0
h,Ψ

0
h)
)
+ △tnha

dg
h

(
znh ; (w

0
h,Ψ

0
h), (wh,Ψh)

)
≥ mΩ

(
(w0

h,Φ
0
h), (w

0
h,Ψ

0
h)
)
= ϱ0

(
w0

h,w
0
h

)
Ω
+
(
Φ0

h,Ψ
0
h

)
Ω

= ϱ0
(
w0

h,w
0
h

)
Ω
+
(
Φ0

h, g(z
n
h )CΦ0

h

)
Ω
+ (△tnh)

−1
(
Φ0

h,DΦ0
h

)
Ω
≥ ϱ0

∥∥wh∥2Ω +
∥∥g(znh )1/2C1/2Φh

∥∥2
Ω

which implies w0
h = 0 and, using g(znh ) ≥ g∗ > 0, also Φ0

h = 0. Inserting in (16) yields Ψ0
h = 0, so that indeed the

solution of the homogeneous problem is (0,0,0).

Testing the unique solution (vn
h, ε

n
h,σ

n
h) in (S2) with (0,0,Ψh) yields

mΩ

(
(vn

h, ε
n
h), (0,−DΨh)

)
+ △tnhrΩ

(
znh ; (ε

n
h,σ

n
h),Φh

)
= mΩ

(
(vn−1

h , εn−1
h ), (0,−DΦh)

)
,

i.e., for all Ψh ∈W dg
h

0 = △tnhrΩ
(
znh ; (ε

n
h,σ

n
h),Ψh

)
−
(
εnh − εn−1

h ,DΨh

)
Ω

= △tnh
(
σn

h − g(znh )Cεnh,Ψh

)
Ω
−
(
△εnh,DΨh

)
Ω
= △tnh

(
σn

h −Πdg
h (g(znh )Cεnh),Ψh

)
Ω
−
(
D△εnh,Ψh

)
Ω
,

so that we obtain σn
h = Πdg

h (g(znh )Cεnh) +
1

△tnh
D△εnh. Next we observe

mΩ

(
(vn

h, ε
n
h), (v

n
h,Π

dg
h (g(znh )Cεnh))

)
= ϱ0

(
vn
h,v

n
h

)
Ω
+
(
εnh,Π

dg
h (g(znh )Cεnh)

)
Ω

= ϱ0
(
vn
h,v

n
h

)
Ω
+
(
εnh, g(z

n
h )Cεnh

)
Ω
= 2 Ekin(vn

h) + 2 Eel(znh , ε
n
h)

mΩ

(
vn−1
h , εn−1

h ), (vn
h,Π

dg
h (g(znh )Cεnh))

)
= ϱ0

(
vn−1
h ,vn

h

)
Ω
+
(
εn−1
h , g(znh )Cεnh

)
Ω

≤ Ekin(vn
h) + Eel(znh , ε

n
h) + Ekin(vn−1

h ) + Eel(znh , ε
n−1
h )
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10 Dynamic phase-field fracture with a DG method for elastic waves

and

rΩ
(
znh ; (ε

n
h,σ

n
h),△ε

n
h

)
=
(
σn

h − g(znh )Cεnh,△ε
n
h

)
Ω

=
(
σn

h −Πdg
h (g(znh )Cεnh),△ε

n
h

)
Ω
=
( 1

△tnh
D△εnh,△ε

n
h

)
Ω
=

2

△tnh
Rel(△εnh) ,

which yields together with (14) and testing in (S2) with
(
vn
h,σ

n
h, (△t

n
h)

−1△εnh
)

2Ekin(vn
h) + 2Eel(znh , ε

n
h) +

2

△tnh
Rel(△εnh) = mΩ

(
(vn

h, ε
n
h), (v

n
h,Π

dg
h (g(znh )Cεnh))

)
+ rΩ

(
znh ; (ε

n
h,σ

n
h),△ε

n
h

)
= mΩ

(
(vn

h, ε
n
h), (v

n
h,σ

n
h − (△tnh)

−1D△εnh)
)
+ △tnhrΩ

(
znh ; (ε

n
h,σ

n
h), (△t

n
h)

−1△εnh
)

≤ mΩ

(
(vn

h, ε
n
h), (v

n
h,σ

n
h − (△tnh)

−1D△εnh))
)
+ △tnha

dg
h

(
znh ; (v

n
h,σ

n
h), (v

n
h,σ

n
h)
)

+ △tnhrΩ
(
znh ; (ε

n
h,σ

n
h), (△t

n
h)

−1△εnh
)

= mΩ

(
vn−1
h , εn−1

h ), (vn
h,σ

n
h − (△tnh)

−1D△εnh)
)
+ △tnhℓ

dg
h

(
tnh, z

n
h ; (v

n
h,σ

n
h)
)

= mΩ

(
vn−1
h , εn−1

h ), (vn
h,Π

dg
h (g(znh )Cεnh))

)
+ △tnhℓ

dg
h

(
tnh, z

n
h ; (v

n
h,σ

n
h)
)

≤ Ekin(vn
h) + Eel(znh , ε

n
h) + Ekin(vn−1

h ) + Eel(znh , ε
n−1
h ) + △tnh

(
fnh,v

n
h

)
Ω
,

so that

Ekin(vn
h) + Eel(znh , ε

n
h) +

2

△tnh
Rel(△εnh) ≤ Ekin(vn−1

h ) + Eel(znh , ε
n−1
h ) + △tnh

(
fnh,v

n
h

)
Ω
. (17)

For the solution znh ∈ V cf
h of (S1) we assume Gn

h (z
n
h ) ≤ Gn

h (z
n−1
h ), so that we obtain

1

△tnh
Rpf

h (△znh ) + Eel(znh , ε
n−1
h ) + Epf(znh ) = Gn

h (z
n
h ) ≤ Gn

h (z
n−1
h ) = Eel(zn−1

h , εn−1
h ) + Epf(zn−1

h ) .

i.e., 1
△tnh

Rpf
h (△znh ) + Epf(znh ) ≤ Eel(zn−1

h , εn−1
h )− Eel(znh , ε

n−1
h ) + Epf(zn−1

h ). Together with (17) this yields

Ekin(vn
h) + Eel(znh , ε

n
h) + Epf(znh ) +

2

△tnh
Rel(△εnh) +Rpf

h (△znh )

≤ Ekin(vn−1
h ) + Eel(zn−1

h , εn−1
h ) + Epf(zn−1

h ) + △tnh
(
fnh,v

n
h

)
Ω
.

For n > 2 we have

Ekin(vn
h) + Eel(znh , ε

n
h) + Epf(znh ) +

2

△tnh
Rel(△εnh) +

1

△tnh
Rpf

h (△znh ) +
2

△tn−1
h

Rel(△εn−1
h ) +

1

△tn−1
h

Rpf
h (△zn−1

h )

≤ Ekin(vn−1
h ) + Eel(zn−1

h , εn−1
h ) + Epf(zn−1

h ) +
2

△tn−1
h

Rel(△εn−1
h ) +

1

△tn−1
h

Rpf
h (△zn−1

h ) + △tnh
(
fnh,v

n
h

)
Ω

≤ Ekin(vn−2
h ) + Eel(zn−2

h , εn−2
h ) + Epf(zn−2

h ) + △tn−1
h

(
fn−1
h ,vn−1

h

)
Ω
+ △tnh

(
fnh,v

n
h

)
Ω
.

This continues for n− 2, n− 3, ..., 1 and thus proves the assertion. □
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Kerstin Weinberg and Christian Wieners 11

We define (zh,vh, εh,σh) ∈ L2(0, T ;V
cf
h × V dg

h ×W dg
h ×W dg

h ) by (zh,vh, εh,σh)(t) = (znh ,v
n
h, ε

n
h,σ

n
h) in (tn−1

h , tnh) and

(żh, ε̇h) ∈ L2(0, T ;V
cf
h ×W dg

h ) by (żh, ε̇h)(t) =
1

△tnh
(△znh ,△ε

n
h) for t ∈ (tn−1

h , tnh). We have σh = Πdg
h (g(zh)Cεh) +Dε̇h.

The following analysis holds for both cases, visco-elasticity with positive definite D, and the elastodynamics without
viscosity with D = 0.

Lemma 4. The discrete solution (zh,vh, εh, żh,D
1/2ε̇h) is uniformly bounded in Q = (0, T )× Ω by

ϱ0
4

∥∥vh

∥∥2
Q
+

1

2

∥∥g(zh)1/2C1/2εh
∥∥2
Q
+
Gc

2

(∥∥1− zh
∥∥2
Q
+ l2c

∥∥∇zh∥∥2Q)+ ∥∥D1/2ε̇h
∥∥2
Q
+
τr
2

∥∥żh∥∥2Q +
θh
2

∥∥max{żh, 0}
∥∥2
Q

≤ max{T, 1}
(
Ekin(v0

h) + Eel(z0h, ε
0
h) + Epf(z0h)

)
+

max{T, 1}2

ϱ0

∥∥f∥∥2
Q
.

Proof. We observe for the total energy

ϱ0
2

∥∥vh

∥∥2
Q
+

1

2

∥∥g(zh)1/2C1/2εh
∥∥2
Q
+
Gc

2

(∥∥1− zh
∥∥2
Q
+ l2c

∥∥∇zh∥∥2Q) =

N∑
n=1

△tnh
(
Ekin(vn

h) + Eel(znh , ε
n
h) + Epf(znh )

)
and for the dissipation

∥∥D1/2ε̇h
∥∥2
Q
+
τr
2

∥∥żh∥∥2Q +
θh
2

∥∥max{żh, 0}
∥∥2
Q

=

N∑
n=1

(∥∥D1/2ε̇h
∥∥2
(tn−1

h ,tnh)×Ω
+
τr
2

∥∥żh∥∥2(tn−1
h ,tnh)×Ω

+
θh
2

∥∥max{żh, 0}
∥∥2
(tn−1

h ,tnh)×Ω

)

=

N∑
n=1

1

△tnh

(∥∥D1/2△εnh
∥∥2
Ω
+
τr
2

∥∥△znh∥∥2Ω +
θh
2

∥∥max{△znh , 0}
∥∥2
Ω

)
=

N∑
n=1

(
2

△tk
Rel(△εkh) +

1

△tk
Rpf

h (△zkh)

)

Using (13), we get

N∑
n=1

△tnh
(
fnh,v

n
h

)
Ω
=

N∑
n=1

(
f ,vh

)
(tn−1

h ,tnh)×Ω
=
(
f ,vh

)
Q
.

Together, the estimate (15) for the energy (n = 1, . . . , N) and for the dissipation (n = N) yields the assertion by

ϱ0
2

∥∥vh

∥∥2
Q
+

1

2

∥∥g(zh)1/2C1/2εh
∥∥2
Q
+
Gc

2

(∥∥1− zh
∥∥2
Q
+ l2c

∥∥∇zh∥∥2Q)+ ∥∥D1/2ε̇h
∥∥2
Q
+
τr
2

∥∥żh∥∥2Q +
θh
2

∥∥max{żh, 0}
∥∥2
Q

=

N∑
n=1

△tnh
(
Ekin(vn

h) + Eel(znh , ε
n
h) + Epf(znh )

)
+

N∑
n=1

(
2

△tk
Rel(△εkh) +

1

△tk
Rpf

h (△zkh)

)

≤ max
{ N∑

n=1

△tnh, 1
}(

Ekin(v0
h) + Eel(z0h, ε

0
h) + Epf(z0h) +

(
f ,vh

)
Q

)
≤ max{T, 1}

(
Ekin(v0

h) + Eel(z0h, ε
0
h) + Epf(z0h)

)
+

max{T, 1}2

ϱ0

∥∥f∥∥2
Q
+
ϱ0
4

∥∥vh

∥∥2
Q
.

□
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12 Dynamic phase-field fracture with a DG method for elastic waves

7. Weak limit of the discrete solutions

We consider a shape-regular family
(
Ωh

)
h∈H of meshes with 0 ∈ H, e.g., obtained by uniform refinement of a coarse

mesh. For simplicity, we may assume for this limit analysis uniform time steps △tnh = △th = T/Nh with Nh ∈ N such

that cws△th ≈ h with respect to a reference wave speed cws > 0. We set tnh = n△th and t
n−1/2
h = 1

2 (t
n−1
h + tnh).

By Lem. 4 the discrete solutions (zh,vh, εh, żh,D
1/2ε̇h)h∈H are uniformly bounded.

Lemma 5. A weakly converging subsequence (zh,vh, εh, żh,D
1/2ε̇h)h∈H0 with H0 ⊂ H and 0 ∈ H0 exists. For the

limit

(z,v, ε, ż,D1/2ε̇) ∈ L2

(
0, T ; H1(Ω)

)
× L2(Q;Rd)× L2(Q;Rd×d

sym)× L2(Q)× L2(Q;Rd×d
sym)× L2(Q;Rd×d

sym) , (18)

the weak derivative ∂tz exists, and we have z ∈ H1
(
0, T ; L2(Ω)

)
with z(0) = z0, ∂tz = ż ≤ 0 a.e. in Q.

If, in addition, D is positive definite, also the weak derivatives ∂tε and sym(Dv) exist, and we have ∂tε = ε̇ = sym(Dv).

Proof. By Lem. 4, the discrete solutions (zh,vh, εh, żh,D
1/2ε̇h)h∈H are uniformly bounded by∥∥vh

∥∥2
Q
+
∥∥εh∥∥2Q +

∥∥zh∥∥2Q +
∥∥∇zh∥∥2Q +

∥∥D1/2ε̇h
∥∥2
Q
+
∥∥żh∥∥2Q + θh

∥∥max{żh, 0}
∥∥2
Q
≤ C

with a constant C > 0 independent of h ∈ H but depending on the initial data v0, z0 ε0, the load f , the lower bound
g(zh) ≥ g∗ > 0, and the material parameters. Thus, a weakly converging subsequence (zh)h∈H0

⊂ L2

(
0, T ; H1(Ω)

)
and

(vh, εh, żh,D
1/2ε̇h)h∈H0

in L2 exists.

Since θh −→ ∞ for h −→ 0, we obtain for the limit
∥∥max{ż, 0}

∥∥
Q

≤ lim
h∈H0

∥∥max{żh, 0}
∥∥
Q

≤ lim
h∈H0

C

θh
= 0 and thus

ż ≤ 0 a.e. in Q. Moreover, we observe for smooth test functions ϕ ∈ C1(Q) with ϕ(T ) = 0

(
zh, ∂tϕ

)
Q
=

Nh∑
n=1

(
znh , ∂tϕ

)
(tn−1

h ,tnh)×Ω
=

Nh∑
n=1

(
znh , ϕ(t

n
h)− ϕ(tn−1

h )
)
Ω
= −

(
z0h, ϕ(0)

)
Ω
+

Nh∑
n=1

(
zn−1
h − znh , ϕ(t

n−1
h )

)
Ω

= −
(
z0h, ϕ(0)

)
Ω
−

Nh∑
n=1

(
△znh , ϕ(t

n−1
h )

)
Ω
= −

(
z0h, ϕ(0)

)
Ω
−

Nh∑
n=1

(
żh, ϕ(t

n−1
h )

)
(tn−1

h ,tnh)×Ω
,

so that limh∈H0

∥∥ϕ(tn−1
h )− ϕ

∥∥
(tn−1

h ,tnh)×Ω
= 0 and z0 = z0h = 1 gives

(
z0, ϕ(0)

)
Ω
+
(
z, ∂tϕ

)
Q
= lim

h∈H0

((
z0h, ϕ(0)

)
Ω
+
(
zh, ∂tϕ

)
Q

)
= − lim

h∈H0

Nh∑
n=1

(
żh, ϕ(t

n−1
h )

)
(tn−1

h ,tnh)×Ω
= − lim

h∈H0

Nh∑
n=1

(
żh, ϕ

)
(tn−1

h ,tnh)×Ω
= −

(
ż, ϕ
)
Q
.

Testing with ϕ ∈ C1
c(Q) shows that the weak derivative in time of z exists with ∂tz = ż, so that z ∈ H1

(
0, T ; L2(Ω)

)
and thus continuous in time; testing with ϕ(0) ̸= 0 and ϕ(T ) = 0 shows z(0) = z0.

If, in addition, D is positive definite, also (ε̇h)h∈H0
is weakly converging to ε̇, and one shows in the same way that the

weak derivative in time of ε exists and that ∂tε = ε̇.

Moreover, we select a smooth test functions Φ ∈ C1
c(Q;Rd×d

sym), and let Φn
h ∈W dg

h ∩H1
0(Ω;Rd×d

sym) be the an approximation

of Φ in (tn−1
h , tnh)× Ω with lim

h−→0

(∥∥Φn
h −Φ

∥∥
(tn−1

h ,tnh)×Ω
+
∥∥ div(Φn

h −Φ)
∥∥
(tn−1

h ,tnh)×Ω

)
= 0.

Then, testing (S2) with (0,Φn
h,0) yields

mΩ

(
(vn

h, ε
n
h), (0,Φ

n
h)
)
+ △tnha

dg
h

(
znh ; (v

n
h,σ

n
h), (0,Φ

n
h)
)
= mΩ

(
vn−1
h , εn−1

h ), (0,Φn
h)
)
,

i.e.,

1

△th

(
△εnh,Φ

n
h

)
Ω
+
(
vh,divΦ

n
h

)
Ωh

=
1

2

∑
K∈Kh

∑
f∈FK

((
nK ·

(
σh,KnK − ZP(zh)vh,K

)
,nK ·

(
ZP(zh)

−1[Φh]K,fnK

)
f

+
(
nK ×

(
σh,KnK − ZP(zh)vh,K

)
,nK ×

(
ZP(zh)

−1[Φh]K,fnK

)
f

)
.
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Since the approximations Φn
h ∈W dg

h ∩H1
0(Ω;Rd×d

sym) satisfy [Φn
h]K,f = 0, we obtain

(
ε̇,Φ

)
Q
+
(
v,divΦ

)
Q
= lim

h∈H0

((
ε̇h,Φh

)
Q
+
(
vh,divΦh

)
Q

)
= lim

h∈H0

Nh∑
n=1

((
△εnh,Φ

n
h

)
Ω
+ △th

(
vh,divΦ

n
h

)
Ωh

)
= 0 , (19)

so that, in case of positive viscosity, for v a weak symmetric gradient in space exists satisfying ε̇ = sym(Dv). □

By the Aubin-Lions Lemma [Roub́ıček, 2013, Lem. 7.7], the embedding

H1
(
0, T ; L2(Ω)

)
∩ L2

(
0, T ; H1(Ω)

)
−→ L2(Q)

is compact. This yields strong convergence of the discrete phase field approximations in L2.

Lemma 6. We have strong convergence of (zh)h∈H0 in L2(Q), i.e., limh∈H0 ∥zh − z∥Q = 0, and weak convergence of
(σh)h∈H0 to σ = g(z)Cε+D∂tε ∈ L2(Q;Rd×d

sym).

Proof. Since zh is discontinuous in time, the Aubin-Lions Lemma cannot be applied directly. Thus we define

ẑh(t) = z0 +

∫ t

0

żh(s) ds ∈ V cf
h , t ∈ [0, T ] ,

so that ẑh ∈ H1(0, T ;V cf
h ) and ∂tẑh = żh; from żnh = 1

△tnh
(znh − zn−1

h ) we get ẑh(t
n
h) = znh for n = 0, . . . , Nh, and using

uniform time step sizes △tnh = △th we obtain

∥zh − ẑh∥2Q =

Nh∑
n=1

∫ tnh

tn−1
h

∥∥znh − zn−1
h −

t− tn−1
h

△th
(znh − zn−1

h )
∥∥2
Ω
dt =

Nh∑
n=1

∫ tnh

tn−1
h

(tnh − t)2

(△th)2
∥∥znh − zn−1

h

∥∥2
Ω
dt

=

Nh∑
n=1

△th
3

∥zn−1
h − znh∥2Ω =

Nh∑
n=1

(△th)3

3
∥żnh∥2Ω =

(△th)2

3
∥żh∥2Q . (20)

Since (zh)h∈H0
is converging weakly to z ∈ L2(Q) and (żh)h∈H0

is uniformly bounded in L2(Q), also (ẑh)h∈H0
is

converging weakly to z ∈ L2(Q). Then, we obtain

0 = lim
h∈H0

(
∇z −∇zh, φ

)
Q
= − lim

h∈H0

(
z − zh,∇φ

)
Q
= − lim

h∈H0

(
z − ẑh,∇φ

)
Q
= lim

h∈H0

(
∇z −∇ẑh, φ

)
Q
, φ ∈ C1

c(Q) ,

so that also (∇ẑh)h∈H0
is converging weakly to ∇z, i.e., (ẑh)h∈H0

is converging weakly to z in L2

(
0, T ; H1(Ω)

)
. Since in

addition (żh)h∈H0 is converging weakly to ∂tz ∈ L2(Q), we conclude that together (ẑh)h∈H0 is converging to z weakly in
H1
(
0, T ; L2(Ω)

)
∩L2

(
0, T ; H1(Ω)

)
. Since the embedding to L2(Q) is compact, we obtain strong convergence of (ẑh)h∈H0

in L2(Q), and by (20) also lim
h∈H0

∥zh − z∥Q = 0.

This implies also strong convergence of
(
g(zh)

)
h∈H0

in L2(Q). In addition, we have g(zh) ∈ L∞(Q) for all h ∈ H0.

Together with the weak convergence of (εh, ε̇h)h∈H0
in L2(Q;Rd×d

sym ,Rd×d
sym) this yields for all Ψ ∈ L2(Q;Rd×d

sym)

lim
h∈H0

(
σh,Ψ

)
Q
= lim

h∈H0

Nh∑
n=1

△tnh
(
σn

h,Π
dg
h Ψn

)
Ω
= lim

h∈H0

Nh∑
n=1

△tnh
(
Πdg

h (g(zh)Cεnh) +Dε̇nh,Π
dg
h Ψn

)
Ω

= lim
h∈H0

Nh∑
n=1

△tnh
(
g(zh)Cεnh +Dε̇nh,Π

dg
h Ψn

)
Ω
= lim

h∈H0

(
g(zh)Cεh +Dε̇h,Ψ

)
Q

= lim
h∈H0

(
Cεh, g(zh)Ψ

)
Q
+ lim

h∈H0

(
Dε̇h,Ψ

)
Q

=
(
Cε, g(z)Ψ

)
Q
+
(
D∂tε,Ψ

)
Q
=
(
g(z)Cε+D∂tε,Ψ

)
Q

with Ψn = 1
△tnh

∫ tn
tn−1

Ψ(t) dt, so that (σh)h∈H0 is converging weakly. □
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14 Dynamic phase-field fracture with a DG method for elastic waves

Using a lower semicontinuity result for Carathéodory functions we can now show that the limit solves the variational
inequality for the phase field evolution.

Lemma 7. The weak limit (z, ε) ∈ H1
(
0, T ; L2(Ω)

)
∩ L2

(
0, T ; H1(Ω)

)
× L2(Q;Rd×d

sym) of (zh, εh)h∈H0
solves (8b).

Proof. For a test function φ ∈ Z we define the approximation φh ∈ H1(0, T ;V cf
h ) by nodal interpolation in space defined

by φh(tn,x) = φ(tn,x) for x ∈ Nh, and n = 0, . . . , Nh, and by linear interpolation in time

φh(t) =
1

△tnh

(
(tn − t)φh(tn−1) + (t− tn−1)φh(tn)

)
, t ∈ (tn−1, tn) , n = 1, . . . , Nh . (21)

Since φ ≤ 0 and we use lowest order finite elements, we also get φh ≤ 0 in Q. By construction, since φ is smooth, we
have also strong convergence of the interpolation (φh)h∈H0

in L∞(Q).

Now we define f(y, ξ) = yCξ : ξ for (y, ξ) ∈ R× Rd×d
sym , and we observe that f(·, ·) is a Carathéodory function which is

convex in ξ. This is now used to show a lower semicontinuity of the functional

J : L2(Q)× L∞(Q)× L2(Q;Rd×d
sym) −→ R , J(z, φ, ε) :=

∫
Q

f(−g′(z)φ, ε) d(t,x) =
(
g′(z)Cε : ε,−φ

)
Q
.

The strong convergence of (zh)h∈H0 in L2(Q) by Lem. 6 and (φh)h∈H0 in L∞(Q) by construction yields strong conver-
gence of

(
g′(zh)φh

)
h∈H0

in L2(Q). Together with the weak convergence of (ε)h∈H0 established in Lem. 5 this yields

by [Dacorogna, 2008, Thm. 3.23] lower semicontinuity lim infh∈H0
J(zh, φh, εh) ≥ J(z, φ, ε), i.e.,

lim inf
h∈H0

(
g′(zh)Cεh : εh,−φh

)
Q
≥
(
g′(z)Cε : ε,−φ

)
Q
. (22)

Inserting φn
h = φn

h(t
n−1/2
h ) we observe △tnh

(
g′(znh )Cεnh : εnh,−φn

h

)
Ω

=
(
g′(znh )Cεnh : εnh,−φh

)
(tn−1

h ,tnh)×Ω
, since φh is

linear and zh and εh are constant in time in every interval (tn−1
h , tnh), so that we have

(
g′(zh)Cεh : εh,−φh

)
Q
=

Nh∑
n=1

△tnh
(
g′(znh )Cεnh : εnh,−φn

h

)
Ω
.

From (S1) we obtain

0 =

Nh∑
n=1

△tnh
( τr
△tnh

(
△znh , φ

n
h

)
Ω
+

θh
△tnh

(
∂M2

+(△z
n
h ), φ

n
h

)
Ω
+

1

2

(
g′(znh )Cεn−1

h : εn−1
h , φn

h

)
Ω
+ bΩ(z

n
h , φ

n
h)
)

= τr
(
żh, φh

)
Q
+ θh

(
∂M2

+(żh), φh

)
Q
+

1

2

Nh∑
n=1

△tnh
(
g′(znh )Cεn−1

h : εn−1
h , φn

h

)
Ω
+ bQ(zh, φh) ,

so that, using −φh ≥ 0 and ∂M2
+(żh) ≥ 0,

τr
(
żh, φh

)
Q
+

1

2

Nh∑
n=1

△tnh
(
g′(znh )Cεn−1

h : εn−1
h , φn

h

)
Ω
+ bQ(zh, φh) = θh

(
∂M2

+(żh),−φh

)
Q
≥ 0 . (23)

For the next step, we consider the difference

(
g′(zh)Cεh : εh,−φh

)
Q
−

Nh∑
n=1

△tnh
(
g′(znh )Cεn−1

h : εn−1
h ,−φn

h

)
Ω
− △tNh

h

(
g′(zNh

h )CεNh

h : εNh

h ,−φNh

h

)
Ω

= △t1h
(
g′(z1h)Cε0h : ε0h,−φ1

h

)
Ω
+

Nh−1∑
n=1

△tnh
((
g′(zn+1

h )Cεnh : εnh,−φn+1
h

)
Ω
−
(
g′(znh )Cεnh : εnh,−φn

h

)
Ω

)
.

Since φ is smooth, we obtain for the interpolation lim
h∈H0

(
φn+1
h − φn

h

)
= 0 in L∞(Ω), and since z ∈ H1(0, T ; Ω) and

thus continuous in time, and g′ is continuous and bounded, we also observe lim
h∈H0

(
g′(zn+1

h ) − g′(znh ), ψ
)
Ω

= 0 for all
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Kerstin Weinberg and Christian Wieners 15

ψ ∈ L2(Ω). Moreover,
(
Cεnh, ε

n
h

)
Ω
is uniformly bounded, so that together

lim
h∈H0

((
g′(zh)Cεh : εh,−φh

)
Q
−

Nh∑
n=1

△tnh
(
g′(znh )Cεn−1

h : εn−1
h ,−φn

h

)
Ω

)
= 0 .

Combining this with (22) and inserting (23) yields

(
g′(z)Cε : ε,−φ

)
Q
≤ lim inf

h∈H0

(
g′(zh)Cεh : εh,−φh

)
Q
= lim inf

h∈H0

Nh∑
n=1

△tnh
(
g′(znh )Cεn−1

h : εn−1
h ,−φn

h

)
Ω

≤ lim inf
h∈H0

(
τr
(
żh, φh

)
Q
+ bQ(zh, φh)

)
= lim

h∈H0

(
τr
(
żh, φh

)
Q
+ bQ(zh, φh)

)
= τr

(
∂tz, φ

)
Q
+ bQ(z, φ)

since (zh, żh)h∈H0
is converging weakly to (z, ∂tz) and (φh)h∈H0

is converging strongly to φ. This proves (8b). □
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16 Dynamic phase-field fracture with a DG method for elastic waves

8. Convergence to a weak solution

Finally we show that the weak limit of the discrete solutions in Lem. 5 also solves (8a), so that together we obtain a
weak solution of the elastodynamic phase field model.

Theorem 8. The weak limit (z,v, ε,σ) ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H
1(Ω))× L2(Q;Rd)× L2(Q;Rd×d

sym)× L2(Q;Rd×d
sym)

of the sequence (zh,vh, εh,σh)h∈H0
is a weak solution of the variational system (8).

Proof. For the limit, the variational inequality (8b) is established in Lem. 7.

For (w,Φ,Ψ) ∈ VT,D ×WT ×WN let (wn
h,Φ

n
h,Ψ

n
h) ∈ (V dg

h ×W dg
h ×W dg

h ) ∩ C0(Ω;Rd × Rd×d
sym × Rd×d

sym) be the nodal
interpolation in space of (w,Φ,Ψ)(tnh) defined by (wn

h,Φ
n
h,Ψ

n
h)(tn,x) = (w,Φ,Ψ)(tnh,x) for x ∈ Nh and n = 0, . . . , Nh,

and let (wh,Φh,Ψh) ∈ H1(0, T ;V dg
h ×W dg

h ×W dg
h ) be the linear interpolation in time, cf. (21), so that we have strong

convergence of (wh,Φh,Ψh)h∈H0
to (w,Φ,Ψ).

We set (w
n−1/2
h ,Φ

n−1/2
h ,Ψ

n−1/2
h ) = (wh,Φh,Ψh)(t

n−1/2
h ) and observe ∂twh(t) =

1
△tnh

△wn
h for △wn

h = wn
h −wn−1

h and

t ∈ (tn−1, tn), n = 1, . . . , Nh. Using wNh

h = 0, we obtain

−
(
ϱ0vh, ∂twh

)
Q
= −

Nh∑
n=1

(
ϱ0v

n
h,△w

n
h

)
Ω
= −

Nh∑
n=1

(
ϱ0v

n
h,w

n
h

)
Ω
+

Nh∑
n=1

(
ϱ0v

n
h,w

n−1
h

)
Ω

=
(
ϱ0v

0
h,w

0
h

)
Ω
+

Nh∑
n=1

(
ϱ0△v

n
h,w

n−1
h

)
Ω

and for △Φn
h = Φn

h −Φn−1
h analogously, i.e., −

(
εh, ∂tΦh

)
Q
=
(
ε0h,Φ

0
)
Ω
+

Nh∑
n=1

(
△εnh,Φ

n−1
h

)
Ω
.

Since for (wn−1
h ,Φn−1

h ) all jump terms and boundary terms vanish, we obtain consistency (10) for the DG bilinear form

adgh
(
znh ; (v

n
h,σ

n
h), (w

n−1
h ,Φn−1

h )
)
=
(
σn

h, sym(Dwn−1
h )

)
Ω
+
(
vn
h,divΦ

n−1
h

)
Ω
.

Thus we obtain from (S2), since we assume homogenous boundary conditions vD = 0 and gN = 0,

mΩ

(
(△vn

h,△ε
n
h), (w

n−1
h ,Φn−1

h −DΨn−1
h )

)
= △tnh

(
ℓdgh
(
tnh, z

n
h ; (w

n−1
h ,Φn−1

h )
)
− adgh

(
znh ; (v

n
h,σ

n
h), (w

n−1
h ,Φn−1

h )
)
− rΩ

(
znh ; (ε

n
h,σ

n
h),Ψ

n−1
h

))
= △tnh

((
fnh,w

n−1
h

)
Ω
−
(
σn

h, sym(Dwn−1
h )

)
Ω
−
(
vn
h,divΦ

n−1
h

)
Ω
−
(
σn

h − g(znh )Cεnh,Ψ
n−1
h

)
Ω

)
.

This yields together with mΩ

(
(△vn

h,△ε
n
h), (0,DΨn−1

h )
)
=
(
△εnh,DΨn−1

h

)
Ω
= △tnh

(
Dε̇nh,Ψ

n−1
h

)
Ω

(
ϱ0vh, ∂twh

)
Q
+
(
εh, ∂tΦh

)
Q
+
(
ϱ0v

0
h,w

0
h

)
Ω
+
(
ε0h,Φ

0
)
Ω

= −
Nh∑
n=1

((
ϱ0△v

n
h,w

n−1
h

)
Ω
+
(
△εnh,Φ

n−1
h

)
Ω

)
= −

Nh∑
n=1

mΩ

(
(△vn

h,△ε
n
h), (w

n−1
h ,Φn−1

h )
)

=

Nh∑
n=1

△tnh
((

σn
h, sym(Dwn−1

h )
)
Ω
+
(
vn
h,divΦ

n−1
h

)
Ω
+
(
σn

h − g(znh )Cεnh −Dε̇nh,Ψ
n−1
h

)
Ω
−
(
fnh,w

n−1
h

)
Ω

)
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and thus in the limit, using strong convergence of the test functions and of
(
g(zh)

)
h∈H0

,

ϱ0
(
v, ∂tw

)
Q
+
(
ε, ∂tΦ

)
Q
+ ϱ0

(
v0,w(0)

)
Ω
+
(
ε0,Φ(0)

)
Ω

= lim
h∈H0

((
ϱ0vh, ∂twh

)
Q
+
(
εh, ∂tΦh

)
Q
+
(
ϱ0v

0
h,w

0
h

)
Ω
+
(
ε0h,Φ

0
)
Ω

)
= lim

h∈H0

Nh∑
n=1

△tnh
((

σn
h, sym(Dwn−1

h )
)
Ω
+
(
vn
h,divΦ

n−1
h

)
Ω
+
(
σn

h − g(znh )Cεnh −Dε̇nh,Ψ
n−1
h

)
Ω
−
(
fnh,w

n−1
h

)
Ω

)
= lim

h∈H0

((
σh, sym(Dwh)

)
Q
+
(
vh,divΦh

)
Q
+
(
σh − g(zh)Cεh −Dε̇h,Ψh

)
Q
−
(
fh,wh

)
Q

)
=
(
σ, sym(Dw)

)
Q
+
(
v,divΦ

)
Q
+
(
σ − g(z)Cε−Dε̇,Ψ

)
Q
−
(
f ,w

)
Q
.

Thus, the weak limit solves (8). □
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9. The energy-dissipation estimate

The energy-dissipation balance [Thomas and Tornquist, 2021, Def. 1.3]

Ekin(v(t)) + Eel(z(t), ε(t)) + Epf(z(t))− Eext(t,u(t)) +

∫ t

0

(
Rel(ε̇(s)) +Rpf(ż(s))

)
ds

= Ekin(v0) + Eel(z0, ε0)− Eext(0,u(0))−
∫ t

0

Ėext(s,u(s)) ds

with

Ėext(s,u(s)) =
(
∂tf(s),u(s)

)
Ω
dx+

(
∂tgN(s),u(s)

)
∂NΩ

can be established for sufficiently regular solutions [Thomas and Tornquist, 2021, Thm. 5.1]; integration by parts yields

Ekin(v(t)) + Eel(z(t), ε(t)) + Epf(z(t)) +

∫ t

0

(
Rel(ε̇(s)) +Rpf(ż(s))

)
ds = Ekin(v0) + Eel(z0, ε0) +

∫ t

0

Eext(s,v(s)) ds .

Here, with less regularity this is relaxed.

Lemma 9. A subsequence H1 ⊂ H0 with 0 ∈ H1 exists, so that (zh(T ),vh(T ), εh(T ))h∈H1
is weakly converging to

(zT ,vT , εT ) ∈ H1(Ω)× L2(Ω;Rd)× L2(Ω;Rd×d
sym) . (24)

Proof. For h ∈ H and gN = 0, the discrete energy-dissipation inequality (15) takes the form

Ekin(vn
h) + Eel(znh , ε

n
h) + Epf(znh ) +

∫ tnh

0

(
2Rel(ε̇h(s)) +Rpf

h (żh(s))
)
ds (25)

≤ Ekin(v0
h) + Eel(z0h, ε

0
h) + Epf(z0h) +

(
fh,vh

)
(0,tnh)×Ω

,

so that we obtain for n = Nh

ϱ0
2

∥∥vh(T )
∥∥2
Ω
+
1

2

∥∥g(zh(T ))1/2C1/2εh(T )
∥∥2
Ω
+
Gc

2

(∥∥1− zh(T )
∥∥2
Ω
+ l2c

∥∥∇zh(T )∥∥2Ω)
≤ Ekin(vh(T )) + Eel(zh(T ), εh(T )) + Epf(zh(T )) +

∫ T

0

(
2Rel(ε̇h(s)) +Rpf

h (żh(s))
)
ds

≤ Ekin(v0
h) + Eel(z0h, ε

0
h) + Epf(z0h) +

(
fh,vh

)
Q
.

Thus, (zh(T ),vh(T ), εh(T ))h∈H0
is uniformly bounded in H1(Ω)×L2(Ω;Rd)×L2(Ω;Rd×d

sym), so that a weakly converging
subsequence exists. □

In particular, this shows that for the weak solution (z,v, ε,σ) in Q = (0, T )×Ω the evaluation at t = T is well-defined
with (z(T ),v(T ), ε(T )) = (zT ,vT , εT ).

Lemma 10. The weak limit (18) satisfies the energy-dissipation estimate

Ekin(v(t)) + Eel(z(t), ε(t)) + Epf(z(t)) +

∫ t

0

(
Rel(ε̇(s)) +Rpf(ż(s))

)
ds ≤ Ekin(v0) + Eel(z0, ε0) +

∫ t

0

Eext(s,v(s)) ds (26)

for all t ∈ IH0
= {tnh : n = 0, . . . , Nh, h ∈ H0}.

Note that IH0
⊂ [0, T ] is dense.

Proof. We show the result for t = T (the general case is open). For the weak limit we obtain the estimates

Ekin(v(T )) ≤ lim inf
h∈H1

Ekin(vh(T )) , Eel(z(T ), ε(T )) ≤ lim inf
h∈H1

Eel(zh(T ), εh(T )) , Epf(z(T )) ≤ lim inf
h∈H1

Epf(zh(T )) ,∫ T

0

Rpf(ż(s)) ds ≤ lim inf
h∈H0

∫ T

0

Rpf(żh(s)) ds ≤ lim inf
h∈H0

∫ T

0

Rpf
h (żh(s)) ds ,

so that together we obtain (26) from (25) for the case gN = 0. □
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