APPROXIMATING DYNAMIC PHASE-FIELD FRACTURE IN VISCOELASTIC MATERIALS
WITH A FIRST-ORDER FORMULATION FOR VELOCITY AND STRESS

MARITA THOMAS!, SVEN TORNQUIST? AND CHRISTIAN WIENERS?

Abstract. We investigate a model for dynamic fracture in viscoelastic materials at small strains. The sharp
crack interface is regularized with a phase-field approximation, and for the phase-field variable a viscous evolu-
tion with a quadratic dissipation potential is employed. A non-smooth penalization prevents material healing.
The viscoelastic momentum balance is formulated as a first order system and coupled in a nonlinear way to
the non-smooth evolution equation of the phase field. We give a full discretization in time and space, using
a discontinuous Galerkin method for the first-order system. Based on this, existence of discrete solutions is
shown and, as the step size in space and time tends to zero, their convergence to a suitable notion of weak
solution of the system is discussed.
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2 Dynamic phase-field fracture with a DG method for elastic waves

2. AN ENERGETIC SMALL STRAIN ELASTIC AND VISCO-ELASTIC PHASE-FIELD FRACTURE MODEL

Let Q C R? for d = 2 or d = 3 be a bounded Lipschitz domain with boundary Q = Q \ €.

We want to determine the displacement vector u, the velocity v = d;u, the (linearized) strain € = sym(Du) and strain
rate & = Ore = sym(Dv), and the phase field z such that in Q for all ¢ € (0, 7))

0= pp0,v—dive —f, (1la)
0 € 7:0:2 + OX(—00,0)(0r2) + %g’(z)Cs re—Ge(l— 2+ 12A2) (1b)

is satisfied in weak form with degradated visco-elastic stress response given by
o =g(2)Ce+Dé =0 +o0p, o = g(2)Ce, op = Dé. (1c)

The elastodynamics is determined by the mass density oo > 0 and the applied volume force density f, C is the Hookean
elasticity tensor, damping is described by the tensor D with Ce : € > 0 for € # 0 and D& : &€ < 0 for & # 0. Here we
use Ce = 2ue + Atrace(e)I with Lamé constants p, A > 0 and D& = né with 5 > 0. For simplicity, we assume that the
material is homogeneous, i.e., all material parameters are constant in 2. The analysis includes the case D = 0 without
viscosity, but then the regulatity of the solution is reduced.

The crack evolution is driven by the elastic driving force Y = —¢’(2)Ce : € and the geometric regularization decribed
by G, (1 — 2+ 12Az2). Tt depends on a retardation time 7, > 0, and length scale I. > 0, and a scaling factor G, > 0
which is a material parameter which encodes the energy release rate by crack opening'. The material degradation is
encoded in the degradation function g € C'(R) with ¢’ > 0, g(0) = g. > 0, g(1) = 1, ¢’(1) > 0, and ¢'(z) = 0 for
z<0and z > 2. Then, 0 < g. < ¢g* and g** > 0 exists such that 0 < g. < g(z) < g* and 0 < ¢'(2) < g**, so that
9(2),9(2)71 € Loo(Q) for 2 € HY(Q).

For the elasticity system the corresponding first-order system for (v, e, o) is given by

000v —dive =1, (2a)
Oe —sym(Dv) =0, (2b)
o—g(z)Ce —Doe =0. (2¢)

The wave propagation is complemented by initial and boundary conditions on 99 = InQ U IpS2 together with free
Neumann boundary conditions for the phase field, i.e.,

v(0) =vy in Q, e(0) =¢p inQ, 2(0)=1 in Q, (3a)
on =gy on (0,7) x OnQ2, v =vp on (0,T) x dpf?, Vz-n=0on (0,T) x 9. (3b)

The configuration depends on initial data vy and €, volume forces f, and boundary data gn and vp.
t
Depending on ug with €9 = sym(Duyg), we obtain u(t) = ug + / v(s)ds.
0

The energetic framework relies on the energetic potentials

1 c
£9(z,¢) = §/g(z)CE:€dx, £71(z) = %/ (1 - 2)? + 2|V=) dx, (1)
Q Q
the kinetic energy and the external energy
- 1
5km(v)=7/ ool V|2 dx, 5ext(t,u):/f(t).udx+/ ex(t) - udx (5a)
2 Ja Q Y

and the elastic dissipation potential and the viscous dissipation potential for the phase field
e, 2y L .2 £y 1 .2 :
R (z,€é) = 5 D¢ édx, RPY(2) = 3 (T2l 2]? 4 Ox(— 00,0 (2)) dx. (5b)
Q Q

1Hcrc, G depends on the Griffits constant but by the phase-field approach an additional scaling with respect to the length scale [; is
required, see [Marigo et al., 2016, Sect. 3.3.2].
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Kerstin Weinberg and Christian Wieners 3

In our model, the elastic driving force is conjugated to the stress response, i.e., o = 0.£%(z,€) and Y = —9,£%(z, ).
This is essential for the following analysis.
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4 Dynamic phase-field fracture with a DG method for elastic waves

3. A WEAK FORMULATION IN SPACE AND TIME

In the time-space cylinder @ = (0,7) x Q we define smooth test spaces

Y =CYQ;RY), Vip={weV:w(T)=0inQ, w=0o0n(0,7) xI'p}, (6a)
=CHQRED), Wr={@2eW:®(T)=0inQ}, Wrn={¥eWr: ¥n=00n(0,T)xI'n}, (6b)
Z={peC(Q):¢<0ae inQ}. (6¢)

If (v,e,0) is sufficiently smooth solving (2a), (2b), and (2¢), testing with (w, ®,¥) € Vrp x Wyrn X Wr yields the
variational characterization
0= (Qoﬁtv —dive —f, W)Q + (8t€ — sym(Dv), <I>)Q + (0' — g(2)Ce — Dose, lIl)Q
= (Qoatv,w)Q + (Oe, ® — D\II)Q — (div O',W)Q — (sym(Dv),®), + (o — g(2)Ce, \II)Q — (f,w)
= —(oov, 8tW)Q + (QOV(T),W(T))Q - (QOV(O),W(O))Q
~ (.0, — DO,Y) , + (e(T), ®(T) — D¥(T)), — (£(0), ®(0) — DL(0)),,
+ (0', sym(Dw))Q orxon T (V, div <I’)Q - (V, ‘I’n)
+ (o — g(2)Ce, \I')Q - (f, W)Q
—(oov, 8tw)Q — (00vo,w(0)),, — (¢, 0,® — Dé)t\Il)Q — (g0, ®(0) — D®(0)),,
+ (o‘,sym(Dw))Q - (gN’W)QTxFN + (v,div @)Q — (VD7 @n)O)TXpD + (0' — g(2)Ce, lIl)Q — (f,W)Q

Q Q

- (crn,w) 0,Tx 9%

using the initial and boundary conditions of ansatz and test functions. Here, the Lo inner product is denoted by (-, -)qo.

This is now used to derive a weak formulation in space and time. Therefore, we introduce the bilinear forms

mQ((V E) (Wm)) = (eov, W), + (e,m)

ag((v, ®)) = (o,sym Dw))Q + (v, div <I>)Q
TQ( ¥) = (0 - 9(2)Ce. ¥),,
bQ(z,cp) = - C( —2,9) o+ G2 (V2,V9),

and, depending on the data f, vq, €9, vp, and gy, the linear form
éQ(Wa (Ea ‘II) = (f7W)Q + (QOVO7W(O))Q + (€0a Q(O) - D‘II(O))Q + (VDa (ﬁn) (0,T)xTp + (gN7W) (0,T)xTx
Then, a weak solution of the model described by (2) is defined as follows: Find
(v,e,0) € Lo(Q;RY x R x R, 2 € HY(0,T5L2(Q) N Lo (0, T;HY(Q))  with  2(0)=1inQ  (7)
satisfying for all smooth test functions (w,®,¥) € Vrp x Wy X Wr and p € Z
—mg ((v, €), (Oyw, 0, P — D@t\Il)) + CLQ((V7 o), (w, <I>)) + 70 (z; (e,0), \Il) —Llo(w,®,¥) =0, (8a)
1
Ty (3152,@)(9-1-5(9/(2)05 8790)Q+bQ(Z790) ZO (Sb)

Note that (7) implies z(t) € Lo(Q) for all ¢ € [0,7] and thus g(2(t)), g’ (2(t)) € Loo(€) with g(z(t,x)) € [g«,g"] and
g'(2(t,x)) > 0 for a.a. x € €2, so that ¢'(z(t))Ce : € € Ly(1) is well-defined and ¢'(z(t))Ce : € > 0 a.e. in Q.

For the elasticity system (v, e, o) the initial and boundary values are included in the right-hand side ¢g, and the for
the weak solution the initial and boundary conditions are satisfied only weakly. If the weak solution is also a strong
solution, additional regularity (v(0),e(0),0(0)) € La(R? x REE x REXY), v|om)xry € L2((0,T) x I'p;R?), and
on|o,ryxrp € L2((0,T) x I'n; R?) is required to obtain the initial and boundary conditions (3a) also strongly.

Our aim is to show that a fully discrete approximation in space and time of this problem is uniformly bounded and that
a weak limit is a weak solution satisfying (8). This proves in case of homogeneous boundary data the following result.

Theorem 1. A weak solution (v,e,0,2) of the dynamic phase field fracture model satifying (7) and (8) exists.
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Kerstin Weinberg and Christian Wieners 5

Therefore, we reformulate the result [Thomas and Tornquist, 2021] for the second-order formulation of the wave equation
to the weak first-order setting.
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6 Dynamic phase-field fracture with a DG method for elastic waves

4. APPROXIMATION IN SPACE

The visco-elastic wave equation is approximated with a discontinuous Galerkin (DG) method, the phase field with
lowest order conforming finite elements.

On a mesh Q, = Uger, K with elements K, let Vi® = []cpc, Po(K;RY) and Wi® = [[rer, Pe(K3RELD) be the
discontinuous finite element space of polynomial degree k& > 1, and let V& € P(Q) N C%(Q) be the lowest order
conforming finite elements, so that ¢y € fof is uniquely defined by the values (cph(x))x N, at the element vertices

N, = Urkex, Ng C Q. Then, we have

= mi d Keky.
nin on(x) = min g, (x) and  max pn(x) = max Pn(x), €Ky
We assume that the mesh is shape regular and that diam(K) < h for K € Kp,.

For the discontinuous functions, we define jump terms on the faces 5 = |J, Fr, where Fi are the faces on every
element K. For inner faces f € F, N, let Ky be the neighboring cell such that f=0Kn O0Ky. On boundary faces
f e FrnnoQ weset Ky = K. Let ng be the outer unit normal vector on 0K. We define the jump [vy]x 5 = VhK; —VhK
on inner faces, where vy, i denotes the continuous extension of v, |k to K. In the same way, the jump for the stress
tensor is defined. On Dirichlet boundary faces, we set [v]k,f = —2v}, and [o3]k,pn = 0. On Neumann boundaries,
set [Vi]x,f =0 and [op]k,jn=—20,0.

The defines the DG approximation [Hochbruck et al., 2015, Dorfler and Wieners, 2019, Weinberg and Wieners, 2021] for
the discontinuous functions (v, o), (wy, ®p) € V,? € x W,?g depending on the phase field z;, € V}ff by

aig(«zh; (Vi on),(Wh, ®1)) = (Umsym(DWh))Qh + (vh, div q)h)gi

- % Z Z (IIK : (O'h,KIlK - ZP(Zh)Vh,K)mK . (ZP(Zh)il[(I)h]K,an - [Wh]K,f)>

KeKy, feEFk !
1 -
—5 2 2 (e x (onaemie = Ze(aa)vir) mi % (Ze(an) " [Balicmie — [wilics) )
KeKy feFk

and the right-hand side

g;ilg (t7 zn; (W, ‘I’h)) = (f(t),Wh)Q + (VD(t), @hn)FD + (gN(t),wh)FN
_ (VD(Tf)7 ZP(Zh)(n . Wh)l’l + Zs(zh)(n X Wh))FD
— (gN(t), Zp(zh)(n . ‘I>hn)n + Zs(Zh)Il X (q)hn))FN

depending on the impedances Zp(z1) = v/9(zn) 0021 + A) and Zs(zr) = v/9(zn)0op of compressional waves and shear
waves, respectively. Note that this depends on the degraded material parameters.

The DG approximation is monotone satisfying

@y (20 (Viy @), (Vi o)) Z > (HZP 2n) " Pagc (onliomllF + (| Ze () nrvali, |7 )
KGICh fe€FK

+ || Zs(zn) Pk x [on]k millF + || Zs(zn) P ok x [Vh]K,f”?f) >0,

and is consistent satisfying for smooth test functions (w, ®) € Vrp x Wy and t € (0,T)

aig (zn; (Y, o), (W, ®)(1)) = (on, sym(Dw)(t)), + (v, div ®(t)),, , (10a)
08 (t, z1; (w, ®)(t)) = (£(t), W), + (VD (1), ®(t)n). + (gx(t), w(t));. - (10b)

Remark 2. The method can be simplified by using fixed impedances Zp = \/00(2u + \) and Zs = \/oop independently
of the degradation; the following arguments only rely on the properties (9) and (10).
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Kerstin Weinberg and Christian Wieners 7

5. APPROXIMATION IN TIME
In the dlscrete formulation, the condition 9,z < 0 is approximated using a Yosida regularization 6, M? (2) defined by

M2 (%) = L max{%,0}? and a penalty parameter 0, > 0. Note that M3 (%) = % for 2 > 0 and OM2 (%) =0 for 2 < 0.

For the limit analysis, we use the penalty parameter 0, = ‘90 and the regularization of the viscous dissipation potential
for the phase field

. Tr . .
RY(2) = /Q (T12 +0u02(2)) ax. (11)
In 2, we define
mQ((V,E), (Wa 77)) = (Q()va)ﬂ + (5777)9 ) V,W & LQ(QaRd) , &,ME L2(Q Rg;rg)7
rQ(z; (6,0')7\11) = (0' - g(z)Cs,\I’)Q, z2€Lo(Q), o,e,¥ € Ly jon’f),

ba(z,0) = —Ge((1—2),0) o + Gl (V2, V), 2z, H(Q),

and, depending on z;:_l € V,ff and eﬁ_l, the coercive functional

g}T—LL(Zh) = Atanf( Z;:fl) + 5el<zh’sz 1) gpf(zh)
:/ (L (en— 2 a2 2ty 4 Tgecer ety G- 2y ZQIVZhIQ)) dx
o \2At7 g At h 2 2 ¢
1 f n— Tr n— 2 f
zA—tZRg( h— ) > 2Atz||zh—zh | zn € VEE (12)

We assume that the loading is much slower than the wave speed. Thus we start with large time steps Atgs > 0 for
quasi-static increments. If waves are initiated by crack opening, the time step is decreased to Atye € (0, Atgs) such that
cpAtpr &~ h with wave speed cp = /(2 + A)/p).

We start with initial values (v9,e9,0%) € Vdg X de X W;ng and 2z € V¢ in the material without fracture, i.e., z) = 1.
We set t9) = 0, t} = Atgs, and At} =t} —t9.

In every time step n = 1,2, 3, ... we proceed as follows:

(S1) Depending on (ej,~ ! z}}fl), we approximate the phase field z € V< by the implicit Euler method, i.e., by
computing a crltlcal point of GJ(-) by solving the nonlinear equation

1
(OM3 (21 — 27 ) om) o + 5

5 (0 (z)Cey™ s eh ™ on) g + baleron) =0, pn € Vi

T 0n
Atrn (Z - zh 790}1){2 + Atn

such that Gp(2]') < Gi(2~"); this can be achieved by starting the iterative solution method with 2}~ *.
S2) Depending on (v~ 1 e?~ 1, o7 N e VI x WiE x W and 27 € V< we compute the solution for the next time
M h h h h h h h

step (v}, e, o) € Vhdg X W;Lig X W,;ig by the implicit Euler method, i.e., by solving the linear equation

mQ((VZa €Z)a (Wha (I’h - D\Ilh)) + Atzaig (227 (V7f27 UZ)a (Wh; ‘I)h)) + AtZTQ (Z;LLa (627 UZ)? ‘Ilh)
=mq(vy el ™), (wh, ®1)) + AR Sty 2 (W, ®4)) (Wi, @4, ) € VIE x WiE x W

(S3) If the relaxed energy is small and z}} ~ z;~ ! we expect that the next time step will also be quasi-static, and
we set At'h“rl = Atqs; otherwise, we set At"+1 = Atpt.

Then, we set tZH =ty + Atﬁ“, and we continue with the next time step n := n + 1 proceeding with (S1).

For simplicity of the presentation, we consider in the following only the case of homogeneous boundary data vp = 0
and gy = 0, and the volume forces are approximated by the Ly projection £ € V,?g in (tzfl7 th) x Q, ie.,

n d
(fh,Wh)(th’thQ = (f’wh)(t;;’l,t}:)xﬂ’ Wy € th, (13)
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8 Dynamic phase-field fracture with a DG method for elastic waves

and we use for the following analysis the discrete right-hand side

OBt 2 (Wi, @) = (E7,wh) g, - (14)

We also assume that (v9,€%) are the Ly projections of the initial values (vo, &).
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Kerstin Weinberg and Christian Wieners 9

6. WELL-POSEDNESS AND STABILITY IN SPACE AND TIME OF THE DISCRETE SOLUTION

We show that the discrete problems in the staggered scheme has a solution and we provide bounds for (v}, e}, o}, z1).
Therefore, we set Ae}! = e} —e}! ' and Azl = 2 —z ' forn = 1,..., N, and the projection ITy : L; (Q; REXd) — W,
is defined by

(2@, w)), = (®,%,),, ®e€Li(URYD), ¥, e W2,

sym
Lemma 3. Forn = 1,...,N a solution z]' € V,ff in (S1) and a unique solution (v}, e, ol) € V}?g X W,;lg X W;Lig

in (S2) exists satisfying o} = H?Lg (g(zp)Cep) + Atn
the discrete solution is bounded by the discrete energy-dissipation inequality

Dae}. In case of homogeneous boundary data vp = 0, gy = 0,

. 2
gkln( ) + gel(zh75h) + 5pf Zh + E < At Rel(Agh) + Rpf(AZh))
k

< gkin(vg) + 591(22762) + gpf(zg) + Z Atk(fﬁ,vﬁ)n. (15)
k=1

Proof. Since the coercive functional G} is bounded from below by a quadratic functional and V,ff is discrete, in (S1) a
minimizer z}' exists, and the minimizer is a critical point of G;' solving the nonlinear equation in (SI).

Next we show that the discrete linear system in (S2) has a unique solution. Therefore, we show that the homogeneous
problem only admits the trivial solution: assume that (w9, ®9, ¥9) € Vdg X de X Whg solves

mo ((wh, ®7), (wp, &, — D¥),)) + Atﬁaig( 2t (WL WD), (Wi, @) + Athra (2 (B0, ), ¥,) =0
for all (wp, @4, ®1,) € V'8 x W& x W2, Testing with (0,0, ¥}) yields

0=—(®),D¥}),, + Aty (s — (z}f)C@h, @), (16)
= —(D®), W), + oty (L), — 15 (g(2)C®,), ¥y) e WE,

Le., ) =TI (g(2)C®Y) + (at}) 'D®Y. Now testing with (w9, ¥9,0) yields, using (9),
(wh, BR)) + atpay® (21 (wh, ©9), (wh, ¥5))
> ma((w, ®7), (wh, ®7)) = 00 (Wh, W), + (27, ¥7),,
n ny— n 2
Mo+ (B2, 9(z)C®Y), + (aty) (27, D®}), > o0 [|[walld + Hg(zh)l/chm‘I’hHQ

which implies w = 0 and, using g(2') > g. > 0, also ®) = 0. Inserting in (16) yields ¥9 = 0, so that indeed the
solution of the homogeneous problem is (0,0, 0).

Testing the unique solution (v}, e}, o}) in (S2) with (0,0, ¥}) yields
mo((vi,en), (0, —DWy)) + Atpra(z); (ef, o), ) = ma ((vi e, (0, -D®,)),
i.e., for all ¥, € W;jg

0= atpra(zys (eh on), ¥y) — () —ep ', DE,)
= Aty (oh — g(zp)Cel, W), — (Aef, D), = Aty (o) — 155 (g(2)Ce}), ¥y),, — (Doel, ¥y),,

so that we obtain o = I1/8(g(2})Ce}}) + = DAe}. Next we observe

At”

ma ((vi,en), (vi, I8 (g(21) Cep))) = oo (Vi Vi), + (e I35 (g(21) Cep))
=00 (Vi Vi) + (€8, 9(z0)CeR), = 285 (Vi) + 29 (1), €7)
ma (Vi en ), (Vi TE(g(21) Cepl)) = 0o (Vi Vi) + (e, g(2)CeR)
< EN (Vi) + EN g ep) + E (Vi) + €% (gt en )
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10 Dynamic phase-field fracture with a DG method for elastic waves

and

ra (2 (ef, 0h), Aey) = (o) — 9(24)Ceh, Aeh),

(o — ¥ (g(=h)CeR), 2eq) o, =

1
Daep, Ash)ﬂ — Rel(Ash)

(At” Aty

which yields together with (14) and testing in (S2) with (v}, o7, (aty) ' ae})

in n {S3 n n 2 e n n n n d n n n n n n
26N (Vi) + 26 (27 €f) + Tt”R (aep) = ma((vi,en), (vi, 1,5 (g(z)Cep))) +7"Q(Zh; (Eh,oh); AEh)
h
= mQ((Vzvé:Z)? (Vzv UZ - (Ath) lDAeh)) + Atﬁm (Z}:L? (62’ OJ}:)’ (AtZ)_lAE;D
n _n n _n n d n n n n _n
<mqa((vi,er), (vi,on — (at7)'DAeR))) + atpay® (2 (Vi o), (Vi o7)

“rAt;LLT‘Q(Zn,(Eh,O'h) (Atn) Aé‘h)

=mq(vy ' ep ), (vii,on — (atp) 'Daep)) + Atnedg( w2 (Vi o))
=mq(vy ' ep ), (vi, I ( (211)Cep))) + AtpLE (tr, 21 (Vi o)
S gkin(vh) gel(zhaeh) gkm(vz—l) + ‘Sel(zha ) + Ath( h?vh)Q
so that
. 2 .
5k1n(v’,§) + SCI(ZZ,EZ) + MRCI(A&:Z) < 5k1n(v2_1) + SCI(z}:, 62_1) + Atﬁ( Z,VZ)Q . (17)
h

For the solution z]' € V¥ of (S1) we assume GJ'(2}') < GF(27 "), so that we obtain

ﬁR"%Azh) + €M)+ EP () = Giah) < GR(ap ) = £ e + €M),

ie., Rpf(Az )+ EPI(zp) < EM(zp T el — £ (2p, en ) + EPI(2) ). Together with (17) this yields

N
' 2
ENN(vR) + £ (e eh) + EP(2h) + S R (aeh) + Ry (427)
h
<EMVET +ENEH T e T + EM (T + Atk (£ vE) g -
For n > 2 we have

. 2 1 2 1
EXN (Vi) + €2 €f) + EPM(2h) + R (nef) + 773#(“;;) + 7717381(&;; N+ — R (az )
Aty oty At At))

< G £ + T + R+ e R 4 o (65 Vi)

< SNV + € ) + €M) Al (B Vi) g+ A (B Vg

This continues for n — 2,n — 3, ..., 1 and thus proves the assertion. O
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Kerstin Weinberg and Christian Wieners 11

We define (zp,, Vi, €n, 05) € La(0, T; ViEF x Vhdg X de X de) by (2n, Vi, €n, o) (t) = (2]}, Vi, el o) in (tzfl,tg) and
(2h,€n) € Lo(0, T; Vi 5 W) by (24, &0)(t) = <L (az)), pep) for ¢t € (£771,17). We have o, = I118(g(21,)Cep) + Déy,.

The following analysis holds for both cases, visco-elasticity with positive definite D, and the elastodynamics without
viscosity with D = 0.

At”

Lemma 4. The discrete solution (zj,,Vh,€n, 2n, DY2&}) is uniformly bounded in Q = (0,T) x Q by

1 G : e 2 L ? .
Elvaliy + 5 llan) 2 C 7 2enlg + 52 (11 = 2alley + 12 [V2a]15) + [ID2enly + 5 llanllg, + Sl max{zn, 03I,

[
max{T, 1}>
P g%

< max{T, 1}(£9°(v5) + £9(:f, &0) + £7(=0) ) + -

Proof. We observe for the total energy
O v+ 22t 2enl + S (I -l + 2 [l = ZM"(&?““ )+ £ ) + €71 )

and for the dissipation

Tl 0 >
IV 22 + Zlznlly, + 2 | maxtza, 0},

Tr . 2 9 . 2
(||D1/2€h|| rrapea+ g el gxa + 31 maX{Zh’0}||<tﬂ‘l’fﬁ>XQ)

N

5
>

1 a2 0 ., 2 . 1
=3 o (D20l + Bzl + 2 maxtozi.0l3) = 3 (R aeh) + omiash)
n=1
N N
Using (13), we get Z At}f(fﬂ,v}i)ﬂ = Z (£, Vh)(t:—lyt;’,j)xﬂ = (f, vh)Q.
n=1 n=1

Together, the estimate (15) for the energy (n =1,...,N) and for the dissipation (n = N) yields the assertion by

1 G 0 .
Svally + 5llo) 20 enlf 4+ 5 (1L — 2l + 2 9215 ) + D2l + o+ 5 llmax{z,. 035

N

N
in/..n e n _.n n 2 e 1
= 2 o6 (£ + £ ) + £76R)) + 3 (MR aeh) + g RAaeh))

n=1

< max{ Z Aty } (gkm ) + Sel(zga 52) + gpf(zlg) + (f’vh)Q)

max{T,1}2

< max{T, 1} (€57 (v) + £°(=f) ) + £71(:0) ) + = -

@
£l + Flvalle-
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12 Dynamic phase-field fracture with a DG method for elastic waves

7. WEAK LIMIT OF THE DISCRETE SOLUTIONS

We consider a shape-regular family (Qh) het of meshes with 0 € H, e.g., obtained by uniform refinement of a coarse
mesh. For simplicity, we may assume for this limit analysis uniform time steps At} = Aty = T/Nh with Nj, € N such
that cwsAtp, = h with respect to a reference wave speed cys > 0. We set ¢} = nAt, and tn 12 _ (t” Ly ).

By Lem. 4 the discrete solutions (zp, vy, €p, 25, D1/2éh)h€7.[ are uniformly bounded.

Lemma 5. A weakly converging subsequence (zh,vh,sh,z"h,Dl/Qéh)th.Lo with Hy C H and 0 € Hy exists. For the

limit

(2,v,€,2,DY2) € Ly (0, T; H'(Q)) x La(Q;R?) x La(Q; REXD) x Lo(Q) x La(Q; REXD) x Lo(Q; REXY) (18)

sym sym Sym

the weak derivative O,z exists, and we have z € H! (O,T; L2(Q>) with z(0) = zg, sz = 2 <0 a.e. in Q.
If, in addition, D is positive definite, also the weak derivatives O;e and sym(Dv) exist, and we have 0;e = & = sym(Dv).

Proof. By Lem. 4, the discrete solutions (2, v, €n, 2n, D'/2€),)nen are uniformly bounded by
Ivallg + llenllg + llznllg, + 1720 llg + 1D72enlg, + (124G + 6n ]| max{zn, 0}5 < €

with a constant C' > 0 independent of h € H but depending on the initial data vg, zg &g, the load f, the lower bound
g(zn) > g« > 0, and the material parameters. Thus, a weakly converging subsequence (zx)nen, C Lo (O, T; Hl(Q)) and
(Vh, Ehs Zh, Dl/Qéh)heHO in Lo exists.

Since 0, — oo for h — 0, we obtain for the limit H max{z, O}HQ < hm H max{zh,O}HQ < hm ¢ = 0 and thus

o Op
2 <0 a.e. in Q. Moreover, we observe for smooth test functions ¢ € Cl(Q) Wlth o(T) =
Nh Nh
(2, 000) g = D (20 919) g1 4y = D (30 0tR) = (5 ) g = = (40, 6(0))  + Z — L),
n=1 n=1
Np, Ny,
= 7(‘22; ¢(0))Q - Z (AZ}TZﬂ d)(tz_l))g = 7(223 ¢(O))Q - Z (éha ¢(t2_1))(t;‘717t2)x9 )
n=1 n=1
so that limpeyy, H(;ﬁ(t;z*l) - ¢H(tﬁ*1,t;;)><ﬂ =0 and 29 = 20 = 1 gives
(ZO7 ¢(O))Q + (Z7at¢))Q = hlél’}-[lg ((Z?u ¢(0))Q + (Zh7at¢)Q)
Np, Np,
== dim D G067 e = =l D (B0 e =~ (59)g

Testing with ¢ € CL(Q) shows that the weak derivative in time of z exists with 9;2 = %, so that z € H! (O,T; LQ(Q))
and thus continuous in time; testing with ¢(0) # 0 and ¢(T") = 0 shows z(0) = zp.

If, in addition, D is positive definite, also (€x)nen, is weakly converging to &, and one shows in the same way that the
weak derivative in time of € exists and that d,e = €.

Moreover, we select a smooth test functions ® € C(Q; RE:T), and let B} € W,(L1 ENHj (2 RE%Y) be the an approximation
. n—1 ,n . . n n —
of ® in (15", tp) x Q with lim ([ @5 = @] yus 0o+ | div(@; — @) — 0.
Then, testing (52) with (0, ®},0) yields
n _n n n_ d n n o _n n n— n— n
ma((vii,€h), (0, @) + athay® (2 (Vi 7). (0,87)) = ma(vy ™ ey ™), (0,27))

n

(tﬁ*l,t;;)xﬂ)

i.e.,

1
— (8eq, @) + (va, div @), Z > (( ahyan—Zp(zh)vh’K),nK-(Zp(zh)—l[{)h]K,an)f

At 2 KR fere
+ (IIK X (onxng — Zp(2n) Vi), DK X (ZP(Zh)_l['i’h]K,an)f> .
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Kerstin Weinberg and Christian Wieners 13

Since the approximations ®} € W,fg NHE(Q; REXD) satisfy [@7]k,; = 0, we obtain

sym

Nh
(&,@),+ (v div®), = lim ((éh, ®), + (Vi div @h)Q) = lim 2 ((Aez, ®p) g, + Atn(va, div <I>Z)Qh) =0, (19)
so that, in case of positive viscosity, for v a weak symmetric gradient in space exists satisfying & = sym(Dv). (I

By the Aubin-Lions Lemma [Roubicek, 2013, Lem. 7.7], the embedding
H'(0,T;L2(2)) N L2 (0, T HY()) — La(Q)

is compact. This yields strong convergence of the discrete phase field approximations in L.

Lemma 6. We have strong convergence of (zn)nen, in Lo(Q), i.e., limpep, ||2n — 2llg = 0, and weak convergence of
(oh)hen, to o =g(z)Ce + Doe € La(Q; ngxn‘f).

Proof. Since zy, is discontinuous in time, the Aubin-Lions Lemma cannot be applied directly. Thus we define

t
z«h(t)=z°+/ S(s)dse Ve teo,T],
0

so that 2, € HY(0,T; V) and 9,2, = 4p; from 27 = A—in(zh zn 1) we get Zp(th) = 2} for n = 0,..., Ny, and using
h
uniform time step sizes At} = At we obtain

Ny, n—1 Nu o oty 2
t—t 12 ro(th —t) 12
-1 h 1 _ h 1
lzn — 2all% = Z / ok =27t = G = A g de = Z / I e A L
Np, 3 2
Aty (Ath)? . (Ath)? .
= Z — Iz —zla = > G =z (20)

n=1

Since (zp)nep, is converging weakly to z € Lo(Q) and (2n)newn, is uniformly bounded in Lo(Q), also (Zn)nen, is
converging weakly to z € La(Q). Then, we obtain

T _ . _ . o T o 1
0= hlgﬁo (Vz—Va, @)Q = - hlég[{lo (z — zn, V@)Q = - hlér;{lo (z — 2, V@)Q = hlég[{lo (Vz— Vi, cp)Q , peC.AQ),

so that also (V25 )nen, is converging weakly to Vz, i.e., (£4)nhen, is converging weakly to z in Ly (0,75 H'()). Since in
addition (25, )nen, is converging weakly to 0iz € La(Q), we conclude that together (2;)nen, is converging to z weakly in
H! (0, T; LQ(Q)) NLoy (O, T, Hl(Q)) Since the embedding to L2 (Q) is compact, we obtain strong convergence of (£p,)ne,
in L2(Q), and by (20) also hlér?{[lo llzn — zll@ = 0.

This implies also strong convergence of (g(zh))heHg in Ly(Q). In addition, we have g(z) € Loo(Q) for all h € H,.
Together with the weak convergence of (ep,, &p)nep, in L2(Q; REXE, REXD) this yields for all ¥ € Ly(Q; RLXY)

Sym ’ “Ssym Sym

Nh Nh

: 1 n dg\yn _ dg dg.q,n
hlég[{lo (O'h,\I/)Q _hlgqr{lo;At (o, I, ) lémOZAth (IT,%(g(zn)Cep) + Dép 11,5 W )
Np
= li At Cep + D, e . = li Cey, + Déy, ¥
hé%); 7 (9(1)Ce}; + D&, Jo = Jim (9(zn)Cen+Dés, ¥),,
= Jim (Cen, g(z1)®), + Jim (Dey, ),
= (Ce,g(2)®), + (Date,\Il)Q = (9(2)Ce + D@te,lIl)Q
with " = Atﬂ tn ) t)dt, so that (op)nen, is converging weakly. O
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14 Dynamic phase-field fracture with a DG method for elastic waves

Using a lower semicontinuity result for Carathéodory functions we can now show that the limit solves the variational
inequality for the phase field evolution.

Lemma 7. The weak limit (z,€) € H'(0,T;L2(Q)) N L2 (0, T; HY(Q)) x La(Q; RYXD) of (21, €n)nen, solves (8D).

Sym

Proof. For a test function ¢ € Z we define the approximation ¢, € H(0, T; V) by nodal interpolation in space defined
by on(tn,x) = p(tn,x) for x € Ny, and n = 0,..., N, and by linear interpolation in time

1

on(t) = AT;;W” — )n(tn1) + (t— tn,l)@h(tn)) . te(tpity), n=1,...,Ny. (21)

Since ¢ < 0 and we use lowest order finite elements, we also get ¢, < 0 in (. By construction, since ¢ is smooth, we
have also strong convergence of the interpolation (pp)pep, in Loo(Q).

Now we define f(y, &) = yCE : € for (y,€) € R x R4%4 and we observe that f(-,-) is a Carathéodory function which is

sym ?
convex in €. This is now used to show a lower semicontinuity of the functional

T Lo(@Q) % Loo(@) X La(QiREY) — R, J(zp.e /f ©)d(t,x) = (¢/(2)Ce e, —9) .-

The strong convergence of (zp)pen, in L2(Q) by Lem. 6 and (¢p)nen, in Loo(Q) by construction yields strong conver-
gence of (g’(zh)gph)heHo in La(Q). Together with the weak convergence of (€)pcyn, established in Lem. 5 this yields

by [Dacorogna, 2008, Thm. 3.23] lower semicontinuity liminfrcy, J(2n, on,ern) > J(z, 0, €), i.e

. _ / . _
hhnelﬁcl,f( g'(z1)Ceyp, : €, gph)Q > (¢'(2)Ce : ¢, cp)Q : (22)

Inserting ¢ = @ (t; 12 ) we observe At} (g'(z)Cep : €, —¢p),, = (9'(zp)Ce}r - sZ,—gDh)(th’thQ, since @y, is

linear and z;, and g5, are constant in time in every interval (tz_l, %), so that we have
(9'(zn)Cep s &1, — Z At} (g (2)Cely = €, =01 )
From (S1) we obtain
0= Z At”( (82, e+ g (002 (857, eR), ;(g’(ZZ)Ce‘Z*l cen ! eh)g + balah eh))
zfr(z‘h,gph)Q—i—Qh(@Mi( ZAt” (z)Cep ™t el ,cpZ)Q—i—bQ(zh,goh),

so that, using —¢j, > 0 and M2 (%) > 0,

Nh
7 (2n, 0n) Z Aty (g (zh)Cep ™ e i) o + b (2h, on) = 0n (0MF (21), —¢n)g 2 0. (23)

For the next step, we consider the difference

(9'(zn)Cep : €, — Z At (g (zp)Cep rep ™t =), — Dty (g (2 ) Cep™ ten™ —pn™) o
Nn-1
= Aty (g'(2,)Cep < eh, —h) o, + Z Atﬁ((gl(ZZJrl)CeZ e~y — (g (2])Cep - e, —@Z)Q> .
n=1

Since ¢ is smooth, we obtain for the interpolation hlir{(l (pp™ — @) = 0 in Le(2), and since z € H'(0,7;() and
€
thus continuous in time, and ¢’ is continuous and bounded, we also observe hlir;{l (g (z ZH) g’(z}f),w)ﬂ = 0 for all
€Ho
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¥ € Ly(2). Moreover, (Ce}, EZ)Q is uniformly bounded, so that together

li "(2,)Cep At (g (zp)Cef ™ rep ™t — o =0.
heHo ((9 (2n)Cen : €n, — Z (&) Cer ™ el —eh)g

Combining this with (22) and inserting (23) yields

Np

(¢'(2)Ce : ¢, fga)Q < hhnel’i[%f (9'(zn)Cep, : €p, — = hmmf Z At (g (27)Cep ™ rep ™t 7@2)9

15

< hhﬂellnf (Tr (2n, SDh)Q +bq (2, SDh)) = hléI?I_[lO (Tr(éh, Sﬁh)Q + bg(zn, sﬁh)) =72 (8ez, @)Q +bg(z,¥)

since (zn, Zn)hen, 1S converging weakly to (z,0¢z) and (pp)nen, is converging strongly to ¢. This proves (8b).

Page: 15
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16 Dynamic phase-field fracture with a DG method for elastic waves

8. CONVERGENCE TO A WEAK SOLUTION

Finally we show that the weak limit of the discrete solutions in Lem. 5 also solves (8a), so that together we obtain a
weak solution of the elastodynamic phase field model.

Theorem 8. The weak limit (z,v,e,0) € H(0,T;L2(Q)) N L2(0, T; H(Q)) x La(Q; RY) x LQ(Q;R;{},XH?) X LQ(Q;RS},XH?)
of the sequence (zp, Vi, Eny On)heH, IS a weak solution of the variational system (8).

Proof. For the limit, the variational inequality (8b) is established in Lem. 7.

For (w,®,¥) € Vrp x Wr x Wy let (w}, @7, ¥7) € (V' x W% x W) N COQ R x RIXD x REX) be the nodal
interpolation in space of (w, ®, ¥)(¢}) defined by (w}, ®}, O})(t,,x) = (W, ®, ¥)(t},x) forx € Njy andn=0,..., N,
and let (wy, @5, ¥;) € HY(0,T; Vfg X W;fg X W;lig) be the linear interpolation in time, cf. (21), so that we have strong
convergence of (wp, ®p, ¥p)nen, to (w, ®, ¥).

We set (wy /%, @72 w2 = (wy, @, ®,)(t /%) and observe 9wy (t) = s AW for awj = wi —wpi™! and
t € (th-1,tn), n=1,...,Np. Using whNh' = 0, we obtain
Np, Np, Ny,
—(00Vn 0iwn) o = = > (0ovit, sWi) g ==Y (00vi, W) + > (eovi, Wit
n=1 n=1 n=1
Ny,
= (QOV?L’W?L)Q + Z (QoAVZI’WZil)Q
n=1
Ny,
and for A®} = &7 — @'~ analogously, i.e., —(sh,attbh)Q = (527 ,I,O)Q + Z (ney, @271)0.
n=1

Since for (wZﬁl, ‘I'Zfl) all jump terms and boundary terms vanish, we obtain consistency (10) for the DG bilinear form
d _ _ _ . _
ay® (25 (it o), (Wi Ley 1)) = (o}, sym(Dw}, 1))Q + (vi, div ®} 1)9 )
Thus we obtain from (S2), since we assume homogenous boundary conditions vp = 0 and gn = 0,

mQ((Avﬁv Aé‘ﬁ), (W2717 (I)Zil - Dqlzil))
d — — d — — _
= ot (B0 2 (o @) — (o (v o). (i @) — (o (e o), 7))

= AtZ(( Z,WZ_I)Q — (aZ,sym(DwZ_l))Q — (v, div @Z_I)Q — (o — g(21)Cet}., \I/Z_l)ﬂ> .

This yields together with mq ((Aavy, Ae}), (0,DW1)) = (aep, DY), = Aty (Dép, ¥ 1)

Q Q

(00vh, 3tWh)Q + (5h7atq)h)Q + (AQOV}ONW?'L)Q + (eh, ‘I>0)Q

Al N
=2 ((QOAVZ’WZ_l)Q + (aeh, ‘I’Z_l)s)) ==Y ma((avy, sep), (Wit @)
n=1 ot
Np,
=3 ot (o symDw; ) + (VR div ;) + (o — 9(:7) e — D 3 ) — (6w ),
n=1
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Kerstin Weinberg and Christian Wieners 17

and thus in the limit, using strong convergence of the test functions and of (g(zh)) heHy

00 (v,@tw)Q + (e,@t@)Q + 00 (vo, w(0)), + (€0, ®(0)),

= lim ((govh,&gwh)Q + (Eh, 8t¢)h)Q + (QQV(;)L,W?L)Q + (E%, (I)O)Q)

heHo
Np,
= Jim 3" Atg((agsym(Dwg*l))Q + (Vi diver ), + (oF — g(z)Cef — Dep, WYy — (f;;,w;;*)Q)
n=1

= hlégllo ((O';HSyIn(DWh))Q + (Vh,diV q)h)Q + (O'h — g(zh)Csh — Dég,, ‘I’h)Q — (fh>Wh)Q>

= (0',sym(Dw)) + (v, div <I>)Q + (0' —g(2)Ce — Dg, \II)Q — (f, w)

Q Q’

Thus, the weak limit solves (8). O

Page: 17 job: ElasticViscoElasticFracture date/time: October 7, 2022



18 Dynamic phase-field fracture with a DG method for elastic waves

9. THE ENERGY-DISSIPATION ESTIMATE

The energy-dissipation balance [Thomas and Tornquist, 2021, Def. 1.3]

EXN (v (1)) + EN(2(t), e(t)) + EPH(2(t)) — £ (t, u(t)) + / (R(&(s)) + RP(2(s))) ds

0

t
= Skin(VO) + gel(stO) - geXt(Ovu(O)) - / geXt(sv u(s)) ds
0
with

(gext(s7 u(s)) = (atf(s), u(s))Q dx + (ath(s), u(s))aNQ

can be established for sufficiently regular solutions [Thomas and Tornquist, 2021, Thm. 5.1]; integration by parts yields

EXN (v (1)) + EN(2(t), e(t)) + EPH(2(1)) + /0 (R(&(s)) + RP(2(s))) ds = EX™(vo) + E% (20, €0) + /O (s, v(s))ds.

Here, with less regularity this is relaxed.

Lemma 9. A subsequence H1 C Ho with 0 € Hy emists, so that (z1,(T),vi(T),en(T))nen, is weakly converging to

(21, vr,er) € HY(Q) x Ly(; RY) x Ly(Q; RX4) (24)

Sym

Proof. For h € H and gn = 0, the discrete energy-dissipation inequality (15) takes the form

n

. ty
(v + (e o) + E7aR) + [ (2R En(o) + RET((5))) ds (25)
0
< (v + £9(2f, €0) + €7 (20) + (1 VA) (o)

so that we obtain for n = Ny,
1 G
2 lva () [+ 5 lan @ 2C 2en()lg + 52 (1t = (D) 6 + 2 Van(D]l5)

T
< ENN (v, (T)) 4 E(2n(T), en(T)) + EP (2,(T)) + /O (2 R (En(s)) + sz(ih(S)D ds
< ENNV) + € (2P, eh) + EP(2R) + (s Vi) g -

Thus, (2,(T), vi(T),en(T))ner, is uniformly bounded in H! () x Ly (€2; R?) x Lo (Q; REX4), so that a weakly converging

sym
subsequence exists. (Il

In particular, this shows that for the weak solution (z,v,e,0) in @ = (0,7) x € the evaluation at t = T is well-defined
with (=(T), v(T), &(T)) = (o1, v, ex).

Lemma 10. The weak limit (18) satisfies the energy-dissipation estimate

EXN(v (1)) + E°(2(1), e(1)) + EPI(2(2)) +/ (R (&(s)) + RP!(2(s))) ds < €9 (vo) + € (20, €0) +/056"t(S»V(8))d8 (26)

0
forallt € Ty = {th:n=0,...,Np, h € Ho}.
Note that Zy, C [0,7T] is dense.

Proof. We show the result for ¢ = T (the general case is open). For the weak limit we obtain the estimates

E9(v(T)) < liminf E9°(vi(T)),  E((T), &(T)) < lihrg?i{nf EMan(T),en(T)),  EM((T)) < liminf € (2 (T)).,

/ RPH((s)) ds <hm1nf/ Rpf (2n(s))ds <hm1nf/ Rp (Zn(s

so that together we obtain (26) from (25) for the case gn = 0. O
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