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Abstract

Polzehl and Spokoiny (2000) introduced the adaptive weights smooth-

ing (AWS) procedure in the context of image denoising. The procedure

has some remarkable properties like preservation of edges and contrast,

and (in some sense) optimal reduction of noise. The procedure is fully

adaptive and dimension free. Simulations with artificial images show

that AWS is superior to classical smoothing techniques especially when

the underlying image function is discontinuous and can be well approxi-

mated by a piecewise constant function. However, the latter assumption

can be rather restrictive for a number of potential applications. Here we

present a new method based on the ideas of propagation and separation

which extends the AWS procedure to the case of an arbitrary local linear

parametric structure. We also establish some important results about

properties of the new ‘propagation-separation’ procedure including rate

optimality in the pointwise and global sense. The performance of the

procedure is illustrated by examples for local polynomial regression and

by applications to artificial and real images.
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1 Introduction

Polzehl and Spokoiny (2000), referred to as PS2000 in what follows, offered a new method

of nonparametric estimation, Adaptive Weights Smoothing (AWS), in the context of im-

age denoising. The main idea of the procedure is to describe the largest local vicinity of

every design point Xi in which the underlying model function can be well approximated

by a constant in a data-driven and iterative way. The procedure possesses remarkable

properties. It is fully adaptive in the sense that no prior information about the structure

of the model is required. It is design adaptive and does not suffer from the Gibbs effect

(high variability and increased bias near edges and boundaries). A very important fea-

ture of the method is that it is dimension free and computationally straightforward. Our

numerical results demonstrate that the new method is, compared to other nonparamet-

ric procedures, very efficient in situations when the underlying model allows a piecewise

constant approximation within large homogeneous regions. Unfortunately, the iterative

nature of the procedure makes a rigorous theoretical analysis of the new method very

complicated. PS2000 did not provide any theoretical results about the accuracy of esti-

mation delivered by this method. Another weak point of the procedure from PS2000 is

that it applies the simplest method of local smoothing based on local constant approxi-

mation. This approach seems reasonable e.g. in image analysis or for statistical inference

in magnet resonance imaging, as shown in Polzehl and Spokoiny (2001), referred to as

PS2001. Other applications to density, volatility, tail index estimation can be found in

Polzehl and Spokoiny (2002). However, in many situations the assumption of a local

constant structure can be too restrictive. A striking example is estimation of a smooth

or piecewise smooth regression function where a piecewise constant approximation is

typically too rough. Local linear (polynomial) smoothing delivers much better results in

such cases, see Fan and Gijbels (1996) or our examples in Section 5.

In the present paper we propose an extension of the AWS procedure to the case of

varying coefficient regression models and simultaneously present a detailed theoretical

study of the new method. We particularly prove an important feature of the procedure,

the ‘propagation condition’, which means a free extension of every local model in a

nearly homogeneous situation. We then show that this condition automatically leads to

a nearly optimal accuracy of estimation for a smooth regression function. Finally we

present a ‘separation’ result which indicates that an extension of every local model will

be automatically restricted to the region of local homogeneity.

Varying coefficient regression models generalize classical nonparametric regression

and gained much attention within the last years, see e.g. Hastie and Tibshirani (1993),

Fan and Zhang (1999), Carroll, Ruppert and Welsh (1998), Cai, Fan and Yao (2000)
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and references therein. The traditional approach uses an approximation of the varying

coefficient by a local linear model in the varying parameter. The model is estimated for

every localization point independently by local least squares or local maximal likelihood.

Accuracy of estimation is typically studied asymptotically as the localization parameter

(bandwidth) tends to zero. Such an approach has serious drawbacks of being unable to

incorporate special important cases like a global parametric model, a change-point model

or more generally, models with inhomogeneous variability w.r.t. the varying parameter.

We propose a completely different approach based on the propagation-separation idea

that allows to treat all mentioned special cases in a unified way and to get a nearly optimal

accuracy of estimation in every such situation. It is however worth mentioning that the

classical local polynomial smoothing appears as a very special case of our procedure when

we ‘turn off’ our adaptation step.

The next section discusses the notions of global and local modeling. The basic idea

and the description of the new procedure are given in Section 3. The important special

case of a local polynomial regression is discussed in Section 4. The performance of the

method is studied for some simulated examples of univariate and bivariate regression

in Section 5. We also apply the method to the problem of image denoising. Another

application of the proposed method to business cycle analysis can be found in Polzehl,

Stărică and Spokoiny (2004). Section 6 discusses theoretical properties of the procedure.

Proofs and some technical results are provided in the Appendix. A reference implemen-

tation of the proposed procedures is available as a contributed package of R from URL:

http://cran.r-project.org/.

2 Local modeling by weights

Suppose that data Yi are observed at design points Xi from the Euclidean space IRd ,

i = 1, . . . , n . In this paper we restrict ourselves to the regression setup with fixed design

described by the equation

Yi = f(Xi) + εi . (2.1)

Here f(x) is an unknown regression function and εi can be interpreted as additive

random noise with zero mean. The distribution of the εi ’s is typically unknown. Often

noise homogeneity can be assumed, that is, all the εi ’s are independent and satisfy

Eεi = 0 and Eε2
i = σ2 for some σ > 0 . For exposition simplicity we restrict ourselves

to this homoscedastic situation. Heteroskedastic noise can be considered as well, see

PS2001 for some examples. We assume that an estimate σ̂2 of σ2 is available, see again

PS2000 or PS2001 for specific examples.
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2.1 Global linear modeling

Suppose we are given a set of functions ψ1(x), . . . , ψp(x) on IRd . We consider a linear

parametric family F = {fθ , θ ∈ Θ} where Θ is a subset of a p -dimensional Euclidean

space and, for θ = (θ1, . . . , θp)� ,

fθ(x) = θ1ψ1(x) + . . . + θpψp(x).

A global parametric structure for the model (2.1) would mean that the underlying

function f belongs to F . The simplest example is a one-parameter family given by

fθ(x) ≡ θ , corresponding to a constant approximation of the function f . Under the

global parametric assumption f ∈ F , the parameter θ can be easily estimated from the

sample Y1, . . . , Yn . A natural estimate of θ is given by ordinary least squares:

θ̂ = arginf
θ

n∑
i=1

(Yi − fθ(Xi))
2 .

For an explicit representation of this estimate vector notation is useful. Define vectors

Ψi in IRp with entries ψm(Xi) , m = 1, . . . , p , and the p× n -matrix Ψ whose columns

are Ψi . Let also Y stand for the vector of observations: Y = (Y1, . . . , Yn)� ∈ IRn . Then

θ̂ =

(
n∑

i=1

ΨiΨ
�
i

)−1 n∑
i=1

ΨiYi =
(
ΨΨ�

)−1
ΨY

provided that the p× p matrix ΨΨ� is nondegenerated.

2.2 Local linear modeling

The global parametric assumption can be too restrictive and does not allow to model

complex statistical objects. A standard approach in nonparametric inference is to apply

the parametric (linear) structural assumption locally. The most general way to describe

a local model centered at a given point is localization by weights. Let, for a fixed x , a

nonnegative weight wi ≤ 1 be assigned to the observation Yi at Xi . When estimating

the local parameter θ at x we utilize every observation Yi with the weight wi = wi(x) .

This leads to a local (weighted) least squares estimate

θ̂(x) = arginf
θ∈Θ

n∑
i=1

wi(Yi − fθ(Xi))2 =
(
ΨWΨ�

)−1
ΨWY (2.2)

with W = diag{w1, . . . , wn} .

We mention two examples of choosing the weights wi . Localization by a bandwidth is

defined by the weights of the form wi(x) = Kloc(li) with li = |ρ(x,Xi)/h|2 where h is a

bandwidth, ρ(x,Xi) is the Euclidean distance between x and the design point Xi and
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Kloc is a location kernel. Localization by a window simply restricts the model to some

subset (window) U of the design space, that is, wi = 1(Xi ∈ U) and all data points Yi

with Xi outside the region U are not taken into account when estimating θ(x) .

Here we do not assume any special structure for the weights wi , that is, any config-

uration of the weights is allowed. In what follows we identify the diagonal weight matrix

W = diag{w1, . . . , wn} and the local model defined by these weights.

3 Propagation-separation using adaptive weights

This section describes a new method of locally adaptive estimation, based on the propa-

gation-separation idea. The procedure aims to determine from the data for every point

Xi the largest possible local neighborhood in which the model function f(·) can be well

approximated by a parametric function fθ from F . The procedure starts for every point

Xi from a very small local neighborhood which is then successively increased. A new

point Xj will be included in a neighborhood of Xi only if the hypothesis of local homo-

geneity θ(Xi) = θ(Xj) is not rejected, that means, if there is no significant difference

in the values of the estimated parameters obtained at the earlier step of the procedure.

The two important properties of the procedure are propagation (free extension) of every

local neighborhood within the region of local homogeneity and separation of every two

regions with different parameter values.

The formal description of the method is given in terms of weights. For the initial step

of the procedure, the estimate θ̂
(0)

i of θi = θ(Xi) is computed from a smallest local

model defined by a bandwidth h(0) , that is,

θ̂
(0)

i = arginf
θ

n∑
j=1

(
Yj − fθ(Xj)

)2
w

(0)
ij

with w
(0)
ij = Kloc

(
l
(0)
ij

)
and l

(0)
ij =

∣∣ρ(Xi,Xj)/h(0)
∣∣2 . In other words, the algorithm

starts with the usual local polynomial estimate with bandwidth h(0) , which is taken

very small. If Kloc is supported on [0, 1] , then for every point Xi the weights w
(0)
ij

vanish outside the ball U
(0)
i of radius h(0) with center at Xi , that is, the local model

at Xi is concentrated on U
(0)
i . Next, at each iteration k , a ball U

(k)
i with a larger

bandwidth h(k) is considered. Every point Xj from U
(k)
i gets a weight w

(k)
ij which is

defined by testing the hypothesis of homogeneity θ(Xi) = θ(Xj) using the estimates

θ̂
(k−1)

(Xi) and θ̂
(k−1)

(Xj) obtained in the previous iteration. These weights are then

used to compute new improved estimates θ̂
(k)

(Xi) due to (2.2).

The main ingredient of the procedure is the way how the adaptive weights w
(k)
ij are

computed. PS2000 suggested to just take the normalized difference of the estimates
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f̂ (k−1)(Xi) and f̂ (k−1)(Xj) at two different points for checking the hypothesis of ho-

mogeneity f(Xi) = f(Xj) . Here we extend that approach to the more general local

linear parametric assumption. This naturally leads to a test of homogeneity for two local

models W
(k−1)
i = diag

{
w

(k−1)
i1 , . . . , w

(k−1)
in

}
and W

(k−1)
j = diag

{
w

(k−1)
j1 , . . . , w

(k−1)
jn

}
, to

specify the weight w
(k)
ij .

3.1 Measuring the statistical difference between two local models

Consider two local models corresponding to points Xi and Xj and defined by diagonal

weight matrices Wi and Wj . We suppose that the structural assumption is fulfilled for

both, that is, the underlying regression function f can be well approximated by some

fθ ∈ F within every local model. However, the value of the parameter θ determining the

approximating function fθ may be different for the two local models. We aim to develop

a rule to judge from the data, whether the local model corresponding to the point Xj

and described by Wj is not significantly different (in the value of the parameter θ ) from

the model at Xi described by Wi . More precisely, we want to quantify the difference

between the parameters of these two local models in order to assign a weight wij with

which the observation Yj will enter into the local model at Xi in the next iteration

of the algorithm. A natural way is to consider the data from two local models as two

different populations and to apply the two populations likelihood ratio test for testing the

hypothesis θi = θj . Suppose that the errors εi are normally distributed with parameters

(0, σ2) . The log-likelihood L(Wi,θ,θ′) for the local regression model at Xi with the

weights Wi is, for any pair θ,θ′ ∈ Θ , defined by

L(Wi,θ,θ
′) =

1
2σ2

n∑
l=1

wil

[
(Yl − Ψ�

l θ′)2 − (Yl − Ψ�
l θ)2

]
=

1
2σ2

n∑
l=1

wil

[
2(Yl − Ψ�

l θ′)Ψ�
l (θ − θ′) − (θ − θ′)�ΨlΨ

�
l (θ − θ′)

]
yielding

L(Wi, θ̂i,θ
′) = (2σ2)−1(θ̂ − θ′)�Bi (θ̂ − θ′),

with Bi = ΨWiΨ
� . The classical two populations likelihood-ratio test statistic is of the

form

T ◦
ij = max

θ
L(Wi,θ,θ

′) + max
θ

L(Wj ,θ,θ
′) − max

θ
L(Wi + Wj ,θ,θ

′)

= L(Wi, θ̂i,θ
′) + L(Wj, θ̂j,θ

′) − L(Wi + Wj, θ̂ij,θ
′) (3.1)

where θ̂i = argmaxθ L(Wi,θ,θ
′) is the maximum likelihood estimate (MLE) correspond-

ing to the local model described by the weight matrix Wi and similarly for θ̂j . Also
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θ̂ij = argmaxθ L(Wi + Wj,θ,θ
′) is the local MLE corresponding to the combined model

that is obtained by summing the weights from both models.

The simple algebra yields

T ◦
ij = (2σ2)−1(θ̂i − θ̂j)�Bi(Bi + Bj)−1Bj(θ̂i − θ̂j).

Note that the value T ◦
ij is ‘symmetric’ w.r.t. Wi and Wj in the sense that T ◦

ij = T ◦
ji .

In our procedure, described in the next section, we apply a slightly modified asymmetric

version of this test statistic, namely

Tij = L(Wi, θ̂i) − L(Wi, θ̂j) = (2σ2)−1(θ̂i − θ̂j)�Bi(θ̂i − θ̂j). (3.2)

It has a nice interpretation as a difference between the maximum log-likelihood L(Wi, θ̂i) =

supθ L(Wi,θ,θ′) in model Wi and the ‘plug-in’ log-likelihood L(Wi, θ̂j,θ
′) in which θ̂j

comes from the model Wj . This modification is important for asymmetric situations

when the ‘size’ of the model Wi is much larger than that of Wj . We consider the value

sij = Tij/λ , with λ being a parameter of the procedure, as a ‘statistical penalty’, that

is, when computing the new weight wij at the next iteration step we strongly penalize

for a large value of sij .

3.2 Defining weights

Using the previously described methods, we compute for every pair (i, j) the penalties

l
(k)
ij and s

(k)
ij . It is natural to require that the influence of every such factor is independent

of the other factors. This suggests to define the new weight w
(k)
ij as a product

w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)
, (3.3)

where Kloc,Kst are two kernel functions, which are nondecreasing on the positive semi-

axis and satisfy the condition Kloc(0) = Kst(0) = 1 .

3.3 Control of stability using a ‘memory’ step

The adaptive weights W
(k)
i = {w(k)

ij } defined in (3.3) lead to the local likelihood estimate

θ̃
(k)

i = argmax
θ

L(W (k)
i ,θ).

If the local parametric assumption continues to hold in U
(k)
i then this new estimate

improves the previous step estimate θ̂
(k−1)

i because the effective sample size (sum of

weights) increases. At the same time, the adaptive weights procedure attempts to pre-

vent from including the points Xj at a model W
(k)
i if the assumption of homogeneity
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θi = θj is violated. This helps to keep the approximation bias small even when the

neighborhoods U
(k)
i become large. However, in some situations, for instance, when the

parameters change slowly with location, it may happen that the estimation error de-

creases at the first few steps of the procedure and starts to slowly increase from some

iteration due to an increasing error of local parametric approximation. To ensure that the

quality of estimation will not be lost during iteration, we introduce a kind of ‘memory’

in the procedure. This basically means that the new estimate θ̃
(k)

i is compared with

the previous one θ̂
(k−1)

i . If the difference is significant, the new estimate θ̃
(k)

i is forced

towards the last estimate θ̂
(k−1)

i . The difference between two estimates is again com-

puted by testing the hypothesis of homogeneity for two local models W
(k)
i and W

(k−1)
i

centered at the same point Xi but defined at two consecutive steps of the procedure.

Namely, we utilize the weight ηi = Kme(m
(k)
i ) with some kernel function Kme and

m
(k)
i = (2σ2τ)−1

∣∣D(k)
i

(
θ̃

(k)

i − θ̂
(k−1)

i

)∣∣2
where the matrix

(
D

(k)
i

)2 =
∑

j ΨjΨ
�
j Kloc

(
l
(k)
ij

)
corresponds to the nonadaptive kernel

weights w
(k)
ij = Kloc

(
l
(k)
ij

)
and the bandwidth h(k) , and τ is the parameter of the

procedure. The estimate θ̂
(k)

i is then computed as θ̂
(k)

i = ηiθ̃
(k)

i + (1 − ηi)θ̂
(k−1)

i .

3.4 Formal description of the procedure

Important ingredients of the method are the kernels Kloc,Kst and Kme , the parameters

λ and τ , the initial bandwidth h(0) , the factor a > 1 , the maximal bandwidth hmax

and the estimated error variance σ̂2 . The choice of these parameters is discussed in

detail in Section 3.5.

The generalized procedure reads as follows:

1. Initialization: Select the parameters λ , τ , a , h(0) , hmax and kernels Kloc,Kst

and Kme . For every i define w
(0)
ij = Kloc(l

(0)
ij ) and l

(0)
ij =

∣∣ρ(Xi,Xj)/h(0)
∣∣2 . Compute

B
(0)
i =

∑
j

ΨjΨ
�
j w

(0)
ij , Z

(0)
i =

∑
j

YjΨ
�
j w

(0)
ij , θ̂

(0)

i =
(
B

(0)
i

)−1
Z

(0)
i .

Set k = 1 .

2. Iteration: for every i = 1, . . . , n

• calculate the adaptive weights: For every point Xj compute the penalties

l
(k)
ij =

∣∣ρ(Xi,Xj)/h(k)
∣∣2,

s
(k)
ij = (2σ̂2λ)−1

(
θ̂

(k−1)

i − θ̂
(k−1)

j

)�
B

(k−1)
i

(
θ̂

(k−1)

i − θ̂
(k−1)

j

)
,

(3.4)

and obtain the weights w
(k)
ij and w

(k)
ij as

w
(k)
ij = Kloc

(
l
(k)
ij

)
Kst

(
s

(k)
ij

)
, w

(k)
ij = Kloc

(
l
(k)
ij

)
(3.5)
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Denote by W
(k)
i the diagonal matrix with diagonal elements w

(k)
ij .

• Compute the new estimate: Compute

Z
(k)
i = Ψ W

(k)
i Y =

∑
j

ΨjYjw
(k)
ij ,

B̃
(k)
i = Ψ W

(k)
i Ψ� =

∑
j

ΨjΨ
�
j w

(k)
ij , B

(k)
i =

∑
j

ΨjΨ
�
j w

(k)
ij , (3.6)

and define the estimate θ̃
(k)

i of θi by

θ̃
(k)

i =
(
B̃

(k)
i

)−1
Z

(k)
i .

• Control (‘memory’) step: Compute η
(k)
i = Kme(m

(k)
i ) with

m
(k)
i = (2σ2τ)−1

∣∣D(k)
i

(
θ̃

(k)

i − θ̂
(k−1)

i

)∣∣2
where D

(k)
i =

(
B

(k)
i

)1/2 . Define

θ̂
(k)

i = η
(k)
i θ̃

(k)

i + (1 − η
(k)
i )θ̂

(k−1)

i , B
(k)
i = η

(k)
i B̃

(k)
i + (1 − η

(k)
i )B(k−1)

i . (3.7)

3. Stopping: Increase k by 1, set h(k) = ah(k−1) . If h(k) ≤ hmax continue with step 2.

Otherwise terminate.

We obtain the final estimates of θi as θ̂i = θ̂
(k∗)

i with k∗ denoting the total number

of iterations. The function f(Xi) is estimated as f̂i = Ψ�
i θ̂i .

3.5 Choice of parameters

Here we briefly discuss the impact of every parameter of the procedure and indicate how

each of them can be selected.

Kernels Kst , Kloc and Kme : The kernels Kst , Kloc and Kme must be nonnega-

tive and non-increasing on the positive semiaxis. We propose to use Kst(u) = e−uI{u≤5} .

We recommend to apply a localization kernel Kloc supported on [0, 1] to reduce the com-

putational effort of the method. As a default we employ the triangle kernel Kloc(u) =

(1 − u)+ . We also set Kme = Kloc . Our numerical results indicate that similarly to

standard local linear (polynomial) regression the particular choice of kernels Kloc and

Kme does not significantly affect the performance of the method.

Initial bandwidth h(0) , parameter a and maximal bandwidth hmax : We

recommend to select a small h(0) such that every initial local neighborhood U
(0)
i contains

a sufficient number of design points to assure identifiability of the local parameter θi .

The parameter a controls the growth rate of the local neighborhoods for every point

Xi . If Xi are from the unit cube in the space IRd we take the parameter a as a = a
1/d
grow .
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This results in an exponential growth, in k , of the mean number of points inside a ball

U
(k)
i with radius h(k) with the factor agrow . This ensures that the number of iterations

k∗ is at most logarithmic in the sample size. Our default choice is agrow = 1.25 .

The maximal bandwidth hmax can be taken very large. However, if the underlying

objective function is very complex, the use of a large final bandwidth hmax may result

in oversmoothing and artificial segmentation.

The value of hmax also determines the number of iterations and can therefore be used

to control the numerical complexity of the procedure.

Parameter λ : The most important parameter of the procedure is λ which scales

the statistical penalty sij . Small values of λ lead to overpenalization which may result

in unstable performance of the method in a homogeneous situation. Large values of λ

may result in loss of adaptivity of the method (less sensitivity to structural changes).

A reasonable way to define the parameter λ for a specific application is based on the

condition of free extension, which we refer to as ‘propagation condition’. We discuss this

choice in the next section.

Parameter τ : The parameter τ scales the penalty m
(k)
i computed for two models

W
(k)
i and W

(k−1)
i centered at the same point for consecutive iterations. The parameter

can be chosen by the propagation condition after a value of λ is fixed. In the end of the

iteration process the strong overlapping of the models W
(k)
i and W

(k−1)
i causes a high

correlation between the estimates θ̃
(k)

i and θ̂
(k−1)

i . This suggests to take a large value of

τ in the beginning and decrease it with iterations until a lower bound, say τ0 is reached.

This leads to the following proposal: τ = max{τ1 − τ2 log h(k), τ0} for some τ0, τ1 and

τ2 . To reduce the numerical effort we also fix θ̂
(k∗)

i = θ̂
(k−1)

i if η
(k)
i = 0 occurs.

3.6 Choice of parameters λ and τ by the ‘propagation condition’

The ‘propagation condition’ means that in a homogeneous situation, i.e. when the un-

derlying parameters for every two local models coincide, the impact of the statistical

penalty in the computed weights wij is negligible. This would result in a free extension

of every local model under homogeneity. In a homogenous situation, provided the value

hmax is sufficiently large, all weights wij will be close to one at the end of the iteration

process and every local model will essentially coincide with the global one. Therefore,

the parameter λ can be adjusted by selecting the minimal values still providing a pre-

scribed probability of getting the global model at the end of the iteration process for the

homogeneous (parametric) model θ(x) = θ using Monte-Carlo simulations. The theo-

retical justification is given by Theorem 6.2 in Section 6.1, that claims that the choice

λ = C log n with a sufficiently large C yields the ‘propagation’ condition whatever the

parameter θ is. The parameter τ can be chosen by the same argument.
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The default value for λ is expressed as λ = qα(χ2
p) , that is the α -quantile of the

χ2 distribution with p degrees of freedom, where α depends on the specified linear

parametric family. Defaults for the case of local polynomial regression are given in

Section 5.

3.7 Computational complexity of the algorithm

Memory requirements: Note that every estimate is defined as θ̂
(k)

i =
(
B

(k)
i

)−1
Z

(k)
i

using the matrix B
(k)
i and the vector Z

(k)
i . Similarly, the new weights w

(k)
ij are com-

puted on the basis of the same statistics B
(k−1)
i , Z

(k−1)
i from the previous step of the

procedure. Therefore, the whole structural information is contained in these two basis

elements. During the adaptation step, we compute the weights w
(k)
ij for every i and all

j ∈ U
(k)
i only with the aim to compute the new elements B

(k)
i , Z

(k)
i . This reduces the

memory requirements for the algorithm to O(np2) or even to O(np) for local polyno-

mial modeling, see the next section, while keeping all the weights w
(k)
ij would lead to the

memory requirement O(n2) .

Computational costs: Since the localization kernel Kloc is supported on [0, 1] , for

every local model W
(k)
i , all the weights w

(k)
ij with Xj outside the ball U

(k)
i = {x :

ρ(Xi, x) ≤ h(k)} vanish. Therefore, it suffices at each step to compute the weights w
(k)
ij

for pairs Xi,Xj with ρ(Xi,Xj) ≤ h(k) . Denote by Mk the maximal number of design

points Xj within a ball of radius h(k) centered at a design point. At the k th step there

are at most Mk positive weights w
(k)
ij for any Xi . Therefore, for carrying out the k th

adaptation step of the algorithm, we have to compute the penalties l
(k)
ij , s

(k)
ij and m

(k)
i

and the value w
(k)
ij , for every pair (i, j) with ρ(Xi,Xj) ≤ h(k) . This requires a finite

number of operations depending on the number of parameters p only, and the whole

k th adaptation step of the algorithm requires of order nMk operations. The estimation

step involves for every point Xi , computing the d × d -matrix B
(k)
i = Ψ W

(k)
i Ψ� and

the vector Z
(k)
i = Ψ W

(k)
i Y which requires of order Mk operations. Computing θ̃

(k)

i =(
B

(k)
i

)−1
Z

(k)
i requires a finite number operations depending on p only. Therefore, the

complexity of the whole estimation step is again of order nMk . Since typically the

numbers Mk grow exponentially, the complexity of the whole algorithm is estimated as

n(M1 + . . . + Mk∗) 
 nMk∗ where k∗ is the number of iteration steps.

4 Local polynomial regression

We now specify the procedure for adaptive local polynomial estimation of a regression

function with univariate and multivariate covariates.
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4.1 Local constant regression

The local constant approximation corresponds to the simplest family of basis func-

tions {ψm} consisting of one constant function ψ0 ≡ 1 . The major advantage of

this method is that the dimensionality of the regressors plays absolutely no role. In

this situation Ψ = (1, . . . , 1) and, for every diagonal matrix W = diag(w1, . . . , wn) ,

it holds ΨWΨ� = trW and ΨWY =
∑n

l=1 wlYl . Hence, for the local constant case,

every B
(k)
i coincides with N

(k)
i =

∑
j w

(k)
ij . The statistical penalty s

(k)
ij can be writ-

ten in the form s
(k)
ij = N

(k−1)
i

∣∣θ̂(k−1)
i − θ̂

(k−1)
j

∣∣2/(2σ2λ) . The weights w
(k)
ij can be

computed as w
(k)
ij = Kloc(l

(k)
ij )Kst(s

(k)
ij ) , this essentially coincides with the proposal

from PS2000 if an uniform kernel Kloc is applied. The memory penalty reads as

m
(k)
i = N

(k)
i

(
θ̃
(k)
i − θ̂

(k−1)
i

)2/(2σ2τ) .

4.2 Local polynomial univariate regression

Local linear (polynomial) smoothing is known to be much more accurate when estimating

a smooth function, see e.g. Fan and Gijbels (1996). A generalization of the original AWS

to the local linear (polynomial) regression therefore is of special importance.

For local polynomial regression the basis functions could be specified as ψ1(x) = 1 ,

ψ2(x) = x , . . . , ψp(x) = xp−1 . However, it is well known, that the numerical stability of

the procedure will be improved if, for every local model, the basis functions are centered

at the reference point Xi , that is, the functions (x − Xi)m are applied. This is, for

fixed i , only a reparametrization, but requires to slightly modify the description of

the procedure. Denote by Ψ(Xi) the p × n matrix with the entries (Xl − Xi)m for

m = 0, 1, . . . , p − 1 and l = 1, . . . , n .

The estimation step of the algorithm is performed similarly to the case described in

Section 3.4. The only difference is that the family of basis functions (or, equivalently,

the matrix Ψ ) depends on the central point Xi . Suppose that at the k th step of the

procedure, for a point Xi , the matrix W
(k)
i has been computed. We then compute the

p -vector Z
(k)
i = Ψ(Xi)W

(k)
i Y with entries Z

(k)
i,m of the form

Z
(k)
i,m =

n∑
l=1

w
(k)
il (Xl −Xi)mYl m = 0, . . . , p− 1,

and the matrix B
(k)
i = Ψ(Xi)W

(k)
i Ψ�(Xi) whose entries are of the form B

(k)
i,mm′ =

b
(k)
i,m+m′ for m,m′ = 1, . . . , p where

b
(k)
i,m =

n∑
l=1

w
(k)
il (Xl −Xi)m m = 0, . . . , 2p − 2,

The estimate θ̃
(k)

i in the local model at Xi , is obtained as θ̃
(k)

i =
(
B

(k)
i

)−1
Z

(k)
i .
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In the k th adaptation step, we have to compare two estimates corresponding to the

local models W
(k−1)
i and W

(k−1)
j . Note however, that this comparison can be done only

if the both estimates are computed for the same basis system. Thus, the comparison

requires to recompute the estimate for the local model W
(k−1)
j w.r.t. the basis centered

at the point Xi . Let θ̂j = (θ̂j,0, . . . , θ̂j,p−1)� be the estimate for the local model at Xj .

This estimate leads to a local approximation of the unknown regression function by the

polynom f̂j(x) = θ̂j,0 + θ̂j,1(x − Xj) + . . . + θ̂j,p−1(x − Xj)p−1 . Now we represent this

polynom as a linear combination of the basis functions (x − Xi)m , m = 0, . . . , p − 1 ,

that is, we have to find new coefficients θ̂ij = (θ̂ij,0, . . . , θ̂ij,p−1)� such that

f̂j(x) = θ̂ij,0 + θ̂ij,1(x −Xi) + . . . + θ̂ij,p−1(x −Xi)p−1.

The coefficients θ̂ij,m can be computed as θ̂ij,m = (m!)−1dmf̂j(Xi)/dxm .

Suppose that all the estimates θ̂
(k−1)

i = (θ̂(k−1)
i,0 , . . . , θ̂

(k−1)
j,p−1 )� have been computed in

the previous step. Next, for a fixed i and every j , we compute the estimates θ̂
(k−1)

ij by

θ̂
(k−1)
ij,m =

p−m−1∑
q=0

(
q + m

q

)
θ̂
(k−1)
j,q+m(Xi −Xj)q. m = 0, 1, . . . , p− 1.

The estimate θ̂
(k−1)

ij is used in place of θ̂
(k−1)

j for computing the statistical penalty

s
(k)
ij in (3.4). The remaining steps of the procedure are performed similarly to the basic

algorithm.

4.3 Local linear multiple regression

Let X1, . . . ,Xd be points in the d -dimensional Euclidean space IRd . Classical linear

regression leads to an approximation of the regression function f by a linear combination

of the constant function ψ0(x) = 1 and d coordinate functions ψm(x) = xm , so that the

family {ψm} consists of p = d+1 basis functions. Our procedure attempts to apply this

approximation locally for adaptively selected local models. The global linear modeling

arises as a special case if the underlying model is entirely linear.

Similarly to the univariate case, we adopt for every design point Xi a local linear

model with centered basis functions ψm(x,Xi) = xm − Xim for m = 1, . . . , d . The

corresponding p×n matrix Ψ(Xi) has columns Ψl(Xi) = (1,Xl1 −Xi1, . . . ,Xld−Xid)�

for l = 1, . . . , n . At the estimation step one computes the estimates θ̂
(k)

i of the parameter

θ ∈ IRp for every local model, leading to a local linear approximation of the function f

by the linear function f̂j(x) with

f̂j(x) = θ̂j,0 +
d∑

m=1

θ̂j,m(xm −Xj,m).
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This linear function can be rewritten in the form

f̂j(x) = θ̂j,0 +
d∑

m=1

θ̂j,m(Xi,m −Xj,m) +
d∑

m=1

θ̂j,m(xm −Xi,m).

Therefore, only the first coefficient of the vector θ̂j has to be recomputed when the basis

system Ψ(Xi) is used in place of Ψ(Xj) . This means that at the k th adaptation step,

the vector θ̂
(k−1)

j is replaced by θ̂
(k−1)

ij where θ̂
(k−1)
ij,m = θ̂

(k−1)
j,m for m = 1, . . . , d and

θ̂
(k−1)
ij,0 = θ̂

(k−1)
ij,0 +

∑d
m=1 θ̂j,m(Xi,m −Xj,m) . The rest of the procedure is carried through

similarly to the univariate case.

4.4 Local quadratic bivariate regression

Finally we shortly discuss the bivariate case with d = 2 for local quadratic approxi-

mation. The case of a larger d can be handled similarly. The family {ψm} of basis

functions contains one constant function equal to 1, two linear coordinate functions x1

and x2 and three quadratic functions x2
1, x

2
2 and x1x2 . It is useful to utilize the no-

tation m = (m1,m2) , |m| = m1 + m2 and xm = xm1
1 xm2

2 for x = (x1, x2)� ∈ IR2

and integers m1,m2 . The family of basis functions can now be written in the form

{ψm(x) = xm, |m| ≤ 2} . For numerical stability the centered functions ψm(x − Xi)

should be used within each local model.

At the k th estimation step one computes the entries θ̂
(k)
i,m , |m| ≤ 2 , of the vector

θ̂
(k)

i . At the k th adaptation step we additionally need, for every i , to recompute the

vectors θ̂
(k−1)

j for the basis system Ψ(Xi) . Similarly to the univariate case, we get

θ̂
(k−1)
ij,m =

∑
m′:|m′|≤2−|m|

(
m + m′

m

)
θ̂
(k−1)
j,m+m′ (Xi −Xj)m′

, |m| ≤ 2.

Here
∑

m′:|m′|≤2−|m| means the sum over the set of all pairs m′ = (l′1, l′2) with m′
1+m′

2 ≤
2−m1−m2 and

(m
m′
)

=
(m1

m′
1

)(m2

m′
2

)
. Particularly, θ̂

(k−1)
ij,m = θ̂

(k−1)
j,m for all m with |m| = 2 ,

and θ̂ij,0 = f̂j(Xi) . The rest of the procedure remains as before.

5 Numerical results

We now demonstrate the performance of the method in univariate and bivariate regression

problems. The aim of this study is to illustrate two important features of the procedure:

propagation within large homogeneous regions and sensitivity to changes in the local

structure of the model. We also try to give some hints about the choice of the degree of

local polynomial approximation.
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Table 1: Default parameters used for the PS procedure
λ τ0

p 0 1 2 3 0 1 2 3

univariate qχ2;0.966,1 qχ2;0.65,2 qχ2;0.92,3 qχ2;0.92,4 3 30 400 4000

bivariate qχ2;0.966,1 qχ2;0.65,3 qχ2;0.92,6 - 1 4 30 -

Estimates are obtained using R, a language and environment for statistical com-

puting, and its contributed packages pspline (J. Ramsay and B. Ripley), waveslim (B.

Whitcher) and aws (J. Polzehl, revised version).

Our univariate simulations are conducted generating data as (Xi, Yi) with Yi =

f(Xi) + εi . The sample size is n = 1000 . The Xi form an equidistant grid on (0, 1) .

Errors εi are i.i.d. Gaussian.

Local linear ( p = 1 ), local quadratic ( p = 2 ) and local cubic ( p = 3 ) estimates

are computed for 1000 simulated data sets using our approach with maximal bandwidth

hmax = 0.3 and defaults, see Table 1, for the other parameters.

For a comparison we use a penalized cubic smoothing spline, with smoothing param-

eter determined by generalized cross validation. See Heckman and Ramsey (2000) for

details. Such a choice was motivated by excellent numerical results delivered by this

method for many situations. We also tried other more sophisticated procedures like

wavelets, but the numerical results (not reported here) were always in favor of smoothing

splines, see also PS2000.

5.1 Univariate Example 1

Our first example uses the piecewise smooth function

f(x) =


8x x < 0.125,
2 − 8x 0.125 ≤ x < 0.25,
44(x − 0.4)2 0.25 ≤ x < 0.55,
0.5 cos(6π(x − 0.775) + 0.5 0.55 ≤ x.

The upper row of Figure 1 shows plots of the first data set for σ = 0.125, 0.25 and

0.5 , respectively, together with the estimate obtained by local quadratic PS with default

parameters and hmax = 0.3 . The bottom row reports the results in form of box-plots of

Mean Absolute Error (MAE) obtained for the four procedures in 1000 simulation runs.

Figure 2, provides pointwise estimates of the MAE in case of σ = 0.125 . The local

linear and local quadratic PS estimates are superior to the cubic smoothing spline near

the discontinuities and within smooth regions. Advantages are due to the local adaptivity

of the PS procedures in contrast to the global nature of the smoothing spline.
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Figure 1: Example 1: Simulated data sets with local quadratic PS estimates. Box-Plots

of MAE for local linear, quadratic, cubic PS and penalized cubic smoothing splines.
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Figure 2: Example 1: Estimated pointwise MAE for local linear and local quadratic

PS-estimates and penalized cubic smoothing splines, σ = 0.125 .

5.2 Univariate example 2

The second example uses a smooth regression function with varying second derivative

f(x) = sin(2.4π/(x + 0.2)) . The upper row of Figure 3 shows a typical data set for

σ = 0.125, 0.25 and 0.5 , respectively, together with the local quadratic PS estimate

obtained from this data set using standard parameters and hmax = 0.3 . The bottom row

contains box-plots of MAE obtained for the four procedures in 1000 simulation runs.
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Figure 3: Example 2: Simulated data sets with local quadratic PS estimates. Box-Plots

of MAE for local linear, quadratic, cubic PS and penalized cubic smoothing splines.

5.3 Bivariate Examples

We first use a real image to illustrate the quality of noise reduction achievable by our

approach. Figure 4 shows the original image (left), a version of the image with additive

Gaussian noise (center) and the reconstruction of the image obtained by our algorithm

(right). The size of the image is 256 × 330 pixel. Gray values within the original image

range from 0.039 to 0.996 . Noise standard deviation in the central image is σ = 0.1 .

The reconstruction is obtained employing a local quadratic model and using a maximal

bandwidth of hmax = 25 grid units. All other parameters are set to their defaults.

Table 2 (image 1) provides a comparison with some alternative procedures in terms of

the MAE of the reconstruction for different noise levels. We present results for our

procedure based on a local constant, linear and quadratic assumption, nonadaptive local

polynomial regression with degree 0, 1 and 2, 2D discrete wavelet transform (DWT) and

2D maximum overlap discrete wavelet transform (MODWT), see e.g. Gencay, Selcuk

and Whitcher (2001). For the latter two we used the waveslim package for R provided

by Brandon Whitcher. Results for local polynomial regression and wavelet procedures

are stated for optimized parameters, e.g. bandwidths (in grid units) and basis/depth

providing minimal MAE. Parameters used are given in parenthesis.

We use an additional example to demonstrate the potential gain from adaptive local

polynomial smoothing. The artificial image is obtained applying the function

f(x, y) = 0.5
[
1 + sign(x2 − y2)

{
sin(7φ)1{r≥0.5} + sin(πr/2)1{r<0.5}

}]
(5.1)
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Original Noisy image sigma=0.1 Reconstruction local quadratic PS

Figure 4: Image 1: Original image (left), Noisy image (center, σ = 0.1 ) and local

quadratic reconstruction by PS (right, hmax = 25 )

Original Noisy image sigma=0.4 nonadaptive kernel smoothing

Reconstruction local constant PS Reconstruction local quadratic PS Maximum Overlap DWT

Figure 5: Image 1: Original image (upper left), Noisy image (upper center, σ = 0.4 ),

best local polynomial (p=0, upper right), local constant PS (lower left), local quadratic

PS (lower center) and MODWT reconstruction (lower right)

with r =
√

x2 + y2 and φ = arcsin(x/r) to a grid of size 256 × 256 on the square

[−1, 1] × [−1, 1] . We refer to this image as image 2. Figure 5 shows the original image

(upper left), a noisy version with σ = .4 (upper center), the best nonadaptive local

polynomial reconstruction (upper right), the PS reconstructions using a local constant

(lower left) and local quadratic (lower center) model together with the best reconstruction



j. polzehl and v. spokoiny 19

Table 2: MAE and optimal parameters for reconstructions of image 1 and image 2

Image σ PS (hmax ) local polynomials (h ) Wavelets ( Basis, J )

No. (Par.) p = 0 p = 1 p = 2 p = 0 p = 1 p = 2 DWT MODWT

1 0.05 0.0152 0.0139 0.0133 0.0218 0.0218 0.0225 0.0230 0.0137
(8) (20) (25) (2.2) (2.2) (3.4) (Haar, 3 ) (Haar, 4 )

1 0.1 0.0214 0.0223 0.0206 0.0302 0.0303 0.0312 0.0341 0.0220
(15) (20) (25) (2.7) (2.8) (5.2) (Haar, 3 ) (Haar, 4 )

1 0.2 0.0299 0.0336 0.0314 0.0410 0.0412 0.0423 0.0467 0.0341
(20) (20) (25) (4.8) (4.4) (8.2) (Fk4, 3 ) (Haar, 5 )

2 0.05 0.0147 0.0069 0.0055 0.0161 0.0161 0.0171 0.0166 0.0085
(3) (20) (25) (2.8) (2.8) (4.7) (La8, 3 ) (Mb4, 4 )

2 0.1 0.0223 0.0115 0.0104 0.0234 0.0234 0.0246 0.0271 0.0152
(4.5) (20) (25) (3.9) (4) (7.3) (Mb4, 3 ) (D4, 4 )

2 0.2 0.0323 0.0208 0.0185 0.0335 0.0337 0.0351 0.0412 0.0266
(6) (20) (25) (5.5) (5.5) (10) (Mb4, 3 ) (La8, 5 )

2 0.4 0.0468 0.0368 0.0328 0.0477 0.0480 0.0487 0.0603 0.0439
(9) (25) (40) (7.5) (7.6) (14.3) (La8, 3 ) (La8, 5 )

2 0.8 0.0690 0.0616 0.0558 0.0677 0.0683 0.0682 0.0836 0.0720
(12) (25) (50) (10.4) (10.7) (20.0) (La16, 4 ) (La8, 6 )

using MODWT. Again Table 2 (image 2) provides numerical results in terms of MAE

for wide range of noise levels and the alternative procedures with optimized parameters.

Bandwidths are again given in grid units.

The results clearly illustrate the advantages of the PS method compared to local

polynomial smoothing if the unknown regression function is piecewise smooth. PS auto-

matically separates regions with different parametric structure and therefore allows for

a larger bandwidth within smooth regions, resulting in a larger variance reduction. PS

also outperforms wavelet approaches on these examples due to its more flexible handling

of boundaries. For image 1 results obtained by local constant and local quadratic PS

are comparable with respect to MAE. The local constant approach shows advantages

with small detailed structures while the local quadratic PS provides a more acceptable

outcome within smooth regions. With the second image best results are obtained for

the local quadratic approach, while local constant PS suffers from a segmentation effect

caused by its inappropriate structural assumption.

5.4 Summary

The performance of the PS method is completely in agreement with what was aimed: it

is adaptive to variable smoothness properties of the underlying function and sensitive to

discontinuities outperforming the classical smoothing methods.

Local quadratic PS seems to be a reasonable choice for many situations combining
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good approximating properties with a very good quality of change-point or edge estima-

tion. Local constant PS can be superior in case of very detailed structures or if a local

constant assumption is justified.

Our experiments (not reported here) demonstrate that the procedure is rather stable

w.r.t. to the choice of the parameters λ , τ , hmax , that is, a moderate change of these

parameters near default values does not significantly affect the quality of estimation. In

most cases, only a minor improvement can be achieved by tuning these parameters.

6 Some important properties of the PS estimates

This section discusses some properties of the proposed propagation-separation procedure.

In particular we establish the ‘propagation’ and ‘separation’ results. ‘Propagation’ means

a free extension of every local model in a homogeneous situation, leading to a nearly

parametric estimate at the end of the iteration process. This property and the ‘memory’

step of the procedure ensure that the resulting estimate is spatially adaptive in the

sense of rate optimality over Besov function classes. Finally we show that the procedure

separates every two nearly homogeneous regions with significantly different parameter

values.

6.1 One step propagation under homogeneity

First we consider the homogeneous case with the constant parameter value θ(x) = θ and

present some sufficient condition for the ‘propagation result’. We proceed by induction.

Let the ‘propagation’ condition be fulfilled for the first k iterations of the algorithm. This

means that for every weight w
(k)
ij its statistical component Kst(s

(k)
ij ) is close to one. As

a consequence, the k -step estimates θ̂
(k)

i are close to their non-adaptive counterparts

corresponding to the classical local polynomial estimation with the same bandwidth

h(k) . We now aim to show that the propagation condition continues to hold for the next

iteration k + 1 .

Before stating the results we formulate the required assumptions. In our study we

restrict ourselves to the case of homogeneous Gaussian errors.

(A1) The errors εi are normal with parameters (0, σ2) and the variance σ2 is known.

This assumption helps to significantly simplify the proofs and to focus on the essential

points avoiding technicalities. The procedure does not require a known variance, it

is estimated from the data. The theoretical study can be also extended to the case

with unknown σ2 , cf. Spokoiny (2002). The case of the non-Gaussian error is more

complicated to analyze, however, it also can be considered using the technique from
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Spokoiny (2001). It is important to mention that the normality of the errors enables us

to establish precise nonasymptotic results.

Denote for every i by U
(k)
i the ball of radius h(k) with the center at Xi . Let also

B
(k)
i =

∑
j ΨjΨ

�
j Kloc(|Xij |2/|h(k)|2) . This matrix arises in the classical local polynomial

smoothing with nonadaptive kernel weights corresponding to the bandwidth h(k) . Define

also D
(k)
i =

(
B

(k)
i

)1/2 . We assume that the size of the neighborhoods U
(k)
i and the

matrices D
(k)
i grow with k but not too fast. We also assume some local regularity of

the design in the neighborhood U
(k)
i of every point Xi .

(A2) There exist constants ν1 ≤ ν , ν1, ν ∈ (2/3, 1) such that for every i

D
(k−1)
i � ν1/2D

(k)
i , D

(k)
i � ν

−1/2
1 D

(k−1)
i .

Here A � B for two symmetric matrices A,B means that |Av| ≤ |Bv| for every

vector v , or equivalently |v�A2v| ≤ |v�B2v| .

(A3) There exists a positive constant ω(k) such that for every i and every Xj ∈ U
(k)
i

D
(k)
i ≤ ω(k)D

(k)
j .

The conditions A2 and A3 can be easily checked for the equidistant design. They are

also fulfilled with a high probability for a random design with a continuous density.

Our theoretical results are stated under one more assumption which helps to gradually

simplify the theoretical analysis. The main problem in the theoretical study comes from

the iterative nature of the algorithm. At every step we use the same data to compute the

estimates θ̂
(k)

i and the weights w
(k+1)
ij which will be used to recompute the estimates.

As a result, the weights and observations become dependent. To overcome this problem

we make the following assumption:

(S0) At step k , the weights w
(k−1)
ij and w

(k)
ij are independent of the sample Y1, . . . , Yn .

Remark 6.1. Assumption S0 can be provided using the standard splitting technique,

that is, by splitting the original sample into few non overlapping subsamples, cf. Bickel

et. al. (1998, pp. 45, 396). However, an application of such a split for practically

relevant procedures is questionable. The proposed algorithm utilizes the same sample

at every step of the algorithm, and this is not completely unjustified: indeed, it is intu-

itively clear that the estimates θ̂
(k)

i obtained by local averaging of the observations are

only weakly dependent of the observations Yj . The same applies to the weights w
(k)
ij

which are defined via the estimates θ̂
(k−1)

i . Our numerical results nicely confirm that

the ‘propagation’ continues to hold even if the same sample is used at every iteration.

However, a careful mathematical treatment of this issue might be very complicated.
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Under the above conditions and homogeneity of the function θ(·) , we aim to show by

induction that the statistical penalties s
(k)
ij are uniformly bounded by a small constant.

This yields that the adaptive weights w
(k)
ij are close to the nonadaptive kernel weights

w
(k)
ij and hence, the estimation results are similar to what we would get for the standard

local linear estimation scheme. The results are stated under the additional assumption

that the parameters λ, τ of the procedure are taken in the form λ = Cλ log n and τ =

Cτ log n for some constants Cλ and Cτ depending on the constants from Assumptions

A2 and A3.

For the initial estimates θ̂
(k)

i which are usual local linear estimates with the kernel

weights w
(0)
ij , Theorem 8.1 implies (see Remark 8.3) that the values

∣∣D(0)
i

(
θ̂

(0)

i − θ
)∣∣

are with a high probability uniformly bounded by σ
√

Cp log n with some constant Cp

depending on p only. We now assume that after k−1 iterations, the following conditions

are fulfilled with a high probability for every i

D
(k−1)
i � D

(k−1)
i /

√
2,

∣∣D(k−1)
i (θ̂

(k−1)

i − θ)
∣∣ ≤ σ

√
µ log n, D̃

(k)
i � ν1/2D

(k)
i , (6.1)

for µ = 2Cp and ν from Assumption A2. Here D
(k)
i =

(
B

(k)
i

)1/2 and similarly D̃
(k)
i =(

B̃
(k)
i

)1/2 , D
(k)
i =

(
B

(k)
i

)1/2 , see (3.6) and (3.7). Now we show that the similar result

continues to hold for the k th iteration.

Define ρ by Kst(ρ) = ν .

Theorem 6.2. Suppose that θ(·) ≡ θ . Let, for the step k of the procedure, Assumptions

S0 and A1 through A3 be fulfilled and the parameters λ, τ of the procedure are taken in

the form λ = Cλ log n and τ = Cτ log n with the constants Cτ and Cλ such that

Cτ ≥ 1.5µ/(ρν1), Cλ ≥ µ(1 + ω(k))2/(2ρ). (6.2)

If the condition (6.1) meets, then there exists a random set A(k) such that P (A(k)) ≥
1 − 1/n , and it holds on A(k)∣∣D(k)

i (θ̂
(k)

i − θ)
∣∣ ≤ σ

√
µ log n, D

(k)
i � 2−1/2D

(k)
i . (6.3)

In addition, on A(k) it holds for every i

min
Xj∈U

(k)
i

Kst(s
(k+1)
ij ) ≥ ν, D̃

(k+1)
i � ν1/2D

(k+1)
i . (6.4)

The proof is given in the Appendix. A sequential application of the result of Theo-

rem 6.2 yields the following conclusion for the last step estimate θ̂i under homogeneity:

Corollary 6.3. Let the conditions of Theorem 6.2 be fulfilled for every iteration k . Then

the last step estimate θ̂i = θ̂
(k∗)

i fulfills

P
(

max
i

∣∣D(k∗)
i (θ̂i − θ)

∣∣ > σ
√

µ log n
)
≤ k∗/n.
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6.2 One step propagation under local homogeneity of θ(·)
Here we extend the propagation result to the case when θ(·) is not constant but can

be well approximated by a constant parameter vector in some vicinity of a fixed design

point Xi . This would imply a free extension (propagation) of the local model centered at

Xi for the first few iterations of the procedure such that the local neighborhoods U
(k)
i

remain restricted to this region of local homogeneity. Theorem 6.2 claims that under

homogeneity the estimate θ̂
(k)

i of θi satisfies with a high probability the condition∣∣D(k)
i (θ̂

(k)

i −θi)
∣∣ ≤ σ

√
µ log n . We aim to show that if the error of local approximation of

the function θ(·) in the neighborhood U
(k)
i of Xi is of the same order, then the result

continues to hold.

In the contrary to the previous section where the assertion of Theorem 6.2 applies

uniformly to all the points in the design space, we state now a local result in some region

U (k) . The reason is that local smoothness properties of θ(·) and hence the rate of

estimation may vary from point to point. The condition we impose on the variability of

the function θ(·) in U (k) means that
∣∣D(k)

i (θj−θi)
∣∣ is sufficiently small for all Xi ∈ U (k)

and Xj ∈ U
(k)
i .

(A4) For every Xi ∈ U (k) and every Xj ∈ U
(k)
i , it holds

σ−1
∣∣D(k)

i (θj − θi)
∣∣ ≤ δ(k)

√
log n.

Here δ(k) is some small constant depending on k and on the region U (k) .

Similarly to the homogeneous case we assume that after k−1 iterations, the following

conditions are fulfilled with a high probability:

D
(k−1)
i � 2−1/2D

(k−1)
i ,

∣∣D(k−1)
i (θ̂

(k−1)

i − θi)
∣∣ ≤ σ

√
µ log n, D̃

(k)
i � ν1/2D

(k)
i , (6.5)

for all Xi ∈ U (k) . Here ν is from A2 and µ fulfills√
0.5µ ≥√Cp + δ(k). (6.6)

Theorem 6.4. Let, for the step k of the procedure, Assumptions S0 and A1 through A4

hold, and let the parameters λ, τ of the procedure fulfill λ = Cλ log n , τ = Cτ log n with

the constants Cτ and Cλ such that

Cτ ≥ 1.5µ/(ρν1), Cλ ≥ (δ(k) +
√

µ(1 + ω(k))
)2

/(2ρ). (6.7)

If also µ fulfills (6.6) and (6.5) meets for this µ then there exists a random set A(k)

such that P (A(k)) ≥ 1 − 1/n , and it holds on A(k) for every Xi ∈ U (k)

∣∣D(k)
i (θ̂

(k)

i − θi)
∣∣ ≤ σ

√
µ log n, D

(k)
i � 2−1/2D

(k)
i . (6.8)
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Moreover, if Xi is such that U
(k)
i ⊂ U (k) , then on A(k) it holds

min
Xj∈U

(k)
i

Kst(s
(k+1)
ij ) ≥ ν, D̃

(k+1)
i � ν1/2D

(k+1)
i . (6.9)

The proof is given in the Appendix. Here we present one corollary of this result. For

a set U (k) define its h(k) -neighborhood U (k) =
⋃

Xi∈U(k) U
(k)
i .

Corollary 6.5. Let, with a fixed k , Assumptions S0 and A1 through A4, (6.6) and (6.7)

be fulfilled for every k′ ≤ k with sets U (k′) satisfying U (k′+1) ⊆ U (k′) , k′ < k . Then the

k -step estimate θ̂
(k)

i fulfills

P
(

max
Xi∈U(k)

∣∣D(k)
i (θ̂

(k)

i − θi)
∣∣ > σ

√
µ log n

)
≤ k/n.

Remark 6.6. The result of Theorem 6.4 and Corollary 6.5 can be reformulated in terms

of accuracy of estimation of the function f . Indeed, an estimate θ̂
(k)

i of θi = θ(Xi)

yields an estimate of the function f at the point Xi in the form f̂ (k)(Xi) = Ψ�
i θ̂

(k)

i .

In typical situations, the matrix B
(k)
i =

∑
j ΨjΨ

�
j w

(k)
ij fulfills the condition N

(k)
i Ψ�

i Ψi ≤
κB

(k)
i where N

(k)
i =

∑
j w

(k)
ij is the ‘size’ of the local neighborhood U

(k)
i and κ is some

fixed constant. Therefore

N
(k)
i

(
f̂ (k)(Xi) − f(Xi)

)2 = (θ̂
(k)

i − θi)�N
(k)
i ΨiΨ

�
i (θ̂

(k)

i − θi)

≤ κ(θ̂
(k)

i − θi)�B
(k)
i (θ̂

(k)

i − θi) = κ

∣∣D(k)
i (θ̂

(k)

i − θi)
∣∣2

and the result of Corollary 6.5 yields the accuracy of estimation |f̂ (k)(Xi) − f(Xi)| ≤
σ
(
κµ log n

/
N

(k)
i

)1/2 after k steps under propagation. As an interesting special case of

Corollary 6.5 consider the situation when the global quality of linear approximation is

good in the sense that A4 is fulfilled for all k and hmax is sufficiently large. Then the

sizes N
(k∗)
i of the local neighborhoods at the final step k = k∗ are of order of the global

sample size n . Therefore, this result claims the root-n consistency of the estimate θ̂i .

6.3 Control of stability by the memory step

Due to Theorem 6.4, a small error of the local constant approximation of θ(·) in a vicinity

of a point Xi ensures the propagation condition for the local models W
(k)
i and provides

with a high probability a certain accuracy of estimation. Now we consider the situation

when a local neighborhood U
(k)
i extends beyond the region of local homogeneity and

A4 is not fulfilled. Of course, the propagation property cannot be stated in this case,

and propagation is not desirable when the assumption of local homogeneity is violated.

A desirable property of the procedure is that the quality of estimation gained at the

‘propagation’ phase will not be lost afterwards. This key characteristic is almost a direct

consequence of the construction of the ‘memory’ step. Namely, the following proposition

holds.
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Proposition 6.7. For every i and every k , it holds∣∣D(k)
i

(
θ̂

(k)

i − θ̂
(k−1)

i

)∣∣ ≤ σ
√

2τ . (6.10)

Moreover, under A2, it holds for every k′ > k∣∣D(k)
i

(
θ̂

(k′)
i − θ̂

(k)

i

)∣∣ ≤ c1σ
√

2τ . (6.11)

with c1 =
√

ν(1 −√
ν)−1 .

Remark 6.8. An interesting feature of this result is that it is fulfilled with probability

one, that is, the control of stability ‘works’ not only with a high probability, it always

applies. Assumptions A1 or S0 are not required for this result as well.

Proof. By definition θ̂
(k)

i = ηiθ̃
(k)

i + (1 − ηi)θ̂
(k−1)

i with ηi = Kst

(
m

(k)
i

)
and m

(k)
i =

(2τσ2)−1
∣∣D(k)

i (θ̃
(k)

i − θ̂
(k−1)

i )
∣∣2 . If

∣∣D(k)
i (θ̃

(k)

i − θ̂
(k−1)

i )
∣∣ ≥ (2τσ2)1/2 , then ηi = 0 and

(6.10) follows automatically. Otherwise∣∣D(k)
i (θ̂

(k)

i − θ̂
(k−1)

i )
∣∣ = ηi

∣∣D(k)
i (θ̃

(k)

i − θ̂
(k−1)

i )
∣∣ ≤ σ

√
2τ .

Now, Assumption A2 and Proposition 6.7 yield

∣∣D(k)
i

(
θ̂

(k′)
i − θ̂

(k)

i

)∣∣ ≤
k′∑

l=k+1

∣∣D(k)
i

(
θ̂

(l)

i − θ̂
(l−1)

i

)∣∣ ≤ k′∑
l=k+1

ν(l−k)/2
∣∣D(l)

i

(
θ̂

(l)

i − θ̂
(l−1)

i

)∣∣
≤ σ(1 −√

ν)−1
√

2ντ

which proves (6.11).

The next theorem states the desirable ‘stability’ property of the procedure.

Theorem 6.9. Let A2 hold for all k . If the estimate θ̂
(k)

i fulfills∣∣D(k)
i

(
θ̂

(k)

i − θi

)∣∣ ≤ σ
√

µ log n (6.12)

for some constant µ , then it holds for the final estimate θ̂i∣∣D(k)
i

(
θ̂i − θi

)∣∣ ≤ cσ
√

log n

with c = c1

√
2Cτ +

√
µ and c1 from Proposition 6.7.

Proof. By Proposition 6.7
∣∣D(k)

i

(
θ̂i − θ̂

(k)

i

)∣∣ ≤ c1σ
√

2τ = c1σ
√

2Cτ log n . Thus∣∣D(k)
i

(
θ̂i − θi

)∣∣ ≤ ∣∣D(k)
i

(
θ̂

(k)

i − θi

)∣∣+
∣∣D(k)

i

(
θ̂i − θ̂

(k)

i

)∣∣ ≤ c1σ
√

2τ + σ
√

µ log n

and the assertion follows.
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6.4 Rate of estimation under smoothness conditions on f(·) . Spatial
adaptivity

Here we examine the case when f(·) satisfies some smoothness conditions in a neigh-

borhood of a fixed point x . We consider the basis {ψm} of polynomials of degree less

than a given integer number s ≥ 1 centered at x . In the univariate case d = 1 there

are exactly p = s basis functions of the form 1, u − x, . . . , (u − x)s−1 . We also suppose

that the design fulfills the property mentioned in Remark 6.6. We show that under these

additional conditions, the results of Theorems 6.4 and 6.9 lead in such a situation to the

classical nonparametric rate of estimation of order (σ2n−1 log n)s/(2s+d) .

Let a point x = Xi be fixed. Define h
(k) = h(1) + . . . + h(k) for k ≥ 1 and denote

by B(k)
i the ball with the center at Xi and the radius h

(k) . By definition of h(k) , it

holds h
(k) ≤ h(k)/(1 − a−1) . To ensure the quality of estimation of the function f at

the point Xi we assume some smoothness of f and also some design regularity in the

neighborhood B(k)
i for some sufficiently large k .

(A4s) For a fixed k , the function f(·) is s− 1 times continuously differentiable and the

derivative f (s−1)(u) fulfills with some constant L

1
(s− 1)!

∣∣f (s−1)(u) − f (s−1)(v)
∣∣ ≤ Lh(k), ∀u, v ∈ B(k)

i , |u− v| ≤ h(k).

(A5) For a fixed k , it holds for some constants ν2 ≤ ν3 and κ and all Xj in B(k)
i

N
(k)
i Ψ�

i Ψi ≤ κB
(k)
i , ν2 ≤ N

(k)
j

n|h(k)|d ≤ ν3.

Theorem 6.10. Define ȟ =
(
L2σ−2n/ log n

)−1/(2s+d) and fix a constant δ > 0 . Let

h(k) = cȟ for some iteration number k and a sufficiently small constant c depending on

a, δ and ν3 only. Assume that Assumptions A4s and A5 hold for this k and, in addition,

S0, A1 through A3, (6.6) and (6.7) are satisfied for every k′ ≤ k with δ(k′) = δ . Then

P
(∣∣f̂i − fi

∣∣ > C1L
d/(2s+d)(σ2n−1 log n)s/(2s+d)

)
≤ 4k∗/n (6.13)

where C1 depends on c and the constants in Assumptions A1 through A4s and A5 only.

The proof is given in the Appendix.

Remark 6.11. The rate of estimation given in Theorem 6.10 coincides with the optimal

rate of estimation for the Sobolev or Hölder smoothness classes up to a log-factor. More-

over, the rate is optimal for the problem of adaptive estimation at a point, cf. Lepski,

Mammen and Spokoiny (1997). It was also shown in that paper that this property auto-

matically leads to rate optimality (up to a log-factor) in the Sobolev and Besov function

classes Bs
p,q .
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6.5 Separation property

All the results presented earlier discussed the propagation property and its consequences

on the quality of estimation. In this section we present one more result which indicates

some benefits of using the adaptive weights scheme. Namely we show that the prop-

agation stops when the local parametric approximation does not provide a reasonable

accuracy. More precisely, we consider the case when there are two different nearly ho-

mogeneous regions, and two points Xi1 and Xi2 , one from every region, are fixed. We

assume that for every of these two points the propagation holds until some step k which

leads to the accuracy of estimation
∣∣D(k)

im (θ̂
(k)

im − θim)
∣∣ ≤ σ

√
µm log n for m = 1, 2 and

some µ1 and µ2 . We now show that if
∣∣D(k)

i (θi1 − θi2)
∣∣ > Cσ

√
log n for a sufficiently

large C then the procedure assigns a zero weight w
(k′)
i1i2

for all k′ ≥ k .

Theorem 6.12. Assume A1. Let the statistical kernel Kst have a compact support on

[0, A] for some A > 0 . Let, at step k , A3 be fulfilled and for two points Xi1 and Xi2

hold
∣∣D(k)

im

(
θ̂

(k)

im − θim

)∣∣ ≤ σ
√

µm log n with some constants µm for m = 1, 2 . Let also

D
(k)
i1

� bD
(k)
i1 for some b > 0 . If

∣∣D(k)
i1

(
θi1 − θi2

)∣∣ > σ
√

µ1 log n + σ

√
ω(k)µ2 log n + σ

√
Ab−1λ

then w
(k+1)
i1i2

= 0 . Moreover, there exists a value Q depending on A, b and the constants

from Assumption A2 such that the bounds
∣∣D(k)

i1 (θi1 − θi2)
∣∣ > σ

√
Q log n and D

(k′)
i1

�
bD

(k)
i1 imply w

(k′)
i1i2

= 0 for every k′ > k .

Proof. It suffices to show that s
(k)
i1i2

= (2λσ2)−1
∣∣D(k)

i (θ̂
(k)

i1 − θ̂
(k)

i2 )
∣∣2 > A . A3 and the

inequality D
(k)
i1

� bD
(k)
i1 yield

∣∣D(k)
i1

(
θ̂

(k)

i1 − θ̂
(k)

i2

)∣∣ ≥ ∣∣D(k)
i1

(
θi1 − θi2

)∣∣− ∣∣D(k)
i1

(
θ̂

(k)

i1 − θi1

)∣∣− ∣∣D(k)
i1

(
θ̂

(k)

i2 − θi2

)∣∣
≥ b

∣∣D(k)
i1

(
θi1 − θi2

)∣∣− σ
√

µ1 log n− σ

√
µ2ω(k) log n

and the first assertion follows by simple algebra. The second one can be easily shown by

involving the result of Proposition 6.7.

7 Summary and Outlook

The paper presents a new general method of local linear modeling based on the idea of

propagation and separation using adaptive weights. The method has a number of remark-

able properties. In particular, it applies in a unified way to a broad class of regression

models, and the procedure is able to adapt to the unknown and variable structure of

the regression function without requiring any specific prior information like the degree
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of smoothness of the underlying regression function. These features are justified both by

our theoretical results and by numerical examples.

Similarly to local polynomial smoothing, the PS method is design adaptive and has

no boundary problem. The produced estimate does not exhibit the usual Gibbs effect

(high variability and increased bias near discontinuities).

PS applies to models with multidimensional regressors. However, for local linear or

local polynomial modeling, the number of parameters grows dramatically with the di-

mension d , and the procedure can face the so called ‘curse of dimensionality’ problem:

in high dimension, pure nonparametric modeling leads to strong oversmoothing. Specif-

ically for our method, if the number of local parameters becomes too high (say, more

than 6) then the procedure looses sensitivity to structural changes. For such situations,

combining the procedure with some dimension reduction methods can be useful.

The proposed method is computationally straightforward and the numerical complex-

ity can be easily controlled, see Section 3.4.

The presented procedure is however restricted to the case of a local linear model. An

extension to generalized linear models with varying coefficients is important for many

applications, see Cai, Fan and Li (2000). This will be a subject for further development.

8 Appendix

Here we present the proofs of the main properties claimed in Section 6. First we establish

some general results on large deviation probabilities for local likelihood ratio test statistics

in Gaussian regression.

We consider the varying coefficient regression model Yi = f(Xi) + εi with homoge-

neous Gaussian errors εi ∼ N (0, σ2) . The local model W is described by the weights

w1, . . . , wn . Local linear modeling assumes the linear structure of the model function f

within the local model W : f(x) = θ1ψ1(x) + . . .+ θpψp(x) for a given system {ψm(x)} .

The corresponding local MLE θ̂ can be represented in the form θ̂ =
(
ΨWΨ�)−1

ΨWY

with the notation from Section 2.2. The local likelihood ratio test statistic is defined

for a given θ by L(W, θ̂,θ) = (θ̂ − θ)�B(θ̂ − θ)/(2σ2) = (2σ2)−1
∣∣D(θ̂ − θ)

∣∣2 where

B = ΨWΨ� and D = B1/2 .

Define θ = B−1ΨWf . Then Ψθ is the best linear approximation of f within the

local model W . In the homogeneous case f = Ψ�θ , it obviously holds θ = θ . The first

result shows that θ̂ is a good estimate of the vector θ . This particularly implies nice

properties of the estimate in a homogeneous situation when the local linear assumption

is fulfilled and θ is the true parameter.
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Theorem 8.1. For every z ≥ 0

P
(

2L(W, θ̂,θ) > p + z
)
≤ qp(z)

where

qp(z) = exp (−0.5z + 0.5p log(1 + z/p)) . (8.1)

Proof. The model equation Y = f + ε immediately implies that θ̂i = B−1
i ΨWiY =

θi + B−1
i ΨWiε . Therefore, θ̂i − θi = B−1

i ΨWiε does not depend on θ , and we assume

without loss of generality that θ = 0 , so that the observations Yi coincide with the noise

εi . This obviously implies Eθ̂ = 0 . The covariance matrix V of the estimate θ̂ can be

represented as

V = Eθ̂θ̂
�

= EB−1Ψεε�Ψ�B−1 = σ2B−1ΣB−1

where Σ = ΨW 2Ψ� . Therefore, the estimate θ̂ can be expressed as θ̂ = V 1/2ζ where

ζ is a standard Gaussian random vector in IRp . This yields

L(W, θ̂,θ) = (2σ2)−1ζ�V 1/2BV 1/2ζ = 0.5ζ�Rζ

with R = B−1/2ΣB−1/2 . Since wi ≤ 1 , it holds Σ ≤ B and ‖R‖ ≤ 1 , that is, the

largest eigenvalue of R does not exceed one. Now the desired result follows from the

general result for Gaussian quadratic forms in Lemma 8.2.

Lemma 8.2. Let a symmetric p× p -matrix R fulfill ‖R‖ ≤ 1 . Then

P
(
ζ�Rζ ≥ p + z

)
≤ qp(z).

Proof. Let r1, . . . , rp be the eigenvalues of R satisfying rm ≤ 1 for all m . It holds for

every µ < 1 by simple algebra

log E exp(µζ�Rζ/2) = log
p∏

m=1

1√
1 − µrm

= −1
2

p∑
m=1

log(1 − µrm) ≤ −0.5p log(1 − µ).

Now the exponential Tchebychev inequality implies

log P
(

0.5ζ�Rζ ≥ (p + z)/2
)

≤ −µ(p + z)/2 + log E
(

0.5µζ�Rζ
)

≤ −0.5µ(p + z) − 0.5p log(1 − µ).

This expression is minimized by µ = z/(p + z) leading to

log P
(
ζ�Rζ ≥ p + z

)
≤ −0.5z + 0.5p log(1 + z/p)

as required.

Remark 8.3. Define zn by the equality qp(zn) = n−2 , see (8.1). It is easy to see that

p + zn ≤ Cp log n where Cp depends on p only. Theorem 8.1 implies for D = B1/2

P
(
2L(W, θ̂,θ) > Cp log n

)
= P

(|D(θ̂ − θ)| > σ
√

Cp log n
) ≤ n−2.
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Proof of Theorem 6.2

Let zn, Cp be defined by qp(zn) = n−2 and p + zn ≤ Cp log n , see Remark 8.3. Define

A(k) =
{∣∣D̃(k)

i (θ̃
(k)

i − θ)
∣∣ ≤ σ

√
Cp log n, ∀i}

Theorem 8.1 (see Remark 8.3) yields in the homogeneous situation for every i

P
(A(k)

) ≥ 1 −
n∑

i=1

P
(∣∣D̃(k)

i (θ̃
(k)

i − θ)
∣∣ > σ

√
Cp log n

)
≥ 1 − nqp(zn) ≤ 1 − n−1.

We now show that the assertions of the theorem are fulfilled on the set A(k) .

For every i , the memory penalty m
(k)
i = (2τσ2)−1

∣∣D(k)
i (θ̃

(k)

i − θ̂
(k−1)

i )
∣∣2 fulfills√

2τσ2m
(k)
i ≤ ∣∣D(k)

i

(
θ̃

(k)

i − θ
)∣∣+

∣∣D(k)
i

(
θ̂

(k−1)

i − θ
)∣∣

≤ ∣∣D(k)
i

(
D̃

(k)
i

)−1
D̃

(k)
i

(
θ̃

(k)

i − θ
)∣∣+

∣∣D(k)
i

(
D

(k−1)
i

)−1
D

(k−1)
i

(
θ̂

(k−1)

i − θ
)∣∣

=
∣∣D(k)

i

(
D̃

(k)
i

)−1
ũ

(k)
i

∣∣+
∣∣D(k)

i

(
D

(k−1)
i

)−1
u

(k−1)
i

∣∣
where |ũ(k)

i | =
∣∣D̃(k)

i (θ̃
(k)

i −θ)
∣∣ ≤ σ

√
0.5µ log n on A(k) and |u(k−1)

i | =
∣∣D(k−1)

i

(
θ̂

(k−1)

i −
θ
)∣∣ ≤ σ

√
µ log n in view of (6.1). Also by Assumption A2 and (6.1) D

(k−1)
i � ν

1/2
1 D

(k)
i

and D̃
(k)
i � ν1/2D

(k)
i . Hence,√

2τm
(k)
i ≤ ν−1/2

√
0.5µ log n + ν

−1/2
1

√
µ log n ≤

√
3ν−1

1 µ log n

that yields in view of τ = Cτ log n ≥ 1.5µ/(ρν1) , see (6.2), that m
(k)
i ≤ ρ and ηi =

Kst(m
(k)
i ) ≥ ν . It then follows by Assumption A2 and (6.1) for every vector v

v�B
(k)
i v = ηiv

�B̃
(k)
i v + (1 − ηi)v�B

(k−1)
i v

≥ ηiν v�B
(k)
i v + (1 − ηi)0.5 v�B

(k−1)
i v

≥ (
ηiν + (1 − ηi)ν1/2

)
v�B

(k)
i v ≥ 0.5v�B

(k)
i v

because of ηi, ν, ν1 ≥ 2/3 . Hence, D
(k)
i � 2−1/2D

(k)
i .

Further, by definition of θ̂
(k)

i

θ̂
(k)

i − θ = ηi

(
θ̃

(k)

i − θ
)

+ (1 − ηi)
(
θ̂

(k−1)

i − θ
)
.

Therefore∣∣D(k)
i (θ̂

(k)

i − θ)
∣∣ ≤ ηi

∣∣D(k)
i

(
D̃

(k)
i

)−1
ũ

(k)
i

∣∣+ (1 − ηi)
∣∣D(k)

i

(
D

(k−1)
i

)−1
u

(k−1)
i

∣∣
≤ ηiσ

√
0.5ν−1µ log n + (1 − ηi)σ

√
ν−1
1 µ log n ≤ σ

√
µ log n

because of ηi ≥ 2/3 , 2/3 ≤ ν1 ≤ ν ≤ 1 . Hence, (6.3) is proved.
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By definition T
(k+1)
ij = (2σ2)−1

∣∣D(k)
i (θ̂

(k)

i − θ̂
(k)

j )
∣∣2 . The definition of B̃

(k)
i and of

B
(k)
i clearly implies that v�B

(k)
i v ≤ v�B

(k)
i v for every vector v and therefore, D

(k)
i �

D
(k)
i . Assumption A3 and (6.3) yield on the set A(k) for every pair i, j with Xj ∈ U

(k)
i√

2σ2T
(k+1)
ij ≤ ∣∣D(k)

i (θ̂
(k)

i − θ)
∣∣+
∣∣D(k)

i (θ̂
(k)

j − θ)
∣∣

≤ ∣∣D(k)
i (θ̂

(k)

i − θ)
∣∣+
∣∣D(k)

i

(
D

(k)
j

)−1
D

(k)
j (θ̂

(k)

j − θ)
∣∣

≤ σ
√

µ log n + ω(k)σ
√

µ log n ≤ σ(1 + ω(k))
√

µ log n .

Therefore, on A(k) , it holds for every considered pair i, j

s
(k+1)
ij = λ−1T

(k+1)
ij ≤ 0.5µ

(
1 + ω(k)

)2
/Cλ ≤ ρ

and Kst(s
(k+1)
ij ) ≥ ν . This obviously yields v�B̃

(k+1)
i v ≥ ν v�B

(k+1)
i v for any vector v

and all i and (6.4) follows.

Proof of Theorem 6.4

The proof follows the line of the proof of Theorem 6.2. We therefore focus only on the

specific details. Define

A(k) =
{∣∣D̃(k)

i (θ̃
(k)

i − Eθ̃
(k)

i )
∣∣ ≤ σ

√
Cp log n, ∀i}.

Here Eθ̃
(k)

i stands for
(
B̃

(k)
i

)−1∑
j w

(k)
ij θj and Cp is defined in Remark 8.3. Then,

similarly to the proof of Theorem 6.2, P (A(k)) ≥ 1 − n · n2 = 1 − 1/n .

Now we check that the assertions of the theorem are satisfied on A(k) . First we bound

the estimation error θ̃
(k)

i − θi for Xi ∈ U (k) . Since Eθ̃
(k)

i is a convex combination of

θj for Xj ∈ U
(k)
i , it holds on the set A(k) by A4∣∣D̃(k)
i

(
θ̃

(k)

i − θi

)∣∣ ≤ ∣∣D̃(k)
i

(
θ̃

(k)

i − Eθ̃
(k)

i

)∣∣+
∣∣D(k)

i

(
Eθ̃

(k)

i − θi

)∣∣
≤ σ

√
Cp log n + σδ(k)

√
log n ≤ σ

√
0.5µ log n

because of
√

0.5µ ≥√Cp + δ(k) , see (6.6). Now (6.8) follows in the same line as (6.3) in

the proof of Theorem 6.2.

Now, for every pair i, j with Xi ∈ U (k) and Xj ∈ U
(k)
i ∩U (k) , it follows on A(k) by

(6.8) and Assumptions A2, A3, A4√
2σ2T

(k+1)
ij ≤ ∣∣D(k)

i (θ̂
(k)

i − θi)
∣∣+
∣∣D(k)

i (θ̂
(k)

j − θj)
∣∣+
∣∣D(k)

i (θj − θi)
∣∣

≤ σ
√

µ log n + σω(k)
√

µ log n + δ(k)σ
√

log n.

Thus, on A(k) holds s
(k+1)
ij = λ−1T

(k+1)
ij ≤ 0.5

(√
µ + ω(k)√µ + δ(k)

)2
/Cλ ≤ ρ , see (6.7),

and Kst(s
(k+1)
ij ) ≥ ν . The last statement follows similarly to the proof of Theorem 6.2.
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Proof of Theorem 6.10

To simplify the proof and avoid tedious tensor notation, we consider the univariate case

with d = 1 and s = p . An extension to the multivariate case is straightforward.

Set c0 =
(
δ2α2s−2/ν3

)1/(2s+d) with α = (1 − 1/a) and take k such that h(k) is the

largest bandwidth that fulfills h(k) ≤ c0ȟ . Denote c = h(k)/ȟ , h
(k) = h(1) + . . . + h(k) .

Recall that B(k)
i is defined as the ball with the center at x = Xi and radius h

(k) . Under

condition A4s, the function f(Xj) for Xj ∈ B(k)
i can be represented as

f(Xj) = f(x) + f ′(x)(Xj − x) + . . . +
f (s−2)(x)
(s− 2)!

(Xj − x)s−2 +
f (s−1)(X̃j)

(s− 1)!
(Xj − x)s−1

where X̃j is some point between x and Xj . The use of the polynomial basis ψm(u) =

(u−x)m for m = 0, . . . , s− 1 leads to the local parametrization of the function f given

by f(Xj) = Ψ�
j θj with θj =

(
f(x), f ′(x), . . . , f(s−2)(x)

(s−2)! ,
f(s−1)( eXj)

(s−1)!

)� . For any two points

Xj ,Xj′ ∈ B(k)
i , the corresponding parameter vectors θj and θj′ differ only in the last

coordinate. Moreover, the smoothness condition A4s clearly implies |θj,s − θj′,s| ≤ Lh(k)

for any two points Xj ,Xj′ ∈ B(k)
i with |Xj−Xj′ | ≤ h(k) . This yields for every Xl ∈ B(k)

i

that |Ψ�
l

(
θj − θj′

)| ≤ L
∣∣h(k)∣∣s−1

h(k) and∣∣D(k)
j

(
θj − θj′

)∣∣2 =
(
θj − θj′

)�
B

(k)
j

(
θj − θj′

)
=

∑
l

|Ψ�
l

(
θj − θj′

)|2w(k)
il ≤ L2

∣∣h(k)∣∣2s−2|h(k)|2N (k)
j .

The use of h
(k) ≤ α−1h(k) , h(k) = cȟ with c ≤ c0 and A5 yields∣∣D(k)

j

(
θj − θj′

)∣∣2 ≤ L2ν3

∣∣h(k)∣∣2s−2|h(k)|2+dn

≤ L2ν3c
2s+dα2−2sȟ2s+dn = ν3c

2s+dα2−2sσ2 log n ≤ δ2σ2 log n

and A4 holds true for the step k with δ(k) = δ and U (k) = {Xi} . Obviously A4 also

holds for all k′ < k with the same δ and U (k′) being the ball centered at Xi of radius

h(k′+1) + . . . + h(k) . Corollary 6.5 and Remark 6.6 ensure with a high probability the

following accuracy of estimating the function f by f̂ (k) under A4s and A5:∣∣f̂ (k)(Xi) − f(Xi)
∣∣2 ≤ κ

2σ2µ log n

N
(k)
i

≤ κ
2σ2µ log n

ν2n|h(k)|d ≤ C1L
2d/(2s+d)

(
σ2n−1 log n

)2s/(2s+d)

with some fixed constant C1 depending on c and the other constants from Assumptions

A2–A5. By Theorem 6.9, the same rate of estimation holds for the final estimate f̂ .
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