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Abstract

The Brownian motion of a classical particle can be described by a Fokker–
Planck-like equation. Its solution is a probability density in phase space. By
integrating this density w.r.t. the velocity, we get the spatial distribution or
concentration. We reduce the 2n-dimensional problem to an n-dimensional
diffusion-like equation in a rigorous way, i.e., without further assumptions in
the case of general Brownian motion, when the particle is forced by linear
friction and homogeneous random (non-Gaussian) noise. Using a represen-
tation with pseudodifferential operators, we derive a reduced diffusion-like
equation, which turns out to be non-autonomous and can become elliptic
for long times and hyperbolic for short times, although the original problem
was time homogeneous. Moreover, we consider some examples: the classical
Brownian motion (Gaussian noise), the Cauchy noise case (which leads to an
autonomous diffusion-like equation), and the free particle case.

1 Introduction

The Brownian motion of a classical particle in a space- and time-homogeneous
medium is characterized by two forces acting on the particle: a deterministic linear
friction and a random force — Gaussian or white noise. Thus, the velocity evolution
of the particle is random, whereas the evolution of the spatial coordinate is deter-
ministic. The trajectory

(
v(t), x(t)

)
of the particle in phase space can be described

by the random system

v̇(t) = −av(t) +
√
2b

dw(t)

dt
ẋ(t) = v(t)

with a Wiener process w(t) and is no longer deterministic, but rather a Markovian
process with the probability density W (v, x, t). The equation describing the time
evolution of this density is the Fokker–Planck equation (see, e.g., [2])

∂

∂t
W (v, x, t) =

∂

∂v

(
avW (v, x, t)

)
+ b

∂2

∂v2
W (v, x, t)− v

∂

∂x
W (1)

with the initial data W (v, x, 0) = W0(v, x) and decreasing boundary conditions.
Dealing with probability densities, we demand normalization∫

R

∫
R

W0(v, x)dvdx =

∫
R

∫
R

W (v, x, t)dvdx = 1
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and positivity W (v, x, t) ≥ 0.

The following can be considered in an arbitrary n-dimensional case. For simplicity,
all formulas are written for the case n = 1. Thus, we consider a two dimensional
phase space coordinate (v, x) ∈ R

2.

Often our interest is only in the spatial distribution (concentration)

c(x, t) =

∫
R

W (v, x, t)dv . (2)

Looking from a phenomenological
point of view at the time evolu-
tion of c(x, t), for long times it
looks like a diffusion (see the pic-
ture: c(x, t) for various times). So
we can guess that c(x, t) is the so-
lution of a diffusion-like equation,
say

∂

∂t
c(x, t) = D

∂2

∂x2
c(x, t) . (3) -4 -2 2 4

0.2

0.4

0.6

0.8

1

1.2 c(x, t)

x

This equation was derived by A. Einstein in 1905, by P. Langevin in 1908, and by
others using phenomenological assumptions to describe the same physical problem
— Brownian motion. Indeed, by some heuristic arguments it can be shown that
c(x, t), derived from the solution of (1) by (2), satisfies (3): By integrating equation
(1) w.r.t. v, we get

∂

∂t
c(x, t) = − ∂

∂x

∫
R

vW (v, x, t)dv =: − ∂

∂x
j(x, t) (4)

with the current j(x, t) =
∫

R
vW (v, x, t)dv. To get an equation for j(x, t), we mul-

tiply (1) by v and integrate w.r.t. v:

∂

∂t
j(x, t) = −aj(x, t)− ∂

∂x
σ(x, t) (5)

with the mean energy σ(x, t) =
∫

R
v2W (v, x, t)dv. Multiplying (1) by v2 and inte-

grating w.r.t. v, we get

∂

∂t
σ(x, t) = −2aσ(x, t) + 2bc(x, t)− ∂

∂x

∫
R

v3W (v, x, t)dv . (6)

Now we assume that the x-derivative of the third moment vanishes and σ(x, t) is
not changing in time. We get from (6)

σ(x, t) =
b

a
c(x, t) .
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Assuming that j(x, t) is not changing in time, either, we get from (5)

0 = −aj(x, t)− b

a

∂

∂x
c(x, t) =⇒ j(x, t) = − b

a2

∂

∂x
c(x, t) .

Now we get from (4)

∂

∂t
c(x, t) =

b

a2

∂2

∂x2
c(x, t) , (7)

i.e., equation (3) with the diffusion coefficient D = b
a2 .

Of course, equation (1) is more physical than (3), because it takes into account
the real state of the particle (v, x) instead of the only spatial coordinate x. If our
interest is only in the spatial distribution, it is very tempting to use the much simpler
equation (3), but in the derivation shown (1) =⇒ (7) it is difficult to understand
what we have done exactly. Moreover, equation (3) cannot be correct at least for
short times, because, from a phenomenological point of view, it is clear that the
evolution of c(x, t) has to depend on the initial velocity and seems to look more like
a solution of a hyperbolic equation than a parabolic one.

As shown, integrating equation (1) w.r.t. v, we get an unclosed equation (4) for
c(x, t). The method shown here is a way to close this equation by applying some
heuristic assumptions. The goal of the present paper is to derive a diffusion-like
closed equation for c(x, t) in a rigorous way for a more general transport equation
in phase space, a very special case in terms of the Fokker–Planck equation (1).

In Section 2 we show a general scheme to close equation (4). In Section 3 we consider
the general Brownian motion. In this case, the general scheme can be calculated
explicitly. It turns out that, in general, the reduced equation is non-autonomous.
We investigate the time behavior of this equation in Section 4. Some examples in
Section 5 complete the paper.

We will assume throughout that the considered evolution equations have classical
norm and positivity conserving solutions in L1(R

2) resp. L1(R).

2 A general scheme for the reduced equation

We will consider the motion of a classical particle with phase-space coordinate (v, x)
in a random medium. In a space- and time-homogeneous medium, the forces acting
on the particle are represented by a random function F not dependent on x, whereas
the evolution of the spatial coordinate is determined by the velocity. We have the
following random system

v̇(t) = F
(
v(t)

)
ẋ(t) = v(t)

(8)

(the first equation is Newton’s law, the second is the definition of the velocity).
Assuming that (v(t), x(t)) is Markovian with the probability density W (v, x, t), the
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equation describing the time evolution of this density has the structure

∂

∂t
W (v, x, t) = AW − v

∂

∂x
W, W (v, x, 0) = W0(v, x) , (9)

where A is a linear operator of the general form (see, e.g., [2, 6])

(
Af

)
(v) =

∂

∂v

(
a(v)f(v)

)
+

∂2

∂v2

(
b(v)f(v)

)
+

∫
R

[
Q(v′, v)f(v′)−Q(v, v′)f(v)

]
dv′

acting only on the parameter v. This equation is called forward equation or Kolmo-
gorov–Chapman equation. The first derivative comes from a deterministic part in
F , the second and the integral operator come from a random part. In general, the
kernel Q(v, v′) can become singular for v = v′. Therefore, the integral is to be
understood as a mean (or principle) value integral. In this case, the corresponding
operator is unbounded, but dominated by the second derivative. In x, equation (9)
contains only the first derivative because ẋ(t) = v(t) is a deterministic equation
(nevertheless x(t) is a random process because v(t) is so).

With suitable boundary conditions, regularity conditions for the coefficients a(v),
b(v), and Q(v, v′), and with positivity conditions b(v) ≥ 0 and Q(v, v′) ≥ 0, the
solution of equation (9) — if it exists — conserves positivity, W0(v, x) ≥ 0 =⇒
W (v, x, t) ≥ 0, and L1-norm,∫

R

∫
R

W0(v, x)dvdx =

∫
R

∫
R

W (v, x, t)dvdx = 1 .

In general, the existence of a solution to (9) in L1 is a difficult problem and is
proved in some special cases, for instance, if b(v) ∂2

∂v2 is strongly elliptic and the
integral operator is dominated by the second derivative (see, e.g., [5]).

Integrating (9) w.r.t. x, we get a closed equation

∂

∂t
w(v, t) = Aw (10)

for the velocity distribution w(v, t) =
∫

R
W (v, x, t)dx, whereas integrating (9) w.r.t.

v, we get the unclosed equation (4) for c(x, t). We will try to close this equation in a
rigorous way for some suitable operators A, i.e., we will try to write the right-hand
side of (4) as a function of c(x, t). Since equation (9) and the expression (2) to
calculate c(x, t) are linear, this function is linear, too. Therefore, we will look for an
equation for c(x, t) in the form

∂

∂t
c(x, t) = R c(x, t), c(x, 0) = c0(x) , (11)

where R is some unknown linear operator. We will call this equation the reduced
equation.

The only assumption we demand is

W0(v, x) = w0(v) · c0(x) . (12)
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This assumption means that the initial velocity and spatial distributions are inde-
pendent. This seems to be natural. When looking for a velocity-free description of
the problem, we have to assume that the initial spatial distribution c0(x) is well de-
fined and given. This can be made transparent in the following way. Let us assume
that equations (9) and (11) have Green functions ω and h. The solutions of these
equations can then be formally written as

W (v, x, t) =

∫
R

∫
R

ω(v, v′, x− x′, t)W0(v
′, x′)dv′dx′ (13)

and

c(x, t) =

∫
R

h(x− x′, t)c0(x′)dx′ . (14)

(Because of the homogeneity of the problem in x, the Green function depends only
on the difference x−x′.) Integrating (13) w.r.t. v, we have to get a solution of type
(14). Assuming (12) we have

W (v, x, t) =

∫
R

(∫
R

ω(v, v′, x− x′, t)w0(v
′)dv′

)
c0(x

′)dx′

and so

h(x, t) =

∫
R

∫
R

ω(v, v′, x, t)w0(v
′)dv′dv .

In the following, we will use Fourier transforms of the solutions and initial data. Let

ψ(η, t) =

∫
R

eiηxc(x, t)dx ,

ψ0(η) =

∫
R

eiηxc0(x)dx ,

ϕ(µ, η, t) =

∫
R

∫
R

ei(µv+ηx)W (v, x, t)dvdx ,

ϕ0(µ, η) =

∫
R

∫
R

ei(µv+ηx)W0(v, x)dvdx ,

eβ(µ) =

∫
R

eiµvw0(v)dv ⇐⇒ β(µ) = log

∫
R

eiµvw0(v)dv .

Note that ψ(η, t) = ϕ(0, η, t) because of (2).

An operator D of the form

(D f)(x) =
1

2π

∫
R

∫
R

eiη(x′−x)γ(η)f(x′)dηdx′ (15)

is called pseudodifferential operator (PDO) with the symbol γ. If γ is given, we can
write D as an integro-differential operator calculating the inverse Fourier transform
in a distribution sense.

5



Now we are ready for the following

Theorem 1 Let W (v, x, t) be the solution of the equation

∂

∂t
W (v, x, t) = AW (v, x, t)− v

∂

∂x
W (v, x, t) (16)

with initial data

W (v, x, 0) = w0(v) · c0(x), w0(x) ≥ 0, c0(x) ≥ 0,

∫
R

w0(v)dv =

∫
R

c0(x)dx = 1 ,(17)

and ϕ(µ, η, t) its Fourier transform. Then c(x, t) defined by

c(x, t) =

∫
R

W (v, x, t)dv (18)

is the solution of the equation

∂

∂t
c(x, t) = R(t)c(x, t) (19)

with initial data

c(x, 0) = c0(x) , (20)

where the (in general time-dependent) operator R(t) is a PDO with the symbol

r(η, t) =
∂

∂t

(
logϕ(0, η, t)

)
.

Proof: Let Ca be the shift operators (Caf)(x) = f(x + a). Because of the spatial
homogeneity of the medium, the operatorR has to commute with the shift operators:
RCa = CaR. The Fourier transform is the operator which diagonalizes Ca. Since R
commutes with Ca, the Fourier transform diagonalizes R, too. That is, operator R
becomes a multiplication operator in Fourier space, and equation (19) is equivalent
to equation

∂

∂t
ψ(η, t) = r(η, t)ψ(η, t) , (21)

where r(η, t) is the symbol of R = R(t), in general depending on t. Knowing ψ(η, t),
we get r(η, t) from (21) by

r(η, t) =
∂
∂t
ψ(η, t)

ψ(η, t)
=

∂

∂t
logψ(η, t) =

∂

∂t
logϕ(0, η, t) . (22)

For t = 0 we get c(x, 0) =
∫

R
W (v, x, 0)dv = c0(x) ·

∫
R
w0(v)dv = c0(x).

Thus, knowing ϕ(0, η, t) from equation (16), we can calculate r(η, t), i.e., R(t). We
can say the problem is solved if we know R(t) explicitly. But this does not mean
that each of the calculations denoted by the arrows in the following scheme has to
be done explicitly.

A, w0(v) =⇒ ϕ(0, η, t) =⇒ r(η, t) =⇒ R(t) .

Sometimes it is enough to know the structure of the value. Unfortunately, even this
seems to be a difficult problem in general, but there are some special cases for which
this can be done. One of them is the important case of general Brownian motion.
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3 General Brownian motion

Following A.M. Yaglom [7], we will call the motion of a random particle general
Brownian motion, if the forces acting on the particle are the sum of a deterministic
linear friction and random forces not depending on the velocity of the particle. In
this case equation (9) has the following form:

∂

∂t
W (v, x, t) =

∂

∂v

(
avW

)
+ b

∂2

∂v2
W − v

∂

∂x
W +

+

∫
R

(
Q(v − v′)W (v′, x, t)−Q(v′ − v)W (v, x, t)

)
dv′ , (23)

W (v, x, 0) = w0(v)c0(x), β(µ) := log

∫
R

eiµvw0(v)dv . (24)

The classical Fokker–Planck equation (1) is the special case Q ≡ 0.

Theorem 2 Let W (v, x, t) be the solution of equation (23) with initial data (24).
Then c(x, t) defined by (18) is the solution to the equation

∂

∂t
c(x, t) =

1

2π

∫
R

∫
R

eiη(x′−x)ηe−atβ ′
(η
a

(
1− e−at

))
c(x′, t)dηdx′ +

+
b

a2

(
1− e−at

)2 ∂2

∂x2
c(x, t) +

+

∫
R

a

1− e−at
Q

(
ax′

1− e−at

) (
c(x− x′, t)− c(x, t)

)
dx′ (25)

with initial data c(x, 0) = c0(x).

Proof: Transforming equation (23) to Fourier space, we get

∂

∂t
ϕ(µ, η, t) = α(µ)ϕ(µ, η, t) + (η − aµ)

∂

∂µ
ϕ(µ, η, t) , (26)

where

α(µ) = −bµ2 +

∫
R

(
eiµv − 1

)
Q(v)dv (27)

is the symbol of the random part of operator A. Equation (26) is a first-order PDE
and can be solved explicitly. Let

h(µ, η, t) =
η

a

(
1− e−at

)
+ µe−at , h(0, η, t) =

η

a

(
1− e−at

)
.

We get

ϕ(µ, η, t) = ϕ0

(
h(µ, η, t), η

) · exp
(∫ t

0

α
(
h(µ, η, t′)

)
dt′

)
. (28)
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Taking into account the special initial value (24), we get

ϕ(µ, η, t) = ψ0(η)w0

(
h(µ, η, t)

) · exp
∫ t

0

α
(
h(µ, η, t′)

)
dt′ ,

ϕ(0, η, t) = ψ0(η)w0

(
h(0, η, t)

) · exp
∫ t

0

α
(
h(0, η, t′)

)
dt′ .

From (22) it follows

r(η, t) =
∂

∂t

(
logϕ(0, η, t)

)
=

∂

∂t
h(0, η, t)β ′(h(0, η, t)) + α

(
h(0, η, t)

)
=

= ηe−atβ ′(h(0, η, t)) + α
(
h(0, η, t)

)
=

= ηe−atβ ′
(η
a

(
1− e−at

))
+ α

(η
a

(
1− e−at

))
. (29)

Thus, the symbol of operator R(t) as a function of w0 (via β) and A (via α) is
calculated. Therefore, we have

(R(t) f)(x) =
1

2π

∫
R

∫
R

eiη(x′−x)ηe−atβ ′
(η
a

(
1− e−at

))
+ α

(η
a

(
1− e−at

))
f(x′)dηdx′ .

Using (27) we get (25).

Let

r0(η, t) = ηe−atβ ′
(η
a

(
1− e−at

))
,

rA(η, t) = α
(η
a

(
1− e−at

))
.

Then, the operator R(t) can be written as a sum of two parts

R(t) = R0(t) +RA(t) ,

where R0 is a PDO with the symbol r0(η, t) and depends only on the initial velocity
distribution w0(v), and RA is a PDO with the symbol rA(η, t) depending only on
A, i.e., on the interaction of the particle with the medium.

Considering equation (25) instead of equation (23), we assume that the changing of
the velocity is not interesting for us. This can be so, because the velocity density
does not change in time and is known from the beginning. This means the initial
velocity density w0(v) is the stationary one w∞(v), i.e., a solution to the stationary
variant of equation (10): Aw∞ = 0. We will assume that the stationary solution
is unique. In this case, the operator of the reduced equation R(t) is determined by
the operator A and the following theorem holds.
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Theorem 3 Let W (v, x, t) be the solution of equation (23) with initial data

W (v, x, 0) = w∞(v) · c0(x) , (30)

where w∞(v) is the unique solution (with
∫

R
w∞(v)dv = 1) to the equation

0 =
∂

∂v

(
avw∞(v)

)
+ b

∂2

∂v2
w∞(v) +

∫
R

(
Q(v − v′)w∞(v′)−Q(v′ − v)w∞(v)

)
dv′ .(31)

Then c(x, t) defined by (18) is the solution to the equation

∂

∂t
c(x, t) =

b

a2

(
1− e−at

) ∂2

∂x2
c(x, t) +

+

∫
R

a

(1− e−at)2
Q

(
ax′

1− e−at

) (
c(x− x′, t)− c(x, t)

)
dx′ (32)

with initial data c(x, 0) = c0(x).

Proof: We will use formula (29) and therefore have to calculate β ′(µ). Because
of w∞(v) =

∫
R
W (v, x, t)dx we have ϕ0(µ, 0) = ϕ(µ, 0,∞), where ϕ(µ, 0,∞) is the

solution of the stationary variant of equation (26) for η = 0:

0 = α(µ)ϕ(µ, 0,∞)− aµ
∂

∂µ
ϕ(µ, 0,∞) . (33)

Using this, we get

β ′(µ) =
∂

∂µ
logϕ0(µ, η)

∣∣∣∣
η=0

=

∂
∂µ
ϕ0(µ, 0)

ϕ0(µ, 0)
=

∂
∂µ
ϕ(µ, 0,∞)

ϕ(µ, 0,∞)
=
α(µ)

aµ
.

Now, from (29) it follows

r(η, t) = ηe−atα
(

η
a

(
1− e−at

))
aη

a

(
1− e−at

) + α
(η
a

(
1− e−at

))
=

1

1− e−at
α

(η
a

(
1− e−at

))
.(34)

Thus, the symbol of operator R(t) as a function of A is calculated. Using (15) and
(27), we get (32).

4 Time dependence of the operator R(t)

It seems to be strange that the operatorR(t) depends on time explicitly, whereas the
original physical problem is time-independent. The reason is that the original prob-
lem has various time scales, where the solution behaves differently. For short times,
the initial velocity distribution w0(v) is the dominating influence on the particle.
It moves like a free particle with given velocity. From (8) we see that the velocity
changes independently of x. Thus for intermediate times, the probability density of

9



the velocity relaxes and becomes stationary. This stationary density w∞(v) is the
solution of the stationary equation related to equation (10): Aw∞ = 0. This middle
time behavior can be investigated setting w0(v) = w∞(v) and then t = 0, assuming
the velocity was relaxed from the beginning. For long times, the particle moves with
equilibrium velocity.

Let us consider three cases:

✲

t = 0 w0(v) = w∞(v), t = 0 t = ∞
✉

4.1 The asymptotic behavior for t −→ 0

Setting t = 0 in (29), we get, because of e−at|t=0 = 1, that

r(η, 0) = ηβ ′(0) + α(0) .

From (27) we conclude α(0) = 0 and from the definition (24) of β

β ′(µ) =
i
∫

R
eiµvvw0(v)dv∫

R
eiµvw0(v)dv

.

Therefore,

β ′(0) =
i
∫

R
vw0(v)dv∫

R
w0(v)dv

= iv̄ ,

where v̄ is the average velocity at t = 0. Finally, we have r(η, 0) = iηv̄ and so

∂

∂t
c(x, t) = R(0)c(x, t) = −v̄ ∂

∂x
c(x, t) .

This equation shows that for t−→ 0 the particle moves like a free particle with
average velocity v̄. The equation is first-order hyperbolic.

4.2 The asymptotic behavior for t −→ ∞
For t−→ ∞, we have R0(t)−→ 0 (the influence of the initial velocity vanishes) and it
follows

r(η,∞) = α
(η
a

)

and so we get

∂

∂t
c(x, t) = R(∞)c(x, t) =

b

a2

∂2

∂x2
c(x, t) +

∫
R

aQ(ax′)
(
c(x− x′, t)− c(x, t)

)
dx′ .

For Q = 0, this is the diffusion equation (a parabolic one).
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4.3 The w0(v) = w∞(v), t −→ 0 case

Expanding r(η, t) from (34) in Taylor series for t = 0 and taking into account
α(0) = 0, we get formally

r(η, t) =
η

a
α′(0) + η2t

1

2a
α′′(0) .

Setting

q1 =

∫
R

vQ(v)dv , q2 =

∫
R

v2Q(v)dv ,

we have

r(η, t) =
q1
a
iη − η2t

b+ q2
2a

.

This leads to the reduced equation

∂

∂t
c(x, t) = −q1

a

∂

∂x
c(x, t) +

b+ q2
2a

t
∂2

∂x2
c(x, t) .

The special case of symmetric Q(v) = Q(−v) leads to q1 = 0 and to the reduced
equation

∂

∂t
c(x, t) =

b+ q2
2a

t
∂2

∂x2
c(x, t) . (35)

From this we get ∂
∂t
c(x, t)

∣∣
t=0

= 0 and therefore for t→ 0

∂2

∂t2
c(x, t) = lim

t→0

1

t

(
∂

∂t
c(x, t)− ∂

∂t
c(x, t)

∣∣∣∣
t=0

)
= lim

t→0

1

t

∂

∂t
c(x, t) .

This shows that (35) is for t→ 0 a second-order hyperbolic equation:

1

t

∂

∂t
c(x, t) =

∂2

∂t2
c(x, t) =

b+ q2
2a

∂2

∂x2
c(x, t) .

Equations (25) or (32) arise in a natural way as a strong derivation from a phase-
space equation and in some sense interpolate between parabolic and hyperbolic
equations. This can be an alternative to fractional time derivatives considered, for
instance, in [1].

5 Some examples

5.1 The classical Brownian motion

For Q ≡ 0, equation (23) is the classical Fokker–Planck equation (1). We have
α(µ) = −bµ2 and the Fourier transform of the stationary velocity distribution is
(see (33))

ϕ(µ, 0,∞) = e−
b
2a

µ2
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or

w∞(v) =
1√
2π b

a

e−
a
2b

v2

.

This is the well-known Maxwell distribution. If we take w0(v) = w∞(v), we get from
(32) the equation

∂

∂t
c(x, t) =

b

a2

(
1− e−at

) ∂2

∂x2
c(x, t) , (36)

which is indeed similar to equation (7) and tends to it for t−→ ∞. So we can state:

The classical diffusion equation describes the Brownian motion of a particle if the
initial velocity distribution is Maxwellian and is independent of the initial spatial
distribution (assumption (24)) and only for long times, i.e., near equilibrium.

From (34), we can conclude that this is the only case where we get a parabolic PDE
for c(x, t).

We have the following limit cases:

∂2

∂t2
c(x, t) ∼ 1

t

∂

∂t
c(x, t) =

b

a

∂2

∂x2
c(x, t), t−→ 0 ,

∂

∂t
c(x, t) =

b

a2

∂2

∂x2
c(x, t), t−→ ∞ .

5.2 The Cauchy case

An interesting question is, in which case, we get an equation for c(x, t) with a time-
independent operator R(t) = R. In the general case (29) this is only possible for
the noninteresting case w0(v) = δ(v) and α(µ) = 0. In the w0(v) = w∞(v) case, this
is possible if b = 0 and

Q(v) =
d

πv2
.

Then we have α(µ) = −d|µ| and

ϕ(µ, 0,∞) = exp




µ∫
0

α(µ′)
aµ′ dµ

′


 = exp


−d

a

µ∫
0

signµ′dµ′


 = e−

d
a
|µ| ,

or, after inverse Fourier transform,

w∞(v) =
1

π

ad

d2 + a2v2
.

This is the well-known Cauchy distribution. To get the reduced equation, we have
from (34)

r(η, t) =
1

1− e−at
α

(η
a

(
1− e−at

))
=

1

1− e−at
(−d)

∣∣∣η
a

(
1− e−at

)∣∣∣ = −d
a
|η| .
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So we can state: Let W (v, x, t) be the solution of the equation

∂

∂t
W (v, x, t) =

∂

∂v

(
avW

)
+
d

π

∫
R

W (v′, x, t)−W (v, x, t)

|v − v′|2 dv′ − v
∂

∂x
W

with initial value

W (v, x, 0) =
d

πav2
· c0(x) .

Then, c(x, t) is the solution to the equation

∂

∂t
c(x, t) =

d

a

∫
R

(
c(x− x′, t)− c(x, t)

) dx′
|x′|2

with initial value c(x, 0) = c0(x).

5.3 A free particle

An important question in applications is: What can we say about the evolution
of c(x, t), if we know that the velocity distribution is given and does not change
in time? This means that w0(v) = w∞(v) and Aw∞ = 0. Often we know how
the velocity is distributed (e.g., Maxwell distributed), but we do not know the real
interaction in the medium. This means that we know w∞(v), but we do not know
A. Does c(x, t) depend on A?

Let us assume that w0(v) = w∞(v) = δ(v − v0), i.e., the particle moves all the time
with determined velocity v0, then we will expect that

c(x, t) = c0(x− v0t) .

If w0(v) = w∞(v) is arbitrary, in heuristic derivations sometimes the seemingly
obvious assumption

c(x, t) =

∫
R

w∞(v)c0(x− vt)dv (37)

is used. We will show that this is wrong in general. From (37) we get for t > 0

c(x, t) =

∫
R

w∞(v)c0(x− vt)dv =

∫
R

1

t
w∞

(
x− x′

t

)
c0(x

′)dx′ . (38)

Thus, 1
t
w∞

(
x−x′

t

)
is the Green function of some operatorR(t). Taking as an example

the Maxwell distribution

w0(v) =
1√
2πσ

e−
v2

2σ , (39)

a simple calculation shows that the corresponding reduced equation is

ct(x, t) = σtcxx(x, t) . (40)
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On the other hand, we know that, for the classical Fokker–Planck equation, the
Maxwell distribution is the equilibrium distribution (with σ = b

a
), but the corre-

sponding reduced equation is (36), which is similar to (40) only for short times.

Equation (38) — or (40) taken for special w∞(v) — is the reduced equation for a
free particle, i.e., for the case without interaction, where A = O is the zero operator.
In this case, equation (23) reads as

∂

∂t
W (v, x, t) = −v ∂

∂x
W (v, x, t) . (41)

This is a model for the motion of a particle (or a swarm of noninteracting particles)
with given initial velocity distribution w0(v) = w∞(v) (obviously every distribution
w∞(v) is an equilibrium distribution satisfying Ow∞ = 0). Simple calculation shows
that the solution of (41) is W (v, x, t) = W0(v, x − vt) = w∞(v)c0(x − vt), and so
we get (38). This shows that, making assumption (37), we assume no interaction
between the particle and the medium.
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