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Abstract

We consider nonlinear estimation methods for statistical inverse prob-
lems in the case where the operator is not exactly known. For a canonical
formulation a Gaussian operator white noise framework is developed. Two
different nonlinear estimators are constructed, which correspond to the dif-
ferent order of the linear inversion and nonlinear smoothing step. We show
that both estimators are rate-optimal over a wide range of Besov smoothness
classes. The construction is based on the Galerkin projection method and
wavelet thresholding schemes for the data and the operator.

1 Introduction

1.1 Linear inverse problems and ill-posedness

We consider the usual statistical formulation of a linear inverse problem: given
a domain P C R%, an unknown object of interest f € L%(D) is to be recovered
from

9e =K f+eW, (1.1)

where g, is the data, K is a known linear operator
K : L*(D) — L*(Q),

Q is a domain in R? and W is a Gaussian white noise on Lz(Q). We assess the
quality of recovery of an estimator f by

R(f, 1) =EIf = flFem], (1.2)

E[e] denoting expectation. In most interesting cases K~! does not exist as a
bounded linear operator and the crude estimate fe := K~1(g.) is not feasible
without further regularisation: the estimation problem (1.1) is ill-posed. For a
review of the concept in statistics and numerics see e.g. Nuflbaum and Pereverzev

[27], Whaba [32], Engl et al. [17].

Among the most popular regularization methods, we mention the singular value
decomposition or SVD (Johnstone and Silverman [23], Mair and Ruymgaart [26],
and projection methods (Dicken and Maass [13], Mathé and Perverzev [25]) to-
gether with their nonlinear counterparts (Cavalier and Tsybakov [5], Cavalier
et al. [7], Tsybakov [31], Goldenshluger and Pereverzev [20], Efromovich and
Kolchinskii [16]), including wavelet approaches (Donoho [14], Abramovich and
Silverman [1], Cohen et. al. [10], Johnstone et al. [22], Antoniadis and Bigot
[2]). The main difficulty for the statistician is whether the chosen representa-
tion should be optimally adapted to K (by using the eigenfunctions in the SVD)



or rather to f and g. (by using projection on approximation spaces). Within a
chosen framework, classical smoothing and regularisation techniques can then be
applied, e.g. penalisation (Tychonov regularisation, ridge regression) or filtering
(Pinsker or block constant weights, series truncation).

This paper addresses the problem (1.1) when, in addition, the acting operator
K is not known exactly. In this context, we do not have access to the exact
singular value decomposition of K. Moreover, we want to provide a spatially
adaptive estimator f of f. To circumvent both difficulties, we propose the use
of projection methods based on nonlinear wavelet decompositions. The scientific
interest of this generalization ranges from technical applications over numerical
discretisations to statistical inference, more in Section 2 below.

1.2 Linear inverse problems with error in the operator

The statistical model. We do not have access to K exactly, but rather to
Ks=K +6B. (1.3)

The process Ks is a blurred version of K, polluted by a Gaussian operator white
noise, at level 4 > 0. There are basically two ways of interpreting (1.3):

e The operator K acting on f is unknown and treated as a nuisance parame-
ter. However, preliminary statistical inference about K is possible, with an
accuracy governed by §. Thus (1.3) is viewed as a limiting experiment for
K and can be incorporated to our dataset. More in the examples of Section
2.

e For experimental reasons (numerical errors or systematic deficiency of mea-
suring devices) we do not have access to K exactly, but rather to K. In this
context, the error level § can be linked to the accuracy of supplementary
experiments or training data. See Efromovich and Kolchinskii [16] for an
elaboration of this approach and the examples in Section 2.

Finally, our statistical model is given by the observation of (1.1) together with
the supplementary data (1.3): we observe (g., Ks) with

ge=Kf+eW, Ks=K +6B. (1.4)

Asymptotics are taken as d, € — 0 simultaneously. The interplay between ¢ and
€ is crucial to understand Model (1.4). At first glance, if § < € one expects to
approximately recover Model (1.1). On the other hand, we will see that recovering
f is a completely different issue if ¢ <« §. Even when the error in the signal
dominates, the fact that § # 0 has to be handled carefully.

Gaussian operator white noise. In rigorous probabilistic terms, observable
quantities take the form

(ge, k) := (K f,k)p2(0) + (W, k) Vk € L*(Q)

and

(Ksh, k) := (Kh, k)20) + 6(Bh, k), V (h,k) € L*(D) x L*(Q).
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The mapping k € L?(Q) — (W, k) defines a centred Gaussian linear form, with
covariance

E[(W, k1) (W, ka)] = (k1, ka)r2(g), ki1, k2 € L*(Q).

Likewise, (h, k) € L?(D) x L*(Q) — (Bh, k) defines a centred Gaussian bilinear
form with covariance

E[(Bh, k1){Bha, ks)] = (1, ha) r2(p) k1, k2)12(0)-

In particular, if (h;)i»1 and (k;)iy1 form orthonormal bases of L?(D) and
L?(Q), respectively, the infinite vector ((W, k;));j»1 and the infinite matrix
((Bhi, k;)); j>1 have i.i.d. standard Gaussian entries. Alternatively, the law of
B is centred Gaussian and characterised by its reproducing kernel Hilbert space
HS(L*(D), L?(Q)), the space of Hilbert-Schmidt operators. Yet another descrip-
tion of the operator white noise is given by stochastic integration using a Brow-
nian sheet B on D x Q as kernel:

(Bh, k) = /Q /D h(2)k(y) dB(z, y),

which gives a natural interpretation as white noise perturbation of the operator
kernel.

1.3 Main results

We restrict our attention to selfadjoint operators K on L?(D), denote by d the
dimension of D and loosely speak about a degree ¢ of ill-posedness of the operator
K, see Section 3.2 for details.

As a starting point we consider in Section 4 the linear Galerkin projection method
without taking care of the error in the operator. For functions in the L2-Sobolev
space H*® and suitable approximation spaces, the linear estimator converges with
the minimax rate max{§,e}2*/(2s+2t4+d) The standard nonparametric rate for ill-
posed problems is obtained, with an accuracy dominated by the largest of the
two noise levels € and 4.

The linear Galerkin method performs regularisation and inversion at the same
time. For a spatially adaptive procedure, we have to separate the two steps of
Galerkin inversion and adaptive regularisation or smoothing. On a rough method-
ological level we can adopt one of the following two strategies:

inversion jlinear Smoothing
f¢5,5 ?

Method I: (g, Ks) estimator f&l,e;

smoothing 5\ inversion
-5

Method I:  (g., Ks) (9, Ks) ™% estimator fiL.

In this context, f},i;lear is considered as a preliminary undersmoothed estimator.
We investigate Method I and Method II, with the Galerkin scheme on a high-
dimensional space as inversion procedure and wavelet thresholding as adaptive
smoothing technique. Technical details are a level-dependent thresholding rule in
method I and a noise reduction in the operator by entrywise thresholding of the



wavelet matrix representation in method II. To our knowledge, thresholding for
the operator has not yet been studied in the statistical literature, while advocated
in numerical analysis (a-posteriori compression, see Dahmen et al. [11]), and may
be thus of independent interest.

As it turns out, the inversion step is critical in both methods and we cannot choose
an arbitrarily large approximation space for the inversion, even in method II.
Nevertheless, both methods are provably rate-optimal (up to a log factor in some
cases) over a wide range of sparse nonparametric classes, expressed in terms of
Besov spaces B, , with p < 2. In fact, the rate max{J, 5}23/(23+2t+d) is essentially

extended to the Besov spaces B, , for all p with % < %—I— 2tf|_d. Both methods can
be classified as reasonable general purpose procedures for linear inverse problems
with errors in the operator. In the case of small regularity, though, there exist
certain limitations for both methods, which at a closer look give some hints which

method is preferable depending on the sparsity of the data.

In the next Section 2 related approaches and examples are discussed. After in-
troducing precise model assumptions in Section 3 the construction of the lin-
ear estimator and the two nonlinear estimators f{g and fJI,e together with their
asymptotic properties are presented in Sections 4 to 7. In Section 8 we further dis-
cuss and compare both nonlinear methods. The proofs of the main theorems are
deferred to Sections 9 and 10. The appendix contains short proofs for the linear
method and the lower bound, as well as some essential tools from approximation
theory.

2 Related approaches with error in the operator

Perturbed singular values. In the context of the SVD, Cavalier and Hengart-
ner [6] assume that the singular functions of K are known, but that its singular
values are perturbed by noise. Typical examples include convolution operators.
By an oracle-inequality approach, they show how to reconstruct f efficiently when
0 < €. A similar problem is encountered as blind deconvolution in image analy-
sis, which shares the main ingredients of our model except that the knowledge
about the convolution kernel is reduced to a strong localisation (e.g. Pruessner
and O’Leary [28]).

Physical devices. In many physical situations we are given an integral equation
Kf = g on a closed boundary surface I' of a domain Q@ C R%!, where the
boundary integral operator

Kh(z) = /F Kz, 9)h(v)or(dy)

is of order ¢ > 0, that is K : H~*/?(T') — H*/2(T) is given by a smooth kernel
k(z,y) as a function of z and y off the diagonal, but that is typically singular on
the diagonal. Such kernels arise, for instance, by applying a boundary integral
formulation to second-order elliptic problems, e.g. in potential theory. Typical
examples include Abel-type operators, with k(z,y) = b(z,y)/(z — y)? for some
B > 0, with I' = [0, 1], and b at least Lipschitz-continuous and bounded below (see
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e.g. Dahmen et al. [11], Mathé and Pereverzev [25]). Assuming that k is tractable
only up to some experimental error, due to unknown exact parameter values or
variability in the device itself, we postulate the knowledge of ks = k& + §A, where
A is Gaussian white noise on L?(T' x T'). Assuming moreover that our data g is
perturbed by measurement noise as in (1.1), we recover the framework of (1.4)

with D =Q =T\

Statistical inference. Let us first focus on the widespread structural model of
instrumental variables, e.g. Florens [18], Hall and Horowitz [21]. We observe i.i.d.
(X, Y5, W;) fori =1,...,n, where (X;,Y;) follow a regression model

Y, =9(X;)+ U,

with the exception that E[U; | X;] # 0, but under the additional information given
by the instrumental variables W; that satisfy E[U; | W,] = 0. Denoting by fxw
the joint density of X and W, we define

k(z,z):= /fXW(:c,w)fXW(z,w) dw, Kh(z):= /k(m,z)h(z) dz.
To draw inference on g, we use the identity
Kg(z) =E[E]Y |W]fxw(z, W)].

The data easily allows estimation of the right-hand side and of the kernel function
k. We face exactly an ill-posed inverse problem with errors in the operator as in
model (1.4), except for certain correlations between the two noise sources and
for the fact that the noise is caused by a density estimation problem. Note that
K has a symmetric non-negative kernel and is therefore self-adjoint and non-
negative on L% Under technical conditions, Hall and Horowitz [21] obtain in
their Theorem 4.2 the linear rate of Section 4 when replacing their terms as
follows: e =6 =n"1%t=a,s=08+1/2,d=1.

In other statistical problems random matrices or operators are of key importance
or even the main subject of interest, for instance the linear response function
in functional data analysis (Ramsay and Silverman [29]), the Markov transition
operator in discretely observed diffusion processes (Gobet et al. [19]) or the empir-
ical covariance operator for stochastic processes. A typical instance of the latter
is given by Reif3 [30] who considers the problem of estimating the weight function
f in stochastic delay differential equations of the form

0

Maximum-likelihood theory suggests an estimator fr which is a solution of the
equation Q7 fr = by, where

0 1 T 1 T
QTh(’U) = / —/ Xt-l—uXt-I—'u dt h(u) d’U,, bT(’U) = —/ Xt-l—'u dXt
_r T 0 T 0

Under stationarity the empirical covariance operator Q1 can be shown to approx-
imate the true covariance operator @ like @ + 6Q B and the noise in the data is



coloured in the sense that by = Qf + €Q1/2W with noise levels § = ¢ = T~1/2,
Along a scale of Besov spaces the covariance operator @) is always ill-posed of
degree 2. Decorrelating the noise in the data by applying formally QY2 we
obtain the model (1.4) with K = QY/?, Ks = K + KB and g, = Q/2f + eW.
Here as well as in functional data analysis applications the coloured noise in the
covariance operator makes life generally easier, compare also the good bounds for
the principal component analysis (or SVD) derived by estimates of the Hilbert-

Schmidt norm instead of the tighter operator norm in Cai and Hall [4].

Numerical discretisation. Even if the operator is precisely known in theory,
it must be implemented and hence discretised. For the projection methods this
means usually that integrals over products of the kernel with the basis functions
have to be calculated. The numerical analyst is thus confronted with the same
question of error in the operator under a different angle: up to which accuracy
should the operator be discretised? Even more importantly, by not using all
available information on the operator the objects typically have a sparse data
structure and thus require far less memory capacity and the algorithms are much
faster, see Dahmen et al. [11].

The deterministic nature of the noise in the operator leads to essentially different
estimates because the analysis cannot profit from the very strong concentration
properties of random matrices, cf. Lemma 9.1 below. When the entries of the
Galerkin stiffness matrix are calculated independently and without a systematic
bias, a stochastic error modelisation like in model (1.4) seems appropriate and
yields a large reduction in the theoretical error bounds.

3 Model assumptions

We write a < b when a < ¢b for some constant ¢ > 0, i.e. a = O(b) in the Landau
notation, and a@ ~ b when a < b and b < a simultaneously. The uniformity in ¢
will be obvious from the context.

3.1 Smoothness and sparsity of the signal

The function spaces we consider are defined on domains P C R?, appended
with boundary conditions. We measure the smoothness of f in LP-norm with
1 < p <2, cf Appendix 11.3 for the notion of Besov and Sobolev spaces. For

p = 2 we introduce the nonparametric class of L2-Sobolev balls of regularity
a > 0 and radius M:

WH(M) :={f e H*; ||fllz= < M}.

For 1 < p < 2 we model spatial inhomogeneity and introduce the Besov balls of
regularity (s, p) and radius M:

Vo (M) :={f € Byp; || fllBg, <M}, s>0.

The restriction on (s, p) is given in (3.2) and discussed in detail in Sections 7 and

8.



Finally, we use regular orthogonal wavelet bases () adapted to the domain D
that provide unconditional bases for B, ,. The multi-index A = (7, k) concatenates
the spatial index k£ and the resolutlon level 7 = |Al. Thus, for f € L? we have

F=Y Ata fo=(fia),

72-1|A|=j5

where we use the level § = —1 to incorporate the low frequency part of the
decomposition.

3.2 Smoothness and sparsity of the operator

The ill-posedness comes from the fact that K —! is not L?-continuous. We quantify
this by a smoothing action with #ll-posedness degree ¢ > 0. If D = Q and K is
selfadjoint, this smoothing action becomes an ellipticity property:

Assumption 3.1. D = Q and K 1is selfadjoint. Moreover

<Kf: f> ~ ||f||§{—t/2- (3.1)

This means that K'/2 is well defined and maps H~*/2 to L? isomorphically. By
duality, this implies that K'/2 : L? — H'/? is isomorphic, and this extends to
K : H™%/2 — H'/? jsomorphically.

Remark 3.2. The resiriction that K s selfadjoint can be removed by transferring
Assumption 3.1 from K to K*K, with K* denoting the adjoint of K. Likewise
for Assumptions 3.3 and 3.4 below. The subsequently used Galerkin method then
becomes the usual least squares method, see Cohen et al. [10].

The choice of the loss function (1.2) in assessing the error and the range of
smoothness for f require further mapping properties. Let us first introduce the
following restriction on (s, p), considering ¢ and d as fixed by the problem (more

in Sections 7 and 8):
1

—

S
_|_

< - . 2
p~ 2 2t+d (3.2)

Assumption 3.3. The parameters s > 0 and p > 1 satisfy (3.2). Moreover,
K : B}, — Bgtt isomorphically.

Finally, we state a hypothesis on the sparsity of K expressed in its wavelet dis-
cretisation, specified by parameters (5, p) related to K. Here we allow for values
p < 1 since only approximation properties (and not the Banach space structure)
are needed.

Assumption 3.4. The parameters § > 0, and p > 0 satisfy (3.2). Moreover,
uniformly over all multi-indices \ we have

| K| gote < olAl(3+d/2—d/p)
25 "

for the specified wavelet basis.



Remark 3.5. Assumption 3.4 is implied by Assumption 8.3 forp > 1 withs =35
and p = p due to ||9x|Bs, ~ 9| Al(s+d/2—-d/p)

The case p < 1 expresses high sparsity for K. For instance, if K is diagonal in
the wavelet basis with eigenvalues of order 271}t then Assumption 3.4 holds for
all 5, p > 0.

4 A preliminary linear estimation method

We briefly study the linear Galerkin projection estimator, as a particular case of
the approach in Efromovich and Kolchinskii [16]. For j > 0 we search for f&,e cV;
such that )

(Ksfse,v) = (e, v) Vv €V, (4.1)

where V; = span{#y, |A| < j} is the multiresolution space associated with the
wavelet basis. This makes perfect sense as soon as K restricted to V; is invertible,
but, although this is true for K, the fact that § # 0 requires extra care.

We introduce the Galerkin projection (stiffness matriz) of an operator T onto
V; by setting T; := P;T|y,, where P; is the orthogonal projection onto V;. The
existence of a unique solution to (4.1) is equivalent to the invertibility of K ;.
Choose some 7 > 0 and set

A KilPige, if |IK; lvyor; < 727,

fse = (4.2)

0, otherwise.

Definition 4.1. Let us introduce the rate erponent

2s
t,d) = ————
r(std) 2s+2t+d
and the mapping constants
CK = sup 2_jt||Kj_1||Vj_,Vj, Cx = sup ||Kj_1h||Lz.
320 j>07h€Vj7||h||Hf:1

Proposition 4.2. Let s > 0, M > 0 and a (|s| + 1)-regular multiresolution
analysis (V;) be given. Grant Assumptions 3.1 and 3.3 for K with parameters
(s,p) = (0,2). Then the following asymptotic bound holds:

sup R(f&,e; < max{é,g}%‘(s,t,d),
feWs(M)

as soon as the estimator f(g,e is specified by 27 ~ max{6,e}~%/(2s+2+d) gndr > cx.
Remark 4.3. Assumption 3.1 ensures that cx s finite, see Lemma 11.1 below.

The normalised rate max{cs,e}"(s’t’d) gives the explicit interplay between ¢ and §
and is indeed optimal under some restriction on K, cf. Section 7. Proposition 4.2
is essentially contained in [16] but is proved in Appendix 11.1 as central reference

for the proposed nonlinear methods.



5 Two nonlinear estimation methods

5.1 Nonlinear estimation I

For z > 0 define the level-dependent hard thresholding rule S, for h € L2 by

b Sa(h) = Y () Ly ) 2P 7 (@) ¥ (5.1)
A

where the threshold is defined by 7(z) := kz+/|log z| for & > 0. Our first non-

linear estimator is defined by
fLe = Smaxiser(foe), (5.2)
where f; . is the linear estimator (4.2) specified by the level J = J(6,¢) such that
27 ~ min{e1/¢, 61/ (t+d)y (5.3)

and 27 < ¢7671/(t+9) for some small constant ¢y > 0. Thus, fge is specified by
¢y, T and K.

Remark 5.1.

(a) In practice, the computation of f:s,e and thus fJI . 18 heavy since the data is
inverted on a large space V.

(b) Since we assume K to be selfadjoint, we can reduce the error in the obser-
vation Ks by considering the symmetrisation %(Kg + K3).

(c) Concerning the tuning parameters: the non-asymptotic choice of the resolu-
tion level J should be such that the smallest eigenvalue of the matriz Ks ;
is larger than 6272, i.e. the noise level § multiplied by the matriz dimen-
ston. A proper choice of k could be estimated from the data, but is already
difficult in theory, cf. Abramovich and Silverman [1]. The last tuning pa-
rameter T exists only for theoretical reasons and will not be enforced unless
large deviations occur.

5.2 Nonlinear estimation II

Our second method is conceptually different: we use matrix compression tech-
niques to remove the operator noise by thresholding Ks in a first step and then
apply the Galerkin inversion on the smoothed data g.. From a computational
point of view, this approach is more efficient than the first one since the linear
system we need to solve will be sparse and fast iterative solvers can be used (Dah-
men et al. [11]). Also theoretically, thresholding K enables us to take advantage
of the possible sparsity of K in the wavelet basis. Let

K(; = Sg(Kg,_]), (5.4)



where K5 7 = PyKs|y, is the Galerkin projection and SJJ is a hard-thresholding
rule applied to the entries in the wavelet representation:

Tr=S{(Tr) = Y. Taw LT, 12 T(8)H e U Y, (5.5)
IALINIST

T(6) is defined in Section 5.1 and the Ty y := (T'9x, 9¥}) are the entries of the
matrix of the operator T represented in the wavelet basis.

The estimator §. of the data is obtained by the classical hard-thresholding rule
for noisy signals:

Je = Z <ge:'¢}>\>1{| {ge ¥ )| }Il»[}A (56)

IAl<T

After this preliminary step, we invert the linear system to obtain our second
nonlinear estimator:

(5.7)

S, *

FIT . Ki'ge, |1B5 lvsmvs <7,
0, otherwise.

Here 7 > 0 is a large cut-off value. This time, we take J = J(4,€) such that

7 ~ min {s_l/t, (64/|log 5|)_1/(t+d)} (5.8)

and 27 < ¢y (5\/|10g ) 1/(t4d) for a small constant ¢y > 0. We choose J a little
bit smaller than in the previous method, in order to guarantee with overwhelming
probability the invertibility of

Ks: (Vi llell2) = (Vi el a2,
see Lemma 10.3. Thus f{g is specified by ¢z, 7 and x.

Remark 5.2.

(a) Observe that this time we do not use level-dependent thresholds since we
perform the thresholding before the inversion step such that the noise level
is the same for all coefficients.

(b) The choice of the tuning parameters for this procedure should follow the
same theoretical guidelines as that for method I. Let us stress that in prac-
tice, contrary to the first method fJI ., an efficient numerical scheme to con-

struct fal g, based on an iterative inversion method with thresholding in each
step, could be used, as developed by Cohen et al. [10].

6 Results

In the following we fix sy > 0 and pick a wavelet basis (1)) associated to a
(|s4+] + 1)-regular multiresolution analysis (V). We need to specify a restriction
on the linear approximation error expressed in terms of the regularity in H®:

t+d . (loge ) 1+d/t
a}s(m) mm{logé’l} in the case § > ¢ . (6.1)

10



6.1 Nonlinear estimation I

Theorem 6.1. Let 0 < s < sy, p > 1 satisfy (3.2) and o satisfy (6.1). Grant
for K Assumption 3.1 and Assumption 3.3 in both parameters (s,p) and (0,2).
Then for sufficiently small cy:

27(s,t,d
sup R(fa{e,f) < max{5\/|log 5|,5\/|10g6|} (s:6)
feEVE(M)NWe(M)

?

provided fJI,e is specified by J in (5.3), 7 > cx and & > c(ck, M) > 0. The
constant c(cl, M) is continuous, increasing in its arguments, and ezplicitly com-
putable from Lemmas 9.5 and 9.6 below.

Remark 6.2. Assumption 8.3 with (s,p) = (0,2) ensures that cx is finite by
Lemma 11.1.

For § < €119/t there is no restriction on a and we obtain the optimal rate for the
estimation in the class V; (M) up to logarithmic terms, cf. Section 7. If § > gltdl/t,
we can get rid of the linear restriction (6.1) by Sobolev embeddings (Appendix
11.3) when excluding sparse functions f, that is, simultaneously small values of

p and s:

Corollary 6.3. Let § > e'T%t. In the setting of Theorem 6.1, fJIE attains the
near-optimal rate over the scale V; (M)

R 4s/(2s+2t+d)
sup R(fa{e,f) < max{é\/|log5|,s\/|logs|}
feve(M)

under the additional restriction

s > §-(+a(- gt

+
1o o1y o sd/2+(t+d) (1-28%) (6.2)
p X 2 d s+t+d/2

If s > d+ d?/2t, the additional conditions are automatically fulfilled for all p > 1
obeying (3.2).

6.2 Nonlinear estimation II
Also the second nonlinear method attains the optimal rate of convergence under
certain parameter restrictions. For given s and p we further impose

2§—|—d—2d/13< 2s—d
25+2t+d " 2t+d

with strict inequality for p > 1, (6.3)

where (5, D) are the sparsity coefficients of K from Assumption 3.4. In Corollary
6.5 below, we obtain an upper bound for f(gri in analogy to Theorem 6.1.

We first state a general result which gives separate estimates for the two error
levels of f{g associated with § and e, respectively, and that leads to faster rates
of convergence than in Theorem 6.1 in the case of sparse operator discretisations,
cf. Section 8.
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Theorem 6.4. Let0 < s5,5< s4,p > 1, p > 0 be such that (s, p) satisfy (3.2) and
(5,p) satisfy (3.2) and (6.3). Let o > 0 satisfy (6.1). If K fulfills Assumption 3.3
for both parameters (s,p) and (0,2) and Assumption 3.4 with sparsity parameters
(5,D), then for all M > 0 and sufficiently small ¢z

Sup RS F) S (e\/|lo?)2" s,t,d) (5M)2r sitd)

feVg(M)NW(M)
provided f{i is specified by J in (5.8), 7 > cx and k > 0.

Corollary 6.5. In the setting of Theorem 6.4 the following asymptotic risk bound
holds:

sup (fé'e:f) 5 max {E\/|10g5|,5\/|10g5|}2‘r‘(s,t,d)
FEV(M)NW(M)

under the additional restriction

s> 1(d?+8(2t+d)(d - d/p)) "’ (6.4)

Proof. Set § = s and p = p and use that Assumption 3.3 implies Assumption 3.4.
Then (6.4) implies restriction (6.3) and Theorem 6.4 gives the result. O

Remark 6.6. The restriction (6.4) is automatically satisfied for p = 1 or for
s > 2(1+ 2)1/2 since s and p always satisfy restriction (3.2). Whenever (6.2)
is fulfilled the linear restriction f € W*(M) can be avoided using Sobolev embed-
dings as in Corollary 6.3.

7 Lower bounds

The lower bound in the case § = 0 is classical (Nussbaum and Pereverzev [27]).
The lower bounds will not decrease for increasing noise levels § or €, whence it
suffices to provide lower bounds for the case ¢ = 0. In the remainder of this section
we consider the model given by the observation of Y = K f and Ks = K + éB.

7.1 The dense case p = 2

The case p = 2 is addressed in Efromovich and Kolchinskii [16]. The following
result can be derived from their study:

inf  sup  R(fs, f) > 6¥ (et
f5 (f7K)€Ts,2,t

where the nonparametric class Fso; = Fs2.:(M,C) takes the form F,o; =
We(M) x K¢(C), where K¢(C) is the class of operators satisfying Assumption
3.1 with c¢xg < C for some C' > 0.

Remark 7.1. The same lower bound applies for Fsp: = V(M) x Ki(C) for
s>0andpe€|l, oo] zt zs unwersal over p and matches the upper bound attained
by fh and fH for L 553 L 2t-|—d up to a logarithmic factor.
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7.2 The sparse case p < 2

In the sparse case the logarithmic factor is necessary. In Appendix 11.2 we prove
the following lower bound:

Theorem 7.2. In the setting described above, the following asymptotic lower

bound holds:

nf swp  R(js, £)2 (5v/Toga) () (i) o)

fJ (K,f)efs,p,t

In particular, this sparse lower bound matches the dense rate with exponent
r(s,t,d) for those values of (s, p) that satisfy

d d d d

(§-D(s+t+9)=-52 <= =3+ 55 (7.2)
The equivalence (7.2) corresponds to the critical case of (3.2). For values of p
smaller than the critical value we cannot attain the dense rate. In that case the
upper bound matches the lower bound by embedding into BZ _, ¢ < s, with

T,
o —dr~! =s—dp! and (o, 7) satisfying restriction (3.2) with equality.

8 Discussion

8.1 Concerning nonlinear estimation I

The first nonlinear method produces an estimator that attains optimal rates in
the case of sparse data, as measured by Besov spaces B, , with p € [1,2). In
the case of negligible error in the operator § < ¢ this result complements the
procedures discussed in Cohen et al. [10] by showing that from an asymptotic
viewpoint the order of thresholding and inversion in the estimation procedure
does not matter.

Let us now focus on the error in the operator and assume for simplicity € = 0.
Then the only theoretical drawback is the linear restriction (6.1) in terms of
W*(M) for small values of s and p. Otherwise the bias would deteriorate, for
only the choice 27 ~ §-1/t ayoids this extra assumption. The reason for the
smaller choice (5.3) of J is that the inverse of the Galerkin matrix Ks ; cannot
be controlled for larger values. That we should not choose 27 ~ §~1/ is intuitively
clear because

Ksy=Kj+ 6By

is the sum of a positive-definite operator with smallest eigenvalues of order 27
and a random operator of norm 62742, ¢f. Lemmas 11.1 and 9.1, and Ks 5 is
not likely to be invertible for 27(t+4/2) > § OQur even smaller choice is caused
by the nonlinearity of the noise in the inverse Kg} Looking at the toy example

Ky =277t1d and symmetrising Ks 7 and thus Bj (keeping the same notation),
we know by spectral calculus and Lemma 9.1 (cf. also the Wigner law, e.g. in
Davidson and Szarek [12]) that K ;K is symmetric with a normalised trace

13



that satisfies with overwhelming probability

Jd/2g _
2_Jdtr(K_1K]) ~ #/2 27Jtdm
8,7 974[241§ | orap5 27t 1 ¢

B log(l + 2J(t+d/2)5) _ log(l _ 2J(t-|—d/2)5)
o 9J(t+d/2)+1§
—14 %2J(2t+d)52 i 0(23J(t+d/2)53)‘

Hence, invariance in law of By under orthogonal transformations shows that all
diagonal elements of (K ; — K;")K in the orthonormal basis (%)) are also at

least of order 27(2t¥4)§2 which is only below the error level 27§ of its linearisation
K;l(SB] if 27(t+d)§ < 1. We thus see that our technical result in Lemma 9.5, which
has given rise to the choice (5.3) of J, is due to the inherent nonlinearity of the
inversion Ks j — Kg}

8.2 Concerning nonlinear estimation II

In the case of a known operator K (i.e. when we set § = 0 in (1.4)) the second
nonlinear estimator fa{i is only a combination of signal denoising and operator
compression using wavelet bases. The thresholding of the operator is very natural
and leads to a significant gain in the speed of inversion using iterative solvers.
This idea is used as a-posteriori compression scheme in Dahmen et al. [11], which
discusses numerical issues in detail and provides mathematical results for more
specific integral operators with a finger-like wavelet representation.

Let us turn to the case of significant errors in the operator and set € = 0 for
simplicity. To overcome the problems of inverting Ks ; in a large approximation
space V7, as observed in the first nonlinear method, it is plausible that we should
first reduce the stochastic error and only then apply the inversion procedure.
For the purpose of variance reduction, thresholding the operator seems a natural
choice, as advocated in numerical analysis and successfully applied for variance
reduction in signal detection.

Unfortunately, the method in general will not reduce the error in the operator
so much that we can choose J as large as needed to render additional linear
approximation conditions unnecessary. The reason for this lack of error reduction
is a stability problem. We need that the estimated operator K is an L2 — Ht-
isomorphism with uniformly bounded norm constants for § — 0. This property
is needed in order to guarantee the inversion estimate

I(K5* — K3 Prgllee = K5 (Ks — K1) fallpe S ||(Ks — K1) fallze-
Let us consider for some level J an operator K with entries
(Kb, 92) = 27, (K, ) = 0un27 F2) for ] = [\ = J, A £ 1,

and all other entries equal to zero, where o, = 05, € {—7¢, c} for some n €
(0,1) and ¢ > 0 are chosen in such a way that || (o4,3)|u=rj=7 ]z < 2742 holds,
a typical result when choosing the constant ¢ small and independently oy, = ¢

14



with probability n/(1+ 7n) and oy, = —nc with probability 1/(1 + 7), cf. Bennet
et al. [3]. Then K satisfies Assumptions 3.1 and 3.3 for all (s, 2). Let us suppose
§ = 277(H44/2)¢(1 4 1) /2 and consider as reference the oracle estimate Kg" which
sets to zero all entries of K5 for which the modulus of the corresponding entry
of K is smaller than §. Then Kg" is obtained from Kj by setting all entries with
0. = —7c to zero. Since still approximately 279n/(1 + 7) entries are of order
2-J(t+4/2) and of the same sign, we get with operator norms taken on V;

1K™ — Kooy 2 1(0ux27" 1 cop)lpoe ~ 27977,

which explodes for J — co. This means that even for 27 ~ §~1/(t+4/2) wayelet
thresholding does not reduce the error sufficiently to guarantee a stable inversion
of the Galerkin matrix. A more detailed analysis shows that this is only accom-
plished with the choice (5.8) of J, cf. Lemma 10.3. The fundamental reason for
this property is that component-wise thresholding does not perform a shrinkage
in operator norm such that operators with a large discrepancy between their op-
erator norm and their Hilbert-Schmidt norm, which equals the Euclidean norm
when represented in an orthonormal basis, behave badly under thresholding.

A similar example of an operator, which in the case p = 2 is a diagonal operator
up to a random perturbation for |u| = J(s — d/2) and |A| = J, also shows that
the additional restriction on s in (6.4) is very likely due to the method used and
not the product of a suboptimal proof. Note that this restriction is void for p = 1,
since we have then s > t+d/2 anyway due to the restriction (3.2) on p. When the
estimation methods are judged by their minimax-type upper bounds along the
scale of Besov spaces B, , with p > 1, the second nonlinear estimation method
has a worse behaviour than the first one, at least for all p ~ 2.

Typical operators, however, often do not have a huge number of small entries
of the same size in their wavelet representation, but display rather a finger-like
structure with about J27? entries of considerable size, cf. Dahmen et al. [11].
Hence, we can profit from this highly sparse structure and attain even faster
rates, compare Theorem 6.4. For an illustration let us consider the extreme case
with an operator K diagonalised in the chosen wavelet basis with eigenvalues of
order 27 1M, Then the estimator attains the rate §2%/(25+2t+d) for 3] 5 > 0 and
1/p=1/2+ 5/(2t + d) satisfying (6.3), that is

25+d—d(14-25/(2¢+d)) 25—d 23 2s—d
25+2t+d < 2t+d 254-2t+d < 2t

Hence, we obtain up to logarithmic factors the rate max{$4, 5(23_‘1)/(%)}, which
is barely parametric for not too small s and can be shown to be optimal in a
minimax sense. For such highly sparse operator representations the estimator
fa{i significantly outperforms f:s,e and fJI,e without any special tuning.

8.3 Conclusion
We have proposed two nonlinear estimation methods for inverse problems with

errors in the operator which outperform linear methods when the data are sparse
and spatially inhomogeneous. From an algorithmic point of view the second
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method is preferable. In theory, both methods are provably rate-optimal (up
to a logarithmic factor in some case) over a wide range of smoothness classes.
They show, however, different behaviour when the error in the operator domi-
nates and the degree of smoothness is small. In essence, the first method deals
better with densely populated matrices and signals whereas the second method
is better suited in the case of sparse structures.

The main ideas of the wavelet approach are transferable to other nonlinear
smoothing methods. For instance, when the kernel of the operator is the sub-
ject of observation, e.g. in the case of instrumental variables, adaptive kernel
methods with local bandwidth choice could be used. The analogue of the first
nonlinear method would consist in smoothing the kernel adaptively, discretis-
ing it in a second step and then inverting the linear system. Alternatively, for
method II an undersmoothed kernel estimate for the inversion and an adaptive
kernel smoother after the inversion could be used. We believe that the results and
limitations obtained for the wavelet methods will carry over to this approach. In
particular, estimating the kernel function optimally in L2?- or H%-loss corresponds
to estimating the operator in a loss of Hilbert-Schmidt type. Due to dimension-
ality effects this estimation usually differs strongly from the required operator
norm loss.

9 Proofs for nonlinear estimation I

9.1 Preparations

The following result is a classical, yet intriguing bound for Gaussian random
matrices, see [12, Thm. I1.4].

Lemma 9.1. For unwversal constants Bo, ¢, C >0 and all 8 > Bg, 2 20,5 € N

we have _ . _
P(2772||Bj|lv,ov; > B) < exp(—cf22%9),
P22\ B;|lv,5v, < @) < (Ca)®™,

where P(s) stands for probability. In particular, for ally > 1
: 1 id/2
()| B, v, M7 S 29902,

Lemma 9.2. Under Assumption 3.1 for K we obtain for the Galerkin inversion
fr:= Kj_lPJKf uniformly over J € N, a 2 0 and M > 0 the estimate

sup ||f — frllpe S M2
FeEWe(M)

Proof. See the argument in [10], Section 3.1, especially Eq. (3.11). O

Lemma 9.3. Given the choice of J in (5.3) and the restrictions (3.2), (6.1) for
s20,p>21and a >0, we have

sup ||f - fJHLZ 5 max{5,€}2s/(2s+2t+d)‘
FEVZ(M)NW (M)

16



Proof. For § < 't/ we use the embeddings from Appendix 11.3 which under
restriction (3.2) yields By, C Het/(t+4/2) and the result follows from Lemma 9.2

and 27 ~ gt in (5.3). If § > €'19/t holds, then (6.1) has been built exactly
such that Lemma 9.2 gives the result. O

Lemma 9.4. Grant Assumption 3.3 for (s,p) = (0,2) and let J be chosen ac-
cording to (5.3). Then there is a constant cq > 0 such that

P(Q 5 ;) < exp(—cqpd~#/(2t+2d)o27d) v 506> 0, J € N.

The proof of Lemma 9.4 is obtained along the same lines as Lemma 11.2 in the
Appendix. On the event Q, 5 ; the random operator Kjs s is invertible with

K;b = (1d—8K; By + Y (—6K; By)") K

nz2
by the usual Neumann series argument such that
fre = K5 1Pige = K; \P;K f + €K \PyW.

On 2,57 we thus obtain the decomposition

fse = fr — 6K Byfs + Ky PaW + 4ri) +r{) ) (9.1)
with
r{) =Y (~0K7 By fi, (9.2)
nz2
rff)J = —edK7'B; Y (~0K7'Bs )"K' PW. (9.3)
nz2

Lemma 9.5. Let |A| < J and let p € (0,1 — cx /7). Under Assumption 3.1 the
following decomposition holds:

S

£

K7 Bifr, 92 = 62| f1]| 2 ex &,
K7'PyW, 9y = 2Pty €y,
D ) = 8220 || 5] 2 27D ¢y 5,

1
,2)J: Py) = 6 2ME2T D L 1 on Q5 5,

€,

(
(
r§
r§

where |cal,|éx] < 1, &x and £y are standard Gaussian variables and SW S 5}‘,] are
random variables satisfying

max{P({|(x,] > B} N Qp6,0), PG\ s| > B3 N Qp5,7)} < exp(—cf2279)

for all B > By with some constants By, ¢ > 0.

Proof. By Assumption 3.1, Ky is symmetric and thus 5<K;1.B]f],'ll})‘> =
5<B]f],K;1'll})\>. By definition of B, the last quantity is a centred Gaussian
random variable with variance 52||f]||%2||K;1’ll}}\||%2. Moreover ||K;1’ll})\||%2 <

~
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1¥all: < 221At by the mapping property (11.1), and the first equality follows
from Lemma 9.2.

For the second equality we write e(Kj_lPJW, Pa) = €<W, K;ldz)‘), which is cen-

tred Gaussian with variance 62||K;1’Il})‘||%2, and the foregoing arguments apply.

Concerning the third decomposition, on Q, s 5 the term |<7‘§1}, ¥a)| equals

(6K Bs)*(1d+6K 5  By) ™ f1,9)|
=62|(ByK7'By(1d +6K 7 By) "t fr, K7 4y)|
<& B |5, 1K 7 H v v | (1d +6 K 7 Br) vy oy | 11l 2 1K 7 a2
552||BJ||%/J—>VJ2Jt2|A|t:

where we successively applied the Cauchy-Schwarz inequality, Lemma 11.1, esti-
mate (11.2) on Q,s 7 and Lemma 9.2 together with the same arguments as before
to bound ||[K7'4||z2. Lemma 9.1 yields the result.

Finally, since W and B are independent, we have that, conditional on B, the

(

random variable (7'52], ¥Ya)la,, , is centred Gaussian with conditional variance

8%*||(K7 ' By(Id +6K; ' By) " K71 ) 22 1a,,,
= 8%%||(B;(1d +8K; ' B;) ' K7 ) K7 Al 2 10,4,
< 8%%|(Bs(1d +8K; ' B;) ' K7 ) |13

2|Ale
_]-)VJ2 | |1Qp,d',.]
5 528222(|A|+J)t||33

||%/_]—>VJ

by Lemma 11.1 and estimate (11.2), which is not affected when passing to the ad-
joint, up to an appropriate modification of 2,7 incorporating B}. We conclude
by applying Lemma 9.1 which is also not affected when passing to the adjoint. [

Lemma 9.6. Let [A\| < J and v > 0. For sufficiently large k, depending on
and vy, we have the uniform estimate

P ({[(fse:¥a) — (fr,¥a)| > $2PT (max{s,e})} N Q,55) < max{s,e}”.

Proof. By decomposition (9.1) and Lemma 9.5, the above probability is bounded
by the sum of four terms I + I + III + IV with

I:=P (8]l fsll2er [€x] > 15T (max{é,e})),
IT:=P (e|érén| > T (max{s e})),
11T =P ({8227 f7)| 12 G 7 > T (max{6,e})} N Q7).
IV =P ({627t 4/2E, 7 > LT (max{§,e})} N Q.7

We bound I thanks to the standard estimate P(|¢)| > z) < exp(—z?/2), z > 0,
and thus obtain by straightforward calculation

I < max{4,e}°r < max{4,e}”

with some constant ¢; > 0 and for k 2> ~ycy; likewise, for some c;; > 0 and
K Zyerr
IT < max{68,e}*/°11 < max{4,e}".
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We bound IIT by the large deviation estimate, using the definition (5.3) of ¢ for
all sufficiently large J:

11T < exp ( — e f1]l 22 75/ log(max {8, s})|1/22zjd)

The condition 27 2 min{e_l/t 51/ (t+d) } implies that term I is asymptotically
negligible. The same argument applied to the large deviation estimate of C}‘,]
shows that also term IV is asymptotically negligible. U

Lemma 9.7. Grant Assumption 3.3 for s =0, p = 2 and suppose f € H*. Then
we have for all coefficients with |A\| < J

27| A — 71 < 27T £ e

where f* = (f,¥r) and f3 = (f1,95).

Proof. We proceed using Lemma 11.1, the mapping property K : H~t — L2,
which we derive by duality from Assumption 3.3 with (s,p) = (0,2), and the
following inverse estimate:

2~ A — N < IPrf - filla— SNKA(Prf = £1)lle
S|KPsf — Kfl|lp2 S| f — Prfllm—.

A simple direct estimate from Appendix 11.3 gives the result. U

9.2 Proof of Theorem 6.1

The error R(fale,f) is bounded by a constant times the sum of three terms
I+ 11+ 111, with
I:= ||f_ fJH%?:
IT:=EK [HSI-:,max{&,e}(fJ,e) fJHLZ 1{||K
T = Hf”%ﬂ P (HKJ_,.}HVJ—)VJ > T2Jt)‘

s JHVJ—’VJ 7'2‘”}] ’

We bound the bias term I by Lemma 9.3. The term III is proved to be negli-
gible by exactly the same arguments as for Theorem 4.2, using now Lemma 9.4.
Likewise, by introducing the event Q,s s, using Lemma 9.4 and repeating the
argument of Theorem 4.2, the control of the term II amounts to showing that

17 [Hsn max{5 E}(f5 E) fJH%Z]'Qp,J,J]
- Z f5751{|f5>‘5|>2|>‘|tT(max{5,e})} - fﬁ\)zlﬂp,a,J]
IAI<T ’
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has the right order (fg:e = <f5,5, ¥a)). We split IT into the sum of four terms:

Iy =) E[(f5 - f?)21{|f5>:5|>2|>\|f7'(max{5,e})} NQps,7],
AEIl

ITg = Y E[(f3. - f?)21{|f5>:5|>2|>\|f7'(max{5,e})} NQps,7],
AEIZ

o= () PHI SR < 2MT (max{8,e})} N Qpys,0),

A €I3

IIp =y (f1)?*P{Ifl < 2PT (max{s,€})} N Qps,1),

€T,
where
7, = {1 > 2P T (max{s, e D)}, Tp = {| £
Ty = {|73] > 2N T(max{d,e})}, Zu = {1 3]

21T (max{4,e})},

<
< 2|>‘|t+1T(maX{5,s})}.

Observe the different splitting decision, according to the size of the coeflicients
f* and f3, respectively. By doing so, we avoid an additional control on ||f_]||B;p.

We  first bound the nonlinear approximation  term ﬁD by
E}‘(f_?‘)zl{|f}|<2|>‘|t+1T(maX{J,E})}' Using for |a|] < 7 and arbitrary &6 € R
the general inequality |a| < |a — b] + |b|1{j5|<25}, We further bound IIp by

2> (7 = I+ (P 1 il Timaxfs.e}))) -
A

The sum over the first term equals 2||f — f7||2, and is by Lemma 9.3 of the right

order. The sum over the second term is under restriction (3.2) for p bounded in

order by || f||%. T (max{é,e})?"P, which is classical and follows e.g. from Theorem
»p

7.11in [9]. Thus, ITp has the right order.
Concerning the second approximation term ﬁA, we have
114 < > E[(f3. — f7)1a,,.,]-
|F>>212 =1 T (max{s,e})
By decomposition (9.1) and Lemma 9.5 we obtain on Q,5 s
foe = 17 = 62| £l 12 ex &n + e2PMiey €,
+ 52 2|>\|t ||f]||L2 2J[d+t]) C)\J + 55 2|>\|t 2J[t-|—d/2] 5}\ 7.

Therefore, by Lemma 9.5 we find ]E[(fg:e — )gq
follows that ﬁA is bounded by

< max{6,e}222 I It

p,J,J] ~

I1, < max{é,e}? Z 92IAlt
|£>|>212t=1 T (max{d,e})
< max{6, e}?T (max{6,e}) P 3 2(2-P)IAlt| £3 P

[FA|>21AE-1 T (max{d,e})

S T(max{s,e})> Py 2079 3 7 | AP,

Y [Al=7
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Next,

> ol ST AP S £, < M7 (9.4)
i< A= o
yields
fI: < ’T(max{é,s})z_pZ2j(_s”_d(p/2_1)+t(2_p)) 9i(sp+d(p/2-1)) Z |f>\|p_
i<J [Al=4

Noting that —sp — d(p/2 — 1)+ t(2 — p) = 0 in view of (9.4), we derive

1T, < T(max{6,e})?>® = max{e/|loge|, § /| log 8|} 2/ (2s+2¢+d),

We now turn to the first deviation term ﬁB. By the Cauchy-Schwarz inequality
IIp is less than

N

> B[R - f1Ma,,,17 P ({If2 — £ > 22 T (max{8,e})} N Qp6.9) "

IAl<T

By the same argument as for ﬁA to bound the expectation term, but using now
moments of order 4, we further bound IIg by

max{$,e}? Z 22 p ({|f5>:5 - 1> 2|A|t_1T(maX{5:5})} N Qp,&J)l/z'
IAI<T

We infer from Lemma 9.7 and restriction (6.1) the estimate 2~ fA — f3| <
9~ J(t+a) < max{é,e} for all A such that this difference is asymptotically small
compared to 7 (max{é,e}). Consequently, the triangle inequality and Lemma 9.6
yield for any v > 0 a bound of order

max{6,e}? Z 22t|>‘|max{5,g}7/2 < max{5,€}2+’y/22J(2t+d)‘
IAI<T

For vy = 4 + 2d/t this yields the bound max{é,e}* and IIg proves negligible. We
eventually consider Ilg:

e £ " (MNPPHIAR — 1 2 21T (max{8, €1)} N Qyp6.5),
[A<J

and a straightforward application of Lemma 9.6 shows that this term is also
negligible.

10 Proof for nonlinear estimation II

10.1 Deviation bounds in H‘-norm
We need precise deviation bound of the hard thresholding estimator in H*-loss

and must also deal with increasing signal noise intensity. The following bounds
seem to be new.
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Lemma 10.1. Assume & > 4,/t/d and 27 < et Lets > 0, p> 0 satisfy
restriction (3.2). There exist constants cg, Mo, Ro > 0 such that for all functions
g € B3t! the hard thresholding estimate §. satisfies for all n > 1o and R > Ro:

rs 2t4d
P (T(e) " *9|g. — Prg||me > nmax{||Prg|| psse, | Prg|[tley }75+7¢53)

< g0m | gk /8—d/t

BLt

N 2 K2 _ _
P (||ge — Prg||a: > Rmax{||Psg| gsy+, ||P_]g||p/s+t ) e /16-d/t g,

Proof. Denote by ¢g* and g the wavelet coefficients of g and g.. We have
I 2 2|A A A\ 2
1 — Prgllze ~ Y 2202 110257(0) — 9)°.
Al

The usual decomposition yields a bound of the right-hand side by the sum of four
terms I + I+ II] 4+ IV with

I:=3 2"MMg2 — ) 157 Lo 5 170y
<2l — V1 gas iy

11:=3 222} — )1y 570y Lo <27}
<2 PG - ) g7y

)* 14162 1< T(e)} L{la* 327 (e))

)2 1{g2—g > T ()}

2

) L2 1< T ()} L{1g* <27 ()}
{l*|<2T(€)}

and where the sums in A range through the set {|A| < J}. The approximation
term IV is bounded by

T(e)*™) 2% Y " min{(¢*), (2T (¢))"}

isd |Al=7
ST()* 2 min{ | Paglly,, 277 (CHH/2-00, 2347 (e)r)
<7

which is of order 7 (€)?27(2*+d) with
20224~ min {|| Prg||3,, T (e) 7%, 27 2444) )
».p
Therefore, we obtain
€/|loge| \ 2r(s:t:d)
v < ||PJg||;s+t(HPi) .
PP _]g”B;,-l}—)t

For the second approximation term I we need to introduce the random variables

8_2

. 1
D=7 195 7@ 2= 9 9 L iren

|>\| =j

£ =
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Using Lo L7 (e < |2¢*/T (¢)|P, we obtain for 1/p = 1/2 +s/(2t 4 d) that I is
bounded by

D29 3T s S D 20 min {T(€) 7 Y 9P, 27}
i< [Al=3 7<J IA|=3
< Zszfj min { (e)7P2~ i(s+t+d/2-d/p) p+2]t||PJg||Bs+t7 9 '(2t+d)}‘
i<J

Now observe that, as before, the following inequality holds:

ZE mln{ )P~ I(s+t+d/2—d/p) P+2Jt||PJg||
<7

e ) .(2t-|—d)} ~ g2071(2t+d) ,

2j1 (2S-|—2t-|—d) ( )—2 2](2S+2t+d)}

~ mln {HPJgHBs-I-f

By definition, each ¢; is the arithmetic mean of the squares of independent nor-
malized Gaussian random variables. By independence and standard Gaussian
estimates, for any sequence (a;) with ||(a;)||p = 1, Markov’s inequality yields for
any n > 0:

P(Y 0 > n) < exp(—n/3) [ Elexp(as;/3)] < exp(—n/3).

J

Consequently, we obtain P(I > ne?27 (2*+4)) L exp(—c;7) with a constant ¢; > 0.
Substituting for 71, we conclude with another constant c; > 0 that

P (I > nllPrglls, (TE)IPgl2) " ") < exp (= ecanlloge]).

Considering the deviation terms IJ and II], we observe
P({IT = 0} N {I1T = 0}) >P(lg5 — 92| < 1T(e) for all || < J)
2 2Jd
> (1~ exp(~ 2 log | /8))

Using 27¢ < =4 we derive P(IT + IIT > 0) < 1 - (1 — 5”2/8)2M which is of
order £%'/8=4/t Therefore we obtain for some constants ¢z > 0 and 7; > 0 and
forall n > n:

P (lIge — Prgllze > nmax{||Prgl|gss+, ||PJg||Bs+t}25+2f+dT( g)rietd))
p(2t+d
<SP (I > 3P| Prg| 82T () () + P(I1 + 11T > 0)
2p(,2i+d)
+P(IV > || Prg|| 25T () (+44)
44
< g%m 4 _I_gl-:Z/s—d/t‘

On the other hand, the deviation terms are well bounded in probability. While
obviously III < ||PJg||?3s+t holds by the Cauchy-Schwarz inequality, the term
».p

E[I]] is less than

> 2?REE[(g2 - g2 P E(lg2 - oM > T(e)/2)2.

IAl<T
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This is bounded in order by 27(2+d)¢2 exp(k2|loge|/8)!/2 ~ &5 /16-d/t due to
27 < e=1/%, In the same way we find that Var[I]] is less than

> 2PE(g - )T R(1g2 - 9 > T(e)/2) 7 S e 1,
AT

By Chebyshev’s inequality, we infer P(I] > R) < g’ /16=d/tRp=2 for R > 0. Since
the above estimates of the approximation terms yield superoptimal deviation
bounds, we obtain altogether for any R > 2:

. 2 2 /16 _
P (||g5 — Prgl|lg: > RmaX{HPJgHB;;rt, ||P_]g||1;/;;_t}) <eg”r /16-d/t p—4

10.2 Estimation in operator norm

Proposition 10.2. Suppose £? > 32 max{d/t, 1 + t(2t + d)/(4t(t + d))}. Grant
Assumption 8.3 with s 2 0, p > 1 and Assumption 8.4 with § > 0,p > 0,
satisfying in addition restriction (6.3) with strict inequality for p > 1. We have

1K = Kl g, ) e] S (63/Tlog ) 5.

Proof. The wavelet characterisation of Besov spaces (cf. Appendix 11.3) together

with Hélder’s inequality for p=! 4+ ¢! = 1 yields

1K = K1l (v ollsg,)—H

~ sup |[(Ks—K)( ) 27#erd2mdlp)g 0 )| e
l(aw)llw=1 i<t

< | (27 WCH2=R) (R — K )b are)

il
< [ r-dlp a2 aip ) Gaord)y |
R |Sr<pj 2—|u|(§+d/2—d/ﬁ)(2t-|—d)/(2§-|—2t-|—d) || (K6 _ K)'lpuHHt
HIX

The [9-norm of the powers of 2 evaluates to

(27~ (o= /2 +(51d/2-dfp) 2t 25 t2etd)y. i)

which is of order one whenever restriction (6.3) is fulfilled with strict inequality
for ¢ < oo.

By construction, Kgq[zu is the hard thresholding estimator for K1, given the
observation of Ks1,, which is K1, corrupted by white noise of level §. Therefore,
under Assumption 3.4, Lemma 10.1 applied to K1, and § gives for any n > no:

P (|(Ks — K)$ullme > nl| K| Card/ Gttty gyrised)

3+t
B?,T’

< 5con_|_552/8—d/t‘
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By estimating the probability of the supremum by the sum over the probabilities,
we obtain with a constant ¢; > 0 for all 5 > 79:

P (I1Ks ~ Kalliolg e > 1T (0) )

<Y P(I(Ks — K)ullae > ex2HIDaiisay (g )

<
< 2]d(5con + 51{2/8—d/t)
< §eon—d/(t+d) + 5:-:2/8—d(2t-|—d)/(t(t-|—d))‘

For a sufficiently large 7; > 70, depending only on cg, d and ¢, with vy := k2/8 —
d(2t+ d)/(t(t+ d)) > 0, we thus obtain:

g (HK& — KJH(VJyH'HB;,p)—’Ht P 7]1T(5)T(§,t,d)) 5 5.
By the above bound on the operator norm and Hélder’s inequality for ¢ := v/2 >

2 and p~! + ¢7! = 1 together with the second estimate in Lemma 10.1, we find
for some constant Rg > 0:

E [|1Ks = Killfv, jjiisg, )]
< mT (88 | K [||Ks - KJH?&J,H'IIB;,},)aHt]1/p57/q
< T(5)rEt 4 ( /0 " BT B(|Ks — Kol g, e > B) 46
<T(6 )2'r (5,t,d) + (Ro—l- /oo R2p—12Jd51-:2/16—d/tR—4 dR)l/p52
< T(6)2 4D 4 max{ss 13;16 2d/t)/p 1} 62
which is of order 7(8)?"(%49) by assumption on k. O
Lemma 10.3. Grant Assumption 3.3 and assume k? > 4d/(t + d). Then

P (1K ~ Koz > eoles™ +m) 57,

where ¢g > 0 s a constant independent of J, ¢y from (5.8), 6 andn, but depending
on K.

Proof. For |ul,|A| € J we have for the entries in the wavelet representation
[(Bs)ur = Kunl = [ KunL(is5),51<76)) + 1B 50>7 (01
A simple rough estimate yields
(K8)ur — Kual < 2T(8) + | Kl 1g (55K, 21370} + 1 Bunl-

We now bound the operator norm by the corresponding Hilbert-Schmidt norm
and apply the estimate 212K, 5| < ||K¢”||B;-|}-)t < 1 derived from Assumption
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3.3 to obtain

A A 2
1Ks — Killtv, o)l o)1 < > 2P((Ks)up — Kpp)

uls A €T
<OTEDTEY + #{3](Ks — K)unl > T(O)} + 827 Y B2,
uls A €T
_ 22J(t+d)T(5)2 + #{|BM,>\| > K |log 5|} + 5222Jt Z Bz,)\
uels (AT

where the cardinality is taken for multi-indices (A, ) such that |A|, |u| < J. The

first term is bounded by czj(t+d). The second term is a Binomial random variable

with expectation 2274 P(|B, | > k|log§|}/2) < §-24/(t+d)++*/2 Ap exponential
moment bound for the Binomial distribution yields

P (#{|Bual > £y/og 8]} > 1) < exp(—n(—2d/(t + d) + £*/2)log d]),

which evaluates to §n(<*/2-2d/(t+d))

For the last term, we use a rough deviation bound for the x2-square distribution,
namely

P27 N B2, >n) <exp(—7/2)
Jul, X<

to infer from 27(t+4) < T(§) that

P (5222Jt Z B2,>‘ > ,r’) < exp ( _ 2—2J(t+d)—15—27’) < e—c0n|log6| — gom
|l |AIT

holds with a constant ¢; > 0. The choice cg = min{c;, k?/2 — 2d/(t + d)} gives
the result. O

10.3 Proof of Theorem 6.4
For p € (0, 1) we introduce the event
i . 2 —-1—-1
Qp,(S,J — {HK& - KJ||(VJ,||0||L2)—>Hf < PHKJ ||(VJ,||°||Ht)—>L2}' (10'1)
The Neumann series representation implies that on Q,I)I(s 7 the random operator

Ks: (Va,[lollz2) = (Va, llsllzze)

is invertible with norm ||K;1|| < (1—p) Y| K || 7L For the choice p € (0,1—c)/T)
this bound is smaller than the cut-off value 7.

On Q,I),IJ,J and assuming p € (0,1 — ¢%/7), we bound ||f{£ — fllz2 by
15 (e - Pg)la + (K5 — K3 Prgllze + 1~ flze.
The first two stochastic errors are further bounded by
K5 valiolgge)—22 (13 = Prgllae + |1 Ks — Kslls —m:ll f1llBs,)-
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Because of ||K6_1||(VJ7||.||Ht)_>L2 < 1, the assertion on Q,{,{;,J follows from the
classical moment estimate for hard thresholding in analogy to Lemma 10.1, from
the operator norm estimate of Proposition 10.2 and the Galerkin estimate in
Lemma 9.2.

On the complement (Q,I)I(s 7)¢ the risk of flg, conditional on B, is uniformly
bounded thanks to the cut-off rule in the construction. Consequently, Theorem
6.4 follows from

P ((255.0)°) < 6%

By Lemma 10.3, this last bound is fulfilled for a sufficiently small choice of cy,
depending on p and thus on c% and 7.

11 Appendix

11.1 Proofs for the linear estimator
Preparations

Lemma 11.1. Under Assumption 3.3 with (s,p) = (0,2) we have
1K vy S 278
Proof. Under Assumption 3.3 the following mapping property is proved in [10]:
IK; Az < lblme for he Vs (11.)

Therefore ||KJ_1||%/J_>V] S sUPhev;, jafl =1 [1BlI7e S 2%t follows from an inverse
estimate (see Appendix 11.3). O

Let p € (0,1). On the event Q,5; := {5||Kj_13j||vj_,vj < p}, the random oper-
ator (Id —I—JKJ-_lBj)_lis well defined by the usual Neumann series argument and
satisfies

1(1d +6 K B;) |y, 5v; 1 (1 - 8||K; " Bjllv;»v;) 'a

<
< (1-p7h

08,3

pdd (11.2)

Lemma 11.2. Grant Assumption 3.8 with (s,p) = (0,2). Let n := 1 — (2t +
d)/(2s + 2t +d) > 0 and let j be specified as in Proposition 4.2. There is a
constant cq > 0 such that for all sufficiently small § > 0

P(25,5;) < exp(—capd "2%), p>0,j €N.
Proof. By definition of cx and Lemma 11.1 the inclusion

poi C {||B._7'||Vj—>.Vj > pé et 279t} |
{2799/2|| B} ||v, v, > pegts—t2-i(2t+d)/2)

is valid. Using §-1277(2¢4+d)/2 > §=7 and Lemma 9.1 we obtain the result. O
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Proof of Proposition 4.2

By definition, R(ﬁ;,e, f) is bounded by a constant times the sum of three terms
I+ 11+ 1I1,with

I=|f - fillf2,
— “1p, _ ¢ 2
IT := E[[|(K; ; Pjge fJ)]‘{HKE;HVJ._,Vj<T2Jt}||L2]’
1 = || fll7= P K5 v »v; > 727)

By Lemma 9.2 the bias term [ satisfies
17 = Fil3e 2799 ~ max{s, ey o/ 2s+265
and has the right order. Concerning the third term I1I, we have

P(|| K5 Iv;ov; > 727) S PH{|IK; vy > 72710 Qp65) + P(255.5)-

The second term of the right-hand side is asymptotically negligible by Lemma
11.2. For the first term we use that on Q, s ; the operator K;; = K;(Id —|—5Kj_13)

is invertible with ||K; J|lv;ov; < (1 — p)_1||KJ-_1||Vj_,V].. The restriction cx < 7
ensures that

P({lIK5; lv;v; > 721N Qp55) = 0,

provided p € (0,1 — cx/7), a choice we shall make from now on. We turn to the
main term II. First, writing P;g. = P;K f + e P;W, we have

E[| K5, Pige = fillte Ly, v, <roiy105,54]
S 25|\ PK f13 + € B PW 1120 + 11 fill22) PR 5.5),

where we used that the event Qf;&j is independent of PjW since B and W are
independent. Using | P;K f||3. + ||f;]|2. < M? and ]E[||PJW||%2] < 274 we see

~

by Lemma 11.2 that the above term is asymptotically negligible. Therefore, we
are left with proving that ]E[HK&_;Png — fill321q,, ;] has the right order. By the
same Neumann series argument as in (11.2), we readily obtain on Q, ;s:

K;}Pige — fi = ) (=6K;'B;)*f; +e(ld+8K; ' B)) ' K;'B;W.  (11.3)

n>1
As for the second term in the right-hand side of (11.3), we have

E[e?||(Id+8K; " B;) " K PiW | J21q,,,]
< E[|(1d+6K ;1 B) M, vy La,, I K Y, Sy, BB WL

5 622jt2dj ~ max{5,e}4s/(2s+2t+d),
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where we used again the independence of Q, 5 ; and PjW, Lemma 11.1 and (11.2).
The first term in the right-hand side of (11.3) is treated by

E [H Z(_‘SKJ'_lBJ')an'HiZ19p,a,j]

n>1
= E[H‘SKJ'_lBj(Id —I_(SKj_lBj)_lfjH%ZlQp,J,j]
< ONK ;1T ov; BB v, 11 (0d +8K 1 Bj) 7MY, v 1a,,,]
< OIIEHT, v, BBl v;)

5 5222jt2dj < max{5,e}4s/(2s+2t+d),

where we successively used Lemma 9.2, estimate (11.2) and Lemmas 11.1, 9.1.

11.2 Proof of Theorem 7.2

To avoid singularity of the underlying probability measures we only consider the
subclass Fo of parameters (K, f) such that Kf = yo for some fixed yo € L?,
ie. Fo = {f € L?| K 'yo, K € K}, where X = K;(C) abbreviates the class of
operators under consideration. We shall henceforth keep yg fixed and refer to the
parameter (K, f) equivalently just by K.

The likelihood A(e) of PX* under the law PX corresponding to the parameters
K* i=1,2,is

A(K? KY) = exp(6HK? — KY, B)gs — 3672| K — K?|45)

in terms of the scalar product and norm of the Hilbert space H.S(L?) of Hilbert-
Schmidt operators on L? and with a Gaussian white noise operator B. In
particular, the Kullback-Leibler divergence between the two measures equals
167%||K' — K?||%4 and the two models remain contiguous for § — 0 as long
as the Hilbert-Schmidt norm of the difference remains of order §.

Let us fix the parameter fo = ¥_1 0 = 1 and the operator K° which, in a wavelet
basis (¥)a, has diagonal form K° = diag(2~(P+1%), Then K© is ill-posed of
degree t and trivially obeys all the mapping properties imposed for the upper
bound. Henceforth, yo := K°fy = 1 remains fixed.

For any k = 0,...,27% — 1 introduce the symmetric perturbation H® = (H5 )

with vanishing coefficients except for H(EO 0),(Jk) = 1 and H(Ejk) (0,0) =
K¢ = K°4+yHe® for somey > 0. By setting vy := §J we enforce | K°— K°||gs = 6J.

For f, := (K°)"'yo, we obtain
fo—fo=((K)™" = (K9 Dyo = y(K*)'H® fo = v(K°) '4ps0.

Now observe that H® trivially satisfies the conditions

CH DI < 2 oeres SIEE |2 me < 27,

J d_d
%HHEHB;,})_,B;,-I;)t < 2 (t+s+2 P).

1
2
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a_d
This implies that for 72J(t+5+5_5) sufficiently small K° inherits the mapping
properties from K°. Hence
1fe = follzz ~ ¥l[%sollae = v27,
J(t+s+2-2
Ife = follsg, ~ YI¥sollpsse = v2 ¢+*+2 )
follows. In order to apply the classical lower bound proof in the sparse case [24,
Thm. 2.5.3] and thus to obtain the logarithmic correction, we nevertheless have
to show that f, — fo is well localized. Using the fact that ((He)z)A” = 1 holds

for coordinates A = p = (0,0) and A = p = (J, k), but vanishes elsewhere, we
infer from the Neumann series representation

fo=fo= Y (—vHY o= 37" fo = 3V sk = jvz(vfo — Pin).
m=1 n=1 n=0

Consequently, the asymptotics for v — 0 are governed by the term —vy%;x, which

d_d
is well localized. The choice 27 < v~ /(+*F2-%) engures that | fel| B, remains

bounded and we conclude by usual arguments, cf. Chapter 2 in [24] or the lower

bound in [30].

11.3 Some tools from approximation theory

The material gathered here is classical, see e.g. [8]. An equivalent norming of the
Besov space By , for all s € R and p > 0 is given in terms of weighted wavelet
coeflicients, if the wavelet basis is (||s|] + 1)-regular:

O Ll /
||f||B;;';,p ~ (Z 2J(s+2_p)l’ Z|<f’ ¢jk>|p)1 P'
k

i=—1

Here, k& € Z% is the location parameter and j the resolution level of the wavelet.
For p < 1 the Besov spaces are only quasi-Banach spaces, but still coincide with
the corresponding nonlinear approximation spaces, see Section 30 in [8]. If s is
not an integer or if p = 2, the space B, , equals the LP-Sobolev space W*?, which
for p =2 is denoted by H?. The Sobolev embedding generalizes to

s s’ / d / d
By, C By for s > s and s — - > s — o
Direct and inverse estimates are the main tools in approximation theory. In its

simplest form, a direct inequality reads
inf —h; < 97s7 s

and the inverse estimate states that for all h; € V;

il S 27|kl e

~

The direct and inverse estimate we use in the paper are less standard since they
involve the Sobolev space of negative order H~%/2
that for all g; € V;

. The inverse estimate states

lgillze < 2972 1g;ll gr-ero,
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see [10]. The direct estimate states that

Jnf (|1 = hyllgz + 2972 f = hillg=esa) S 271 |z
i€Vj
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