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SPECTRAL DENSITY ESTIMATION VIA NONLINEAR WAVELET 
METHODS FOR STATIONARY NON-GAUSSIAN TIME SERIES 

M. H. Neumann 
Institute of Applied Analysis and 
Stochastics 
Mohrenstr. 39 
Berlin, 10117, Germany 

ABSTRACT. In the present paper we consider nonlinear wavelet estimators of the 
spectral density f of a zero mean stochastic process, which is stationary in the 
wide sense. It is known in the case of Gaussian regression that these estimators 
outperform traditional linear methods if the degree of smoothness ofthe regression 
function varies considerably over the interval of interest. Such methods are based 
on a nonlinear treatment of estimators of coefficients that arise from a Fourier series 
expansion according to a wavelet basis. 
The main goal of this paper is to prepare the ground for the application of these 
methods to spectral density estimation, which is done by showing the asymptotic 
normality of certain empirical coefficients based on the tapered periodogram. For 
that we derive upper estimates for their cumulants, which yield the asymptotic 
normality in terms of probabilities of large deviations. Using these results we can 
conclude the risk equivalence to the Gaussian case for monotone estimators based 
on such empirical coefficients. Hence, we obtain estimators off, which keep all inte-
resting properties like high spatial adaptivity that are already known from wavelet 
estimators in the case of Gaussian regression. 
It turns out that optimally tuned versions of these estimators attain the optimal 
uniform rate of convergence of their L2-risk in a wide variety of Besov smoothness 
classes. 
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1. INTRODUCTION AND MAIN RESULTS 

In the present paper we consider the problem of estimating a spectral density of a real, 
zero mean stochastic process, which is stationary in the wide sense. An important 
goal in spectral analysis is the recognition of peaks of the spectral density, which are 
an indication for periodicities of the underlying stochastic process. 
Whereas globally homogeneous smoothing methods (e.g. kernel estimators with global 
bandwidth, spline estimators) are an appropriate tool for estimating functions with a 
homogeneous degree of smoothness, one should prefer methods with a locally varying 
degree of smoothing in estimating objects that are quite smooth on one part of the 
domain but much less regular on another part. 
Such a problem was recently investigated by Donoho and Johnstone (1992), who 
derived minimax results in Besov classes B;,q in the Gaussian white noise model 

dXt = f(t) dt + EdWt, t E [O, 1]. 

They rediscovered the phenomenon, originally detected by Nemirovskii, Tsybakov 
and Polyak (1985) and Nemirovskii (1985) for Sobolev smoothness classes, that linear 
estimators are unable to attain the optimal uniform convergence rate in balls of Besov 
spaces B;,q with p < 2. Moreover, they showed that thresholded wavelet estimators 
attain the minimax bound up to a small constant. 
These estimators are based on an orthonormal system { ¢z,kheJ? U{ ;fii,kh~l,kEI; of basis 
functions, which are essentially generated by dilations and translat~ons of two sEecial 
functions efJ and 7/J. Having the Fourier series expansion f = E akefil,k + E CY.j,k'l/;j,k in 
mind, one determines first empirical versions ak and ai,k of the Fourier coefficients. 
These empirical coefficients are again normally distributed with homogeneous vari-
ance t:2 • Then one applies level-wise nonlinear shrinkage rules bj to these coefficients, 
which finally yields an estimator 

f = 'E ak¢z,k + 'E Sj(aj,k);fij,k 

of the regression function f. 
We intend to transfer this locally adaptive estimation technique to spectral density 
estimation. For that we define a similar wavelet basis, here for L2 (II), the collection 
of 2?r-periodic functions of L2(II), II = [-7r, 7r]. On the basis of a, possibly tapered, 
periodogram we obtain empirical versions of the Fourier coefficients of f, which are 
then treated with the same shrinkage methods as known from Donoho and Johnstone 
(1992) in the case of Gaussian regression. 
Our aim is to show that the resulting estimator of the spectral density behaves as 
good as a corresponding estimator in the Gaussian white noise model. For that we 
derive uniform estimates of the cumulants of the empirical wavelet coefficients, which 
are the basis for showing the equivalence to the Gaussian case in terms of probabilities 
of large deviations. These strong results allow us to conclude the risk equivalence 
between all monotone estimators based on the empirical coefficients and the same 
estimators with Gaussian random variables inserted. Therefore, thresholded wavelet 
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estimators keep all their appealing properties known from the Gaussian case. Finally, 
we discuss briefly a simple possibility to adapt the smoothing parameters involved in 
the procedure. It is shown that optimally thresholded wavelet estimators attain the 
minimax rate of convergence in a large scale of Besov smoothness classes. 
We remark that Gao (1993) obtained related results for the case of a Gaussian time 
series. He found estimates for the Li-risk of thresholded wavelet estimators not 
via an appropriate asymptotic normal approximation, but he regarded the empirical 
coefficients as quadratic forms of independent Gaussian random variables and used 
estimates for tail probabilities of them. 

2. BASIC TOOLS 

We assume that we observe a stretch {X1 , ... , XT} of a real zero mean process 
{ Xth=i, ... ,oo, which is stationary in the wide sense. We intend to estimate the spectral 
density 

1 00 1 1 00 

f(w) = - L Ckexp(iwk) = -co + - L ck cos( wk) (2.1) 
27r k=-oo 27r 7r k=l 

on the interval II= [-7r, ?r], where Ck= cov(Xt, Xt+k)· 
The basis for our estimates will be a tapered periodogram 

h(w) = 1 
(T) It htXteitwl

2 

= 
1 

(T) t h,h,X,X, cos(w(t - s)), (2.2) 
27r H2 t=1 27r H2 s,t=1 

where H~T) = Ei'=i hf, ht= h(t/T). (We put h(w) = 0 if H~T) = 0.) 
For the data taper we assume 

(Al) H = J~ h2(x)dx > 0, his of bounded variation. 

In particular, we obtain then H~T) ~ TH. Choosing h = 1 we obtain in (2.2) the 
ordinary (non tapered) periodogram 1¥ as a special case. For the sake of greater 
generality we consider throughout the paper the tapered one, keeping in mind that 
this includes the nontapered analog as a special case. 
It is well-known that IT( w) is asymptotically unbiased for f ( w) under quite general 
assumptions, however in many instances it is not a consistent estimator of f(w). On 
the other hand, for w1 -=/:- w2 , h(w1 ) and h(w2 ) are asymptotically uncorrelated. 
Therefore, there is some hope that one can obtain via smoothing of the periodogram 
estimators that are consistent under certain smoothness conditions on f. 
Since the object of interest is 27r-periodic, we do not need any boundary correction 
of the wavelet basis. We start with two special compactly supported functions efJ and 
'l/; with the property that the collection 

{ ¢i,k} kEZ LJ { ~j,k} ">I kEZ J_ I 

with '¢1,k(x) = 2112¢(21x -k) and -if;;,k(x) = 2il2'lj;(2ix-k) forms an orthonormal basis 
of L2 (1R ). It is easy to see that 

{ cPl,kheii LJ { 'l/;;,k} j~l,kEI; 
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with I; = {1, ... , 2i}, 

<Pi,k(x) = L:(27rt112
Ji,k ((27rt1(x +n)) 

nEZ 

and 
'l/J;,k(x) = L:(27rr112;pj,k ((27rt1(x + n)) 

nEZ 

is an orthonormal basis of L2(II), the L2-space of 27r-periodic functions on II. 
For f E L2 (II) we have the representation 

f = E ak</Jl,k + EE a;,k'l/;j,k, 
kEli j?_l kEl; 

where ak = J f(t)<Pl,k(t) dt and ai,k = J f(t)'lf;;,k(t) dt are the usual Fourier coeffici-
ents, which are also called wavelet coefficients. Gao (1993) used another version of 
periodized wavelet functions. 
Now we are in position to define empirical versions of these coefficients, which will be 
the starting point for our estimation procedures. First, we define an integral version 
as 

a;,k = j 'l/J;,k(w)h(w) dw. (2.3) 

( iik is defined analogously.) 
It is also possible to define discrete versions, e.g. 

(2.4) 

and 

a;,k (2.5) 

where Wi = 27ri/T - 7r, i = 1, ... 'T. (ak and ak are defined in the same way.) 
One advantage of (2.4) and (2.5) in the nontapered case h = 1 is undoubtly that, 
because of Ef=1 exp{itw;} = 0 for w; = 27rj/T - 7r, 0 < j < T, the equation 

holds, which means that the discrete version is robust against a deviation from our 
assumption E Xt = 0, since any nonzero mean of the Xt's is cancelled out. Moreover, 
it allows the computationally advantageous Fast Fourier Transform, see e.g. Brillinger 
(1975). On the other hand, we feel that ii;,k causes perhaps less bias problems. In 
the following we consider first estimators based on a;,k, but we show in Section 6 that 
the cumulants of a;,k and a;,k are very close to those of a;,k, which means that the 
corresponding estimators have the same asymptotic behavior. 
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3. 0UMULANTS OF THE EMPIRICAL WAVELET COEFFICIENTS 

In this section we develop approximations to the mean and the variance of ii;,k, and 
we derive upper estimates for the higher order cumulants. It will turn out" that the 
empirical wavelet coefficients are asymptotically normal if their variances are not too 
small. Without this restriction we obtain that their convolution with a Gaussian 
variable yields an asymptotically Gaussian random variable. In all of these cases 
it will turn out that the wavelet estimators considered in the present paper do not 
behave worse than in an idealized situation, where the empirical wavelet coefficients 
are Gaussian. 
In the sequel we impose the following assumptions. 

(A2) TV(!) ~ C1 
(A3) SUP1<t1<00 { E;, ... ,tk=l lcum(Xtp ... 'Xtk)I} ~ c;(k!)l+-Y for all k = 2, 3, ... ' 

where 1 ~ 0. 

Remark 1. If {Xt} is a-mixing with coefficients a(s, t) < K exp(-bjs - ti) and 
EIXtlk ~ Ck(k!)'Y for all k, then 

sup { f jcum(Xtp ... , Xtk)I} ~ c;(k!)3+-r for all k = 2, 3, ... 
l<t1 <oo t2,··· ,tk=l 

Proposition 3.1. Assume {Al}, {A2} and {A3). Then 

(i) 

{ii} 

{iii} 

Eii;,k = a;,k + 0(2il2T-1 logT). 

var(ii;,k) = 27r (HiT) /(H~T))2) k 'l/J;,k(a) ['lf;;,k(a) + 'l/J;,k(-a)] IJ(a)l 2 da 

+ o(T-1
) + O(T-12-i) 

holds uniformly over k E I; and 2i ~ CT1-a.. 

T-1 

Let a;,k(l) = fu 'l/J;,k(t) cos(lt) dt and M = l: ja;,k(l)j. Then 
l=-(T-1) 

lcum,.(Ci;,k)I S var(Ci;,k)(n - 1)! ( 411"11.P;,klloollflloo sup~~~~)l2}) n-

2 

+ 2n-:~r ((2n)!)1+~ (sup{l7~~)12}) n _ sup {la;,k(l)l2}T M"- 2 . 
H2 l-0,±1, ... ,±T-1 

Lemma 3.1. It holds 
(i) a;,k( l) = 0 ( (2il2 l-1 ) /\ 2-i/2 ) J 

(ii) M = 0 ( 2il2 log T). 
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4. ASYMPTOTIC NORMALITY OF THE EMPIRICAL WAVELET COEFFICIENTS 

In this section we intend to state the asymptotic normality of the empirical coefficients 
ai,k· It is known (cf. Theorems 5.2.7 in Brillinger (1975)) that a value lr(w) of the 
periodogram is asymptotically chi-squared distributed. Hence, we can only expect 
asymptotic normality of iij,k, if a certain summation effect works. Therefore, we 
restrict our considerations in this section to coefficients with an index (j, k) from a 
set 

:J = .:J(T) = {(j,k) \ 2i:::; CT1-a, k E Ii}, 

where C < oo and a > 0 are arbitrary, but fixed constants. Let ah denote the 
variance of iij,k. 
By (ii) of Proposition 3.1 we obtain that 

Let, for some fixed 0 0 > 0, 

sup{aj,k} 
j,k 

.:J0 == .:J0 (T) == {(j,k) E .:Jlaj,k ~ CoT- 112
}. 

( 4.1) 

On the basis of the estimates given in Proposition 3.1 we can derive by Lemma 1 in 
Rudzkis, Saulis and Statulevicius (1978) the following assertion. 

Theorem 4.1. Assume {At) through {A3). Then 

P (±(a· k - a· k)/ a· k > x) 31 31 31 - ---+ 1 
1-<I>(x) 

holds uniformly in (j, k) E .:J0 , -oo < x:::; 11..,, where 11.., == 0(111/(3+4-Y)) and 
11 = T 1l22-il2(log Tt1 • 

Note that we have those empirical coefficients excluded from the assertion of Theo-
rem 4.1, which have a standard deviation aj,k below the level C0T- 1l 2 . Since our 
cumulant estimates in (iii) of Proposition 3.1 are essentially all of the same order of 
magnitude, it is not possible to state the large deviation property by results from 
Rudzkis, Saulis and Statulevicius (1978) for empirical coefficients with a too small 
variance. 
However, we can repair this defect. Let 

aT == max{sup{a;
1
k}, C0T- 1l 2

}. 

and let B;,k rv N(O, a~ - aJ,k) be independent of ai
1
k· Then the new random variable 

aj,k + Bj
1
k has the same mean and the same n-th order cumulants for n ~ 3 as ii;

1
k, 

whereas its variance is equal to a~ x T-1 . Therefore, we can derive in complete 
analogy to Theorem 4.1 the following result. 

Theorem 4.2. Assume {At) through {A3). Then 

P (±((ai,k + B;,k) - ai,k)/ai,k ~ x) ---+ 1 1-<I>(x) 
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holds uniformly in (j, k) E :J, - oo < x ~ bi.,.,. 

On the basis of these two theorems we will conclude in the next section that the 
risk of monotone estimators based on aj,k is asymptotically the same as in the case 
of Gaussian empirical coefficients. This will provide the link to existing results on 
wavelet estimators in Gaussian regression. 

5. WAVELET ESTIMATORS OF THE SPECTRAL DENSITY 

First, we recall some known facts about wavelet estimators in the White Noise model. 
Assume 

dY; = f(t) + EdWt, t E [O, l]. (5.1) 

If we consider minimax estimation problems for f E :F, it is known (for details see 
Donoho and Johnstone (1992)) that linear estimators are unable to attain the optimal 
convergence rate if :Fis some ball in a Besov space B;,q with p < 2. Moreover, certain 
nonlinear wavelet estimators attain this minimax rate. In other words, this result 
indicates that wavelet estimators can behave much better than traditional linear 
estimators whenever a certain amount of inhomogeneity in the smoothness of f is 
present. Since spectral densities have certain peaks in the case of the presence of 
some near-periodicities, the application of these methods seems to be an interesting 
attempt to estimate spectral densities both at certain smooth regions as well as near 
peaks with a good quality. 
In various papers by Donoho and Johnstone there were the following nonlinear met-
hods used in the framework of regression: 

8(h)( ai,k, .X) 
8(s)( ai,k, .X) 

ai,kl(lai,kl ~ .X), 
(laj,kl - .X)+ sgn(a;,k), 

(5.2) 
(5.3) 

where Oj,k = J ~;,k(t) dY; are appropriate estimates of aj,k· These two nonlinear 
procedures on the empirical coefficients are usually called hard and soft thresholding. 
There exist two main results concerning the choice of these thresholds. 

A) If the thresholds .X = .X(j, E, :F) are chosen optimally, then 

{ 8C·)(a.j,k, .X(j, €, :F))} 

is rate optimal in a ball :F = B;,q( C) of a certain Besov class. 
B) If .X = Ey'2 log #coefficients, i.e. .X is neither depending on j nor :F, then 

the corresponding estimator is optimal in a wide range of smoothness classes 
within a factor of log(l/E). 

We turn to the problem of spectral density estimation. As approximating models for 
our empirical wavelet coefficients we consider 

' · k = a · k + a ·kc · k <:,3, 3, 3, 3, (5.4) 
and 

~j,k (5.5) 
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where e;,k rv N(O, 1). Then we have the following basic result for monotone estima-
tors. 

Theorem 5.1. Assume {Al} through {A3}. Let 6; = 6;,T be monotone functions with 

IS;(Y)I ::; IYI· (5.6) 

Then, for 0 < p' < oo, 

(i) L(j,k)E3° EIS;(ii;,k) - a;,klp' = E EIS;(e;,k) - a;,klP'(l + o(l)) + O(r-p'/2
) 

(j,k)E3° 

{ii} L(i,k)e3"El6;(ii;,k) - a;,klP' ::; 2 E EIS;(!;,k) - a;,klP'(l + o(l)) + O(T-P'l2
) 

(j,k)E3" 

holds uniformly over f E :F. 

Proceeding from this theorem we can obtain risk properties of thresholded wavelet 
estimators. Since the estimators (5.2) and (5.3) obey the assumption (5.6), we can 
immediately derive due to Theorem 5.1 the risk equivalence of our spectral density 
estimators to analogous estimators in the much simpler models (5.4) and (5.5). 

' Let 5(.) denote either the hard-threshold rule S(h) defined by (5.2) or the soft-threshold 
rule 5(s) given by (5.3). Then we can state the following assertion. 

Corollary 5.1. Assume {Al} through {A3}. Then, for nonrandom thresholds A;, 

{i} Ec;,k)e3"o E ( 5C.)( ai,k, A;) - a;,k r I: E ( s<·>( e;,k, .\;) - a;,k )2 + O(T-1 
), 

(j,k)E3"0 

{iiJ L(i,k)e3"E (s<·>(a;,k, A;) - a;,kf ::; 2 E E (s<·>(ej,k, A;) - O:j,kr + o(T-1
). 

(i,k)E3" 

Let us now assume that the spectral density flies in a set of the following type: 

where 

(5.8) 

with s = m + 1/2 - 1/p. It is known that this norm is essentially equivalent to the 
norm in the Besov space B;,q, if the basis functions¢ and 'lj; are sufficiently regular, cf. 
Donoho and Johnstone ( 1992). Moreover, we see by the relation B;,1 ~ w; ~ B;,00 , 

that also smoothness classes from the scale of Sobolev spaces w; are covered by our 
results. 
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Let ).~ = ).~ ( T, :F) be the optimal (nonrandom) thresholds and >..; = a maxv'2 log K, 
where K = #:J and amax = max(j,k)e..1{ a;,k}· Further, let 

l° = I: akc/Jz,k + I: s<·)(a;,k, >..j)'l/J;,k (5.9) 
kEli (j,k )E..1 

and 

f = I: ak</>z,k + I: 5(·>( a;,k, >..; )'l/J;,k· (5.10) 
kEli (j,k)E..1 

The following theorem shows that we can attain the same rates in our spectral density 
framework as known from the case of Gaussian regression. 

Theorem 5.2. Assume {A1} through {A3}. Then 

{i} SUPte.r { EllJb - 1112} = 0 (T-2m/(2m+l))' 

{ii} SUPte.r{Ellf- 111 2} = 0 (T-2m/(2m+l) logT). 

(The proof of this theorem follows immediately from Theorem 5.1 and known results 
in the Gaussian whit·e noise model (5.1), cf. Donoho and Johnstone (1992).) 

It is known from Bentkus (1986) that T-2m/(2m+i) is just the optimal rate of con-
vergence in Holder smoothness classes with degree of smoothness m, if {Xt} is a 
stationary Gaussian process. Therefore, Jb attains the minimax rate of convergence 
for each smoothness class :F, which contains some ball from the corresponding Holder 
space. Moreover, we see that f is nearly minimax up to a factor of order log T in 
such smoothness classes. 
Now we turn to the practical choice of the thresholds >..;. In general, the adaptive 
choice of the smoothing parameter( s) in spectral density estimation seems to be more 
difficult than in regression or density estimation. 
Wahba and Wold (1975) proposed some cross-validation criterion to choose the de-
gree of smoothing of a periodic spline estimator automatically. By showing that 
the expectation of the cross-validation function is asymptotically close to the mean 
square error they gave some indication that this criterion yields an asymptotically 
optimal smoothing parameter. Wahba ( 1980) proposed for spline estimators of the 
log periodogram to adapt the smoothing parameter by minimizing an asymptotically 
unbiased risk estimate. Hurvich (1985) proposed in the framework of quite gene-
ral classes of estimators some refinement of the usual leave-one-out technique used 
in cross-validation methods. For kernel estimators Beltrao and Bloomfield (1987) 
proposed some cross-validated likelihood approach to determine the bandwidth, and 
gave also some indications that this method can work. However, since it is based on 
Whittle's approximation of the likelihood, its applicability seems to be restricted to 
Gaussian time series only. Franke and Hardle (1992) proposed to use a bootstrap 
estimate of the mean square percentage error and showed that the bootstrap distri-
bution approaches the distribution of the estimation errors in probability. This gives 
certainly some hope that the risk of the corresponding estimator is asymptotically 
close to the risk of the estimator with optimal bandwidth. However, the construction 
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of the bootstrap estimate requires, besides the bandwidth of interest, two additio-
nal bandwidths that must tend to zero with some suboptimal rates. It is an open 
problem to find a reasonable data-driven rule to determine these bandwidths, which 
would provide then a completely defined rule. 
Here we propose a much simpler, admittedly slightly suboptimal, approach. Assume 
that any consistent estimator J off is available. By the trivial inequality 

var(a;,k) ~ 27r (HiT) /(Hf>)2
) Jn l~;,k(a) [~;,k(a) + ~;,k(-a)]I da I/I~+ O(T-12-i) 

we can find 

a~ = 27r ( HiT) /(H~T))2) ln l~;,k( a) [~;,k( a)+ ~i,k(-a)]I da lfl~ 

as an asymptotic majorant of var(a;,k) for all levels j = j(T) with 2i ~ 1. Then we 
can use, according to (ii) of Theorem 5.2, ~ = aTJ2 log(#:!) as a universal threshold, 
which is completely data-driven. We mention that Gao (1993) used thresholds of 
order T-1/ 2 log T, which can be applied to Gaussian time series without the restriction 
to levels j with 2; ~ T. The use of these thresholds results in an Lrrisk of the 
estimator that is within a factor of (log T) 2 of the risk with optimally thresholded 
coefficients. 
We expect that one can show under appropriate conditions that the corresponding 
estimator is, within a log T-term as in (ii) of Theorem 5.2, rate-optimal in a wide 
range of smoothness classes. 

6. CUMULANTS OF THE DISCRETE EMPIRICAL COEFFICIENTS 

We show in this section that the cumulants of O:j,k and O:j,k are asymptotically close 
to those of a;,k, which will imply that analogous results as in Section 5 hold true for 
thresholded wavelet estimators based on the discrete versions of the empirical wavelet 
coefficients. 
First, we state a technical lemma, which will be the basis for estimates of the cumu-
lants. Let 

and 
O:;,k(l) = ~ L ,P;,k(w;) cos(w;l). 

' 
Lemma 6 .1. There exists a constant K < oo such that 

(i) la;,k(l) - a;,k(l)I ~ KT- 1 zril2
, 

(ii) la;,k( l) - a;,k( l) I ~ KT-1 2il2
, 

{iii) la;,k(l)I + llf;,k(l)I :::; K (2;12 G + T ~ z) A rH2
) 

hold uniformly over (j, k) E :J. 

On the basis of this lemma we can state the following assertions concerning the 
cumulants of a;,k and a;,k· 



Proposition 6.1. Assume {Al} through {A3). Then 

(i} Ea;,k - Ea;,k = 0(2i/2T-1 ), 

{ii} var( a;,k) = var(a;,k) + O(T-12-i) + o(T-1 ), 

{iii} lcumn( a;,k)I ~ var(a;,k)(n - 1)! (4.rll,P;,klloo llfl100 sup~tWI'}) n-
2 

11 

n 2 + 2n-2c~n ((2n)!)l+'Y (sup{lh(t)l2}) sup - {la. k(l) 12}T M"-2. 
7rn H(T) l-0,±1, ... ,±T-1 J, 

2 

hold uniformly over f E F and (j, k) E :J. 
(For the cumulants of a;,k we have analogous estimates.) 

In view of the estimates of the cumulants of a;,k and a;,k given in this proposition 
we can infer that the results of Section 5 remain true for estimators based on the 
discrete empirical coefficients. 

7. CONCLUDING REMARKS 

1) There exist several possibilities to weaken the cumulant assumption (A3). 
One could obtain analogous results as in Theorem 5.1 under the following 
modifications of ( A3). 

(A3') There exist random variables Xt, such that 
(i) P(Xt, =f XtJ ~ Gn_,. for r large enough 

(ii) sup1<ti<oo {E:, ... ,t1c=l lcum(Xtu ... ,Xt1cl} ~ C~(k!)l+'Y 
for all k = 2, 3, .. . 

(iii) EIXtl,. ~ G(T) for some finite but sufficiently larger· 
(A3") The constant 0 2 in (A3) can be allowed to increase with T with a suffi-

ciently slow rate. 
2) Sometimes a mixing condition as in Remark 1 is imposed instead of our as-

sumption (A3). However, by the relation 

lcov(Xt,XtH)I ~ 8a11r(t, t + k)llXtllpllXtHllq 
for p, q, r ~ 1, 1/p + 1/ q + 1/r = 1 (cf. Davydov (1970)) we infer that 

11<9lH ~ ~I: k8 lck1 = 0(1) 

holds for all fJ < oo, which means that the underlying spectral density is 
arbitrarily smooth. In this case, also traditional kernel estimators based on 
h( w) would do a good job in estimating f and there is no need to apply 
nonlinear wavelet estimators. 
In contrast, under ( A3) we include essentially more irregular spectral densities, 
which is demonstrated by the following somewhat artificial example. 
Let {X~i)}, i = 1, ... , m, be independent time series satisfying (A3) with 
constants C~i), respectively. Let 1 rv U {1, ... , m} be independent of these 
processes and let 

Yi X (i+-y mod m) (t-l)m+i = t · 
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Then {Yt} is a stationary process satisfying (A3) with constant 0 2 = m-1 l:i C~i>. 
For the covariances we have 

{ 

_ 1 ""' (X(i) X(i)) 
( ·v· v . ) - m L..Ji cov o ' j ' 

COV .It, .I t+Jm+k - 0 
' 

fork= 6 
for 1 ~ k < m ' 

which implies by f{Yt}(w) = m-1 Ei f{x~i)}(mw) that 

d8 d8 

dw8f{Yt}(w) = m
8

-
1 ~ dwef{x~i>}(mw). 

' 
Letting m tend to infinity we cover more and more irregular spectral densities. 

3) It is pointed out in several papers, e.g. Dahlhaus (1983, 1990), that linear 
estimators can be improved by the use of an appropriate data taper. In par-
ticular, in Dahlhaus (1990) it is shown that such a data taper is necessary to 
get estimators with a high resolution property. 
The results presented here allow the use of the tapered periodogram as an 
alternative to the nontapered one, too. It would be a challenging problem to 
investigate the effect of an taper to our nonlinear estimation rules. 

4) As may be seen in Theorem 5.1, the risk equivalence to the Gaussian case can 
also be shown for other loss functions as the quadratic one. If we are especially 
interested in recognizing peaks of the true spectral density, we could take this 
special goal into account by an appropriate choice of the loss function. The 
Lp-loss for large values of p is more sensitive than the Lrloss to relatively 
large estimation errors at certain small intervals, and therefore more sensitive 
to a misjudgement of a peak. 

8. PROOFS 

For simplicity of notation we agree that C denotes any finite constant, which may 
take different values at different places. 

Proof of Remark 1. Using 2) of Theorem 3 in [20] with 6 = 1 we obtain, for t 1 ~ t 2 ~ 
... ~ tk, 

k 

lr(Xt11 ••• ,Xt,JI < Ck(k -1)!((2k)!)'Y12 II a 1l<2<k-l))(t;_1 , t;), (8.1) 

which implies 

0 

00 

:E lr(Xtu ... , Xt,JI ~ k! 

< Ck(k!)2h·(k - l)k-1 
< Ck(k!)J+-r. 

j=2 
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Proof of Proposition 3.1. (i) In the nontapered case we obtain this assertion im-
mediately by formula (1.7) in [14]. In the tapered case Lemma 4 in [6] provides 
under the weaker condition f E L2 an error estimate of order TV( 'l/J;,k)o(T-112 ), 

which is o(T-1! 22il2 ). For reader's convenience we adopt the notation intro-
duced in [6] as much as possible. 
Using Theorem 5.2.3 in [5] we obtain 

E IT(w) = Irr <P~T)(a)f(w - a) da, 

where 

Hf)( a)= ~t hk(t/T)exp{-iat}, which implies 

if HiT)(O) -/- 0 

if HiT)(O) = 0 

Eii;,k Irr Irr <P~T)( a )f(w - a)'l/J;,k(w) da dw 

Irr <P~T)(a) Irr f(w - a)'l/J;,k(w) dw da. (8.2) 

From ( 4) in [6] we conclude 

f <I>(T\a) da = 1 f H(T)(a)H(T)(-a) da = 1 Jn 2 27r H~T)(O) Jn 1 1 , 

which implies that 

Irr <I>~T)(a) Irr (f(w - a) - f(w)) 'l/;j,k(w) dw da (8.3) 
1 

(T) f Hf\a)Hf)(-a) f (f(w - a) - f(w)) 'l/;;,k(w) dw da. 
27r H 2 Jn Jn 

Using (6) in [6] we get 
IHf)(a)I ::; c1a1-l 

and, by Lemma 1 in that paper, 

Because of 

we obtain finally 

IEa;,k - a;,kl ::; c2i12T- 1 Irr IHf)(a)llHV)(-a)llal da = 0 (2i/2T-1 logT). 
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(ii) The proof is, of course, very similar to that of Lemma 6 in [6]. The only, but 
important modification for our purposes is, that the weight functions 'l/;;,k are 
not uniformly bounded, and therefore we carry out the proof again. 
According to Lemma 6 in [6] we have 

var(a;,k) = ( HiT) /(H~T))2) /n
3 

G( u)<I>~T)( u) .X3 ( du), 

where 

G1(u) 271' fn
2 
'l/;;,k(a1)'l/;;,k(-a2)f4(a1 - ui, -a1 - u2, a2 - u3)A2(da), 

G2(u) 271' In 'l/;;,k(a)'lf;;,k(a - u1 - u3)f(a - u1)f(-a - u2) da, 

G3(u) 271' In 'l/;;,k(a)'lf;;,k(-a - u2 - u3)f(a - u1)f(-a - u2) da. 

Now, we have 

which implies 

Further, we have 

IG2( u) - G2(0)I 

< 271" Jlrr .,P;,k(a) (..P;,k(a - u1 - u3) - .,P;,k(a)) f(a - u1)f(-a - u2) dal 
+ 271" 1n l..P;,k(a)l2lf(a - u1) - f(a)llf(-a - u2)I da 

+ 271' In l'l/Ji,k(a)l2 lf(a)llf(-a - u2) - f(-a)I da 

O(lul2i). 
This yields, by the estimate contained in the proof of Lemma 3 in [6], 

Jin, G2(u)<P~T)(u)A3 (du) - G2(0) fn, <P~T)(u).\3 (du)I 
< r IG2( u) - G2(0)l l<I>~T\ u )l.X3

( du) 
lrP\{lul<o} 

+ r IG2( u) - G2(0)l l<I>~T)( u )l.X3 ( du) 
J{lul<o} 

(
log3 T II 112 12 ) . < o ST 'l/Ji,k 2llf loo + 0(521

). 

Choosing 5 = 5(T) ~ T-1 / 22-il2(log T)-312 we obtain a residual term of order 
0(2il2r-1!2(log T) 312), which is o(l) under 2i ~ CT1-a. 

An analogous upper estimate can be obtained for the difference containing G3 • 

Since HiT) /(H~T))2 = O(T-1 ), we obtain (ii). 
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(iii) This proof is similar to that of Lemma 2 in [18]. Because of the use of a 
data taper and because of the more general cumulant assumption we have to 
modify it slightly. For the reader's convenience we sketch the main steps. 
The higher order cumulants of iij,k can be estimated with the aid of Leonov-
Shiryaev's formula, [15]. For that we have to write iij,k as a polynomial in 
certain random variables, where each of them enters at most with the power 
one into each of the terms of this polynomial. Therefore, we define XT+t = Xt 
fort= 1, ... , T, such that 'T/ = iij,k can be written in the form 

,,, = L a(rJ)Xtl .. ·X~'.v, 
t9E0 

whererJ = (1?1,··· ,1J2T), 8 = {i?li?t E {0,1},Ei?t = 2}. 
Using Leonov-Shiryaev's formula we obtain 

(8.4) 

cumn('T/) = L a(rJ(l))···a(rJ(n)) L:* c(tn1 )···c(tnq), 
t9( 1 ), ••• ,t9(n)E0 D(t9)=D1 + ... +Dq (8.5) 

where the sum E* is taken over all indecomposable partitions of D( rJ) = 
{(i,j) lr;}i) = 1 }. Here, c(tnP) is defined as cum (Xmp,u ... ,Xmp,rp), where 

Dp = {(imp,ump,1), ... ,(imp,rp,mp,rp)}. 
For our further calculations it is not necessary to work with the general, but 
q-qite involved formula (8.5); it tells us only, which products of cumulants must 
be included in the calculation of cumn('f/). We rewrite (8.5) as 

T 
cumn('T/) = (27rHF)rn L ai,k(t1 -t2)···aj,k(t2n-1-t2n) L** c(tn1 )···c(tnq), 

ti, ... ,t2n=l D=D1+ ... +Dq (8.6) 

where D = {t1, ... , t2n} and E** is the analog of E* from (8.5). Analogously 
to (8.5) we define c(tnP) = c(tm 1 , ••• , tm 1 ) =cum (ht Xt , ... , ht Xt ) p, rp, ""'p,l ""'p,l ""'p,rp Tnp,rp 
if Dp = { tmp,l > ••• , tmp,rp }. 
Since E Xt = 0 for all t, we can restrict our cons-iderations to indecomposable 
decompositions with rp 2:: 2. We divide the right-hand side of (8.6) into 
two parts, R1 and R2 , the first one containing all indecomposable partitions 
D = D1 + ... + Dn, which have exactly n sets, and the second one containing 
the remaining partitions D = D1 + ... + Dq for any q < n. 
Because of rp 2:: 2, R1 contains all pure products of second order cumulants 
and is just then-th cumulant of,,,, if the time series would be Gaussian with 
zero mean and the same spectral density as {Xt}· Following the lines of the 
proof of Lemma 3.1 in [4], we conclude 

_ _. 1 ( . sup{lh(t)l2})n-
2 

IR1I - var(a3,k)(n - 1). 47rll7/JJ,klloollflloo H~T) (8.7) 

Now we estimate IR2I· Let D(rJ) = D1 + ... + Dq be any indecomposable 
partition, which occurs in the sum E*. Since it is indecomposable, there exist 



16 

numbers p2 , ••• ,pq E {1, ... ,n} and associated indices tp0 ~i such that 
i-1 

(Pi, tPJ E Di and (Pi, ~J E LJ D; for all i = 2,. · .. , q. (8.8) 
j=l 

Let us now fix a partition D = D1 + ... + Dq, which occurs in E**. According 
to (8.8) there exist pairs (sp, S'p) with {sp, sp} = {2i - 1, 2i} for some i E 
{1,. .. , n} with 

p-1 

Sp E Dp, Sp E u D;. 
j=l 

Since the sets DP are not ordered, we set w .l.o.g. m1,r1 
Sp, p = 2, ... , q. 
Now we have 

T 

L a;,k(t1 - t2) · · · a;,k(t2n-1 - t2n)e(tn1 ) • • • e(tnq) 

< sup la;,k( l) ln-q-l * 
l 

T 

* :E 
T T 

(8.9) 

(8.10) 

* L la;,k(ts2 - t;2)I L le (tm2,1 > ••• 'tm2,.,.2-1 > t,,2) I* 
fa2 =1 fm2,1 , ... ,tm21.,.2 _1 =1 

T T 
* L laj,k(tsq - t;q)I L le (tmq,l > ••• , tmq,rq-l > t.,q) I· 

taq=l tmq,l '""" ,tmq,rq-l =1 

Now we stepwise introduce upper estimates for the sums on the right-hand side 
of (8.10). The last sum is, uniformly in sq, less or equal than MC;q(rq!)l+"Y, 
where 02 = 0 2 sup{lh(t)I}. Then we estimate the last but one sum above by 
MC;q-1 (rq_1!)1+"Y, and so on. Finally we obtain that 

T 

L a;,k(t1 - t2) · · · a3,k(t2n-1 - t2n)e(tn1 ) • • • e(tnq) 

< sup { la;,k(l)ln-q-l} T Mq-1c;n (r1! · · · rq!)l+"Y 
l 

< sup { la;,k( 1)1 2
} T Mn- 2 (jin (r1! · · · rq!)l+"Y. 

l . 

From the proof of Lemma 2 in [18] we get 

(8.11) 

L.':** (r1! .. · rq!)l+"Y < ((2n)!)"Y :E** r1! .. · rq! ::; 22n-2 ((2n)!)l+"Y, 
D=D1+··+Dq (8.12) 
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which yields 

IR2I ~ 2n-2~in ((2n)!)l+-Y (sup{l7~~)12})n sup {laj,k(l)l2}T Mn-2. 
7r H2 l=0,±1, ... ,±T-1 (8.13) 

D 
Proof of Lemma 3.1. For l :f 0 we obtain via integration by parts 

a;,k(l) = j ,P;,k(t) cos( It) dt = -~ j sin(lt) d,;,;,k(t), 

which implies 

lai,k(l)I ~ z-1rv( 'if;j,k) = o (z-12il2) . (8.14) 

On the other hand, we have 

laj,k(l)I ~ j l'ifJj,k(t)I dt = o (2-il2), (8.15) 

which proves (i). 
(ii) follows immediately from l:~=l m-1 ~ 1 +log T. D 

Proof of Theorem 4.1. Using (iii) of Proposition 3 .1 as well as the assertion of Lemma 3 .1 
we obtain due to Lemma 1 in [19] that 

P(±(ai,k-Eai,k)/ai,k~x) _ L(:z:)( () x+l ) 
1-cI>(x) -e l+gx ~1/(3+4-y) (8.16) 

for 0 ~ x ~ ~ 1/C3+4-y), where~ is an appropriate constant of order T1l22-il2(log Tt1 . 

Here, g is some bounded function, and by (3) and (4) in [19] we infer that IL(x)I ~ 
Cx3 / ~. Therefore, the right-hand side of (8.16) converges uniformly to 1, if both 
0 ~ x ~ ~ l/(3+4-y) and x = o( ~ 113) are satisfied. (For x < 0 this convergence is an 
immediate consequence.) 
Since b = (ai,k - Eaj,k)/ai,k = 0(~-1 ), we conclude that 

p (±(ai,k - ai,k)/ai,k ~ x) = (l + o(l)) 1 - cI>(x + b) (8.17) 
1 - cI>(x) 1 - cI>(x) 

holds uniformly over -oo ~ x ~ ~-y· Now it remains to estimate 

T/ = 11-cI>(x+b) - ll = lcI>(x+b)-cI>(x)I_ 
1-cI>(x) 1-cI>(x) 

Let w.l.o.g. b ~ 0. (Otherwise we would estimate 1 1 ~-;!£:~) - 11 in the same manner 
as T/ below.) 
Fix any c > 1. It is clear that T/ tends to zero if x ~ c. For c < x ~ ~'Y we obtain by 
the formula at the bottom of p. 525 in [4] that 

b-1-e-:z:2 /2 bx 
< ../?,; < --~o 

T/ - (1 - .1...) _l_.!e-:z:2/2 - 1 - -1. :z:2 ../?,; :z: c2 
as r~oo, 
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which completes the proof. D 

Proof of Theorem 5.1. First we choose a constant rj,k such that 

6;(y) ~ a;,k, if y > 1;,k 
6;(Y) ~ a;,k, if Y < rj,k· 

(W.l.o.g. we assume 6;(r;,k) ~ aj,k·) 
Now we split up 

E l6;(a;,k) - a;,klp' 
EI (r;,k ~ a;,k ~ a;,k + a;,k~"'() l6;(a;,k) - a;,klP 

I 

I 

+EI (a;,k - a;,k~"'( ~ a;,k < ri,k) l6;(ai,k) - a;,klP (8.18) 

+EI (lai,k - ai,kl > a;,k~"'() l6i(ai,k) - ai,klP 
I 

Ri + R2 + RJ. 

According to the assertion of Theorem 4.1 there exist a~>, C~u>, both tending to 1 
as t ~ oo, such that 

c¥> (1 - ~(x)) ~ P (±(ai,k - ai,k)/ai,k ~ x) ~ aiu) (1 - ~(x)) Vx:::; ~"Y' 
(8.19) 

which implies 

P (~"'( ~ ±(ai,k - ai,k)/ai,k ~ x) ~ C~) (1- ~(x)) Vx ER. (8.20) 

Since 6;(y) - a;,k is monotone nondecreasing for y ~ ri,k, we obtain 

Ri ~ Ctu) EI (ri,k ~ ei,k) l8i(ei,k) - ai,klp' · 
Analogously we get 

R2 ~ Ctu) EI (1;,k > e;,k) l8;(ei,k) - ai,klp' · 

Using the formula on the bottom of p. 525 in [4], we have 

p (laj,k - Ci.j,kl > aj,k~"'() < aiu) (1 - ~(~"'()) 

< C(u) 1 e-~;12 = 0 (T-µ) 
- T V'[;~"Y 

for arbitrary µ < oo, which implies by the Cauchy-Schwarz inequality 

(8.21) 

(8.22) 

R3 :::; .jP(laj,k - Ci.j,kl > aj,k~-r)VEl8;(~j,k)- Ci.j,kl 2P' = 0 (T-p'/2
-

1
). 

(8.23) 

By (8.18) and (8.21) through (8.23) we conclude 

The reverse inequality can be proved analogously. 
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(ii) Let B;,k rv N(O, a} - aJ.k) be independent of ii;,k· Then 

EIS·(a·k) - a·klp' = E l(a·k > "''k)IS·(a·k)- a·klp' + E l(a·k < "''k)IS·(a·k) - a·klp' 3 3, 3, 3, - 13, 3 3, 3, 3, 13, j 3, 3, 

2E l(a·k > "''k B·k > O)IS·(a·k) - a·klp' + 2E l(a·k < "''k B·k < O)IS·(a·k) - a·klp' 3, - 13, ' 3, - 3 3, 3, 3, 13, ' 3, - 3 3, 3, 

< 2E IS·(a·k + B·k)- a·klp' - 3 3, 3, 3, ' 

which yields (ii) due to Theorem 4.2. D 

Proof of Lemma 6.1. (i) It holds 

la;,k( l) - a;,k( l) I IL lwi 1/1;,k( w) [cos( wl) - cos( wil)] dwl 
i Wi-211"/T 

O (T-11 j l..P;,k(w)I dw) = o (T- 11ri!2
). 

(ii) Here we have the following estimate 

la;,k( l) - a;,k( Z) I L lwi ( 'l/J;,1c( w) - 'l/J;,k( Wi)) dw cos( Wi l) 
i Wi-211"/T 

(iii) Using the formula 

< L lwi l'l/J;,k(w) - 'l/J;,k(wi)I dw 
i Wi-211"/T 

< 27rT-1TV( 'l/J;,k) 
= 0 ( T-12il2) • 

N sin Na { N + 1 } 
L:exp{isa.} = . ~ exp i--a 
s=l sm 2 2 

from p. 33 in [3] we get for 0 < l < T 

N 

dN( l) = L cos( W 8 l) 
s=l 
N 

L cos(s * 27rl/T) 
s=l 

• N27rl/T N + 1 
sin- ( ) . ~ cos --2?rl/T , 
sm 2 2 

which implies 

ldN(l)I ~ K (~ + T ~ 1) . 

(For l = 0, T we have dN(l) = N.) 
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D 

With the definitions r(T) = 'lf;;,k(wT) and r(m) = 'lf;;,k(wm) -1f;;,k(wm+1) for 
0 ~ m ~ T - 1 we have, for 0 < l < T, 

271" T 
a;,k(l) = T ?= 'lf;;,k(wi) cos(wil) 

i=l 

= ~ ~ (fr. r(j)) cos(w;l) 

271" j 
= rL:r(i)L:cos(wil) 

j i=l 

2 T-1 - ; ?= r(j)d;( l). 
J=l 

Since Ef~l lf(j)I ~ TV( 'lf;;,k) ~ K2il2 , we obtain 

(8.24) 

The proof for a;,k(l) is analogous, we replace only the r(m)'s by r(T) = 
J;;_ 21r/T1/Ji,k(t)dt and r(m) = J;;:_ 21r/T1/Ji,k(t)dt - 1::::11_ 21r/T'l/Ji,k(t)dt for 
O<m<T-1. 
Si~ce E~::~ jT(m)I = O(T-1TV('lf;;,k)), we obtain for 0 < l < T 

- '/2 (1 1 ) la;,k(l)I s K2' l + T _ l . (8.25) 

Proof of Proposition 6 .1. (i) We have 

Eh(w) = Irr q,~T)(u)f(w + u)du, 

where supT {J l<I>~T)(u)I du} < oo, cf. Theorem 5.2.3 in [5] and (i) on the 
bottom of p. 166 in [6]. Therefore, we obtain 

which implies 

IEii;,k - Ea;,kl < f;;_ f~2w/T 11/>;,k(w)llE h(w) - E h(wi)I dw 

< c2il2T-1TV(E IT(w)lsupp(,Pj,k))· 
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(ii) Using (8.6) we get analogously to (22) in [18], that 

1 T 
----,-(T-)-

2 
L ai,k(t1 - t2)aj,k(t3 - t4) * (8.26) 

(27r H2 ) ti ,t2,ts,t4=1 
var(aj,k) = 

* {c(t1, t3)c(t2, t4) + c(ti, t4)c(t2, t3) + c(ti, t2, t3, t4)}, 
whereas var(aj,k) can be written in the same way with aj,k(.) instead ofaj,k(.). 
This implies 

lvar(aj,k) - var(aj,k)I 
T 

< xr-2 L laj,k(t1 - t2)llaj,k(t3 - t4) - aj,k(t3 - t4)I * { ... }(8.27) 

T 
+ KT-2 L lai,k(t1 - t2) - ai,k(t1 - t2)lla3,k(t3 - t4)1 * { ... }. 

W.l.o.g. we estimate only the first term on the right-hand side of (8.27). Be-
cause of lai,k(l)I + lai,k(l)I ~ K2-il2 we obtain by (A3) 

T 

L lai,k(t1 - t2)llai,k(t3 - t4) - ai,k(t3 - t4)llc(t1, t2, t3, t4)I = O(T2-i). 
tiif2,t3,t4=l (8.28) 

We have by (i) of Lemma 3.1 and (iii) of Lemma 6.1 that 

L lai,k(t3 - t4) - ai,k(t3 - t4)l L lc(t1, t3)I L lc(t2, t4)l lai,k(t1 - t2)I = O(log T) 
t4 ti t2 (8.29) 

holds uniformly in t3 , which implies 

L L lai,k(t1 - t2)llai,k(t3 - t4) - ai,k(t3 - t4)llc(t1, t3)llc(t2, t4)I = O(T5 lo 
t35:_T0 or t3'?:_T-T0 ti,t2,t4 (8 

Let now T5 < t3 < T - T5• Then we conclude by (i) of Lemma 3.1 and (i), 
(iii) of Lemma 6.1 that 

laj,k( t3 - t4) - aj,k( t3 - t4) I ~ r-112 + 2il2r-0 

holds uniformly in t 4 • This implies 

2:To<ts<T-T5 L lc(t1, t3)I L lai,k(t1 - t2)I L lc(t2, t4)llai,k(t3 - t4) - ai,k(t3 - t4)I 
ti t2 t4 

L 0 ( 2il2 1og T ( r-1/ 2 + 2il2r-0 )) 

T 5<ts<T-T5 

- o ( ( 2il2r1!2 + 2ir1- 0) log r). (8.31) 

Choosing 6 = 6(T) such that 1 - a < 6 < 1 we get by (8.30) and (8.31) 

L lai,k(t1 - t2)llai,k(t3 - t4) - ai,k(t3 - t4)llc(t1, t3)llc(t2, t4)I = o(T). 
ti,t2,t3,t4 (8.32) 
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The term containing c(t1, t4) and c(t2, t3) instead of c(t1, t3) and c(t2, t4), re-
spectively, can be estimated analogously, which yields in view of (8.28) and 
(8.32) assertion (ii). 

(iii) The proof is analogous to that of (iii) of Proposition 3.1. 
D 
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